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Abstract. In this paper we consider the eigenvalue problem for a weighted spectral fractional
second order elliptic operator in a bounded domain. We show that any eigenvalue is strictly
monotone with respect to the weight function if the corresponding eigenfunction satis�es the unique
continuation property from a measurable set of positive Lebesgue measure.

1. Introduction

In this paper we will investigate the relation between the monotonicity of eigenvalues and the
unique continuation property for the spectral fractional elliptic operator. To motivate our study,
we �rst brie�y state the result for the elliptic operator. Consider the weighted eigenvalue problem
in a bounded domain Ω ⊂ Rn with Lipschitz boundary ∂Ω:

(1.1)

{
Au = µm(x)u in Ω,

u = 0 on ∂Ω,

where A is a second order elliptic operator given by

Au = −
n∑

i,j=1

∂j(aij(x)∂iu) + a0(x)u

with a0(x) ≥ 0 and (aij(x)) ∈ L∞(Ω) satisfying aij(x) = aji(x), the ellipticity condition

(1.2) Λ1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ2|ξ|2, 0 < Λ1,Λ2.

Assume that a0,m(x) ∈ Lr(Ω) for some r > n/2. It is known that the eigenvalues of (1.1),
depending on m, form a countable sequence:

· · · ≤ µ−2(m) ≤ µ−1(m) < 0 < µ1(m) ≤ µ2(m) ≤ · · · .
If m is non-negative (or non-positive), then this sequence is bounded below (or bounded above).
In view of the variational characterization of eigenvalues, we can observe that each µk, k ∈ Z\{0},
is nonincreasing in the weight function m, i.e., if m(x) ≤ m̂(x) a.e., then µk(m̂) ≤ µk(m). It
was proved in [FG92] that µk(m) is strictly decreasing in m if and only if the corresponding
eigenfunction enjoys the unique continuation property from a set of positive measure. We say that
µk(m) is strictly monotonically decreasing in m if m(x) ≤ m̂(x) a.e. and {x : m̂(x) −m(x) > 0}
has positive measure, then µk(m̂) < µk(m). For the corresponding eigenfunction uk(x), we say
that uk(x) has the measurable unique continuation property (MUCP) if u = 0 identically in Ω
whenever uk(x) = 0 in E ⊂ Ω with the Lebesgue measure of E, |E| > 0. A similar result was
proved for the biharmonic operator ∆2 in [TCRD12].
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The equivalence of strict monotonicity of eigenvalues and MUCP was further extended to
nonlocal operators in [FI19] where the authors considered the eigenvalue problem

(1.3)

{
LKu = µm(x)u in Ω,

u = 0 in Rn \ Ω,

where LK is a nonlocal operator of the following general form

(1.4) LKu(x) = p.v.

∫
Rn

(u(x)− u(y))K(x− y) dy,

where the kernel K satis�es

(K1) ρ(x)K ∈ L1(Rn), where ρ(x) = min{|x|2, 1};
(K2) K(x) ≥ α|x|−(n+2s) for all x ∈ Rn \ {0} and s ∈ (0, 1);
(K3) K(−x) = K(x) for all x ∈ Rn \ {0}.

In particular, when K(x) = |x|−(n+2s), LK is known to be the fractional Laplacian and (1.3) is the
eigenvalue problem for the regional fractional Laplacian. Since LK is nonlocal, to de�ne LKu(x)
for x ∈ Ω, u = 0 in Rn \ Ω serves as the zero Dirichlet condition.
The main theme of this work is to establish the equivalence of strict monotonicity of eigenvalues

and MUCP for the spectral elliptic operator. To de�ne the operator, let us denote the second
order elliptic operator

Lu(x) = −
n∑

i,j=1

∂j(aij(x)∂iu(x)).

It is a standard result that there exists a sequence of positive Dirichlet eigenvalues and orthonormal
eigenfunctions {λk, φk}∞k=0 with φk ∈ H1

0 (Ω) for L in Ω. For s ∈ (0, 1), we de�ne the spectral
fractional elliptic operator

(1.5) Lsu(x) :=
∞∑
k=0

λskukφk(x) in Ω,

where u(x) =
∑∞

k=0 ukφk ∈ H1
0 (Ω), i.e., uk = (u, φk). We also consider spectral fractional elliptic

operator Lγ with the fractional power γ ∈ R+ \ N (see the precise de�nition of Lγ in Section 2).
In this work, we will not discuss the classical case where γ ∈ N. Let µk(m) be the eigenvalue of

Lγψk(x) = µk(x)m(x)ψk(x) in Ω

with the corresponding eigenfunction ψk(x) belonging to a certain function space (see Section 3).
We then prove that µk is strictly monotonically decreasing in m if and only if ψk enjoys MUCP
in Ω. We want to point out the spectral elliptic operator Lγ can not be written in the form of LK
in (1.4) with a suitable kernel K. One can easily observe that if such kernel K exists for Lγ, then
it cannot satisfy Property (K2) of K given above. In other words, our result here does not follow
from that in [FI19].
Even though Lγ is de�ned in a bounded domain Ω, it is a nonlocal operator. The proof of

the uniqueness continuation property is highly nontrivial. However, it was shown in [ST10] that
Ls for s ∈ (0, 1) can be expressed as the Dirichlet-to-Neumann map of an extension problem in
the spirit of the fractional Laplacian (−∆)s established in [CS07]. The operator in the extension
problem is a local, but degenerate, elliptic operator. Combining [ST10] and [Yan13], the spectral
fractional elliptic operator Lγ can also be described as the Dirichlet-to-Neumann map of an
extension problem. Having established the extension problem for Lγ, we can prove the MUCP
using some results from [GR19] involving Carleman estimates.
The paper is organized as follows. In Section 2, we discuss the de�nition of the spectral fractional

elliptic operator Lγ in detailed. We also describe the corresponding extension problem, especially
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the case of γ > 1. In Section 3, we state and prove main results of the paper. We will discuss the
unique continuation property for Lγ in Section 4.

2. The Fractional Operator Lγ

Let Ω be a bounded Lipschitz domain in Rn. We now give a formal de�nition of Lγ for γ ∈ R+\N.
Let bγc be the integer part of γ and s := γ − bγc, that is, we write

γ = bγc+ s with bγc ∈ Z≥0 and s ∈ (0, 1).

To consider the fractional elliptic operator of higher power, we need to impose a higher regularity
on the coe�cients, namely,

(2.1) (aij) ∈ C2bγc,1(Ω).

Before giving the precise de�nition of Lγ, we �rst discuss some special Sobolev spaces [Gr16]. For
s > 0, we de�ne the space Hs(Ω) as the restriction of Hs(Rn) to Ω. Let us denote

H̃s(Ω) =



u ∈ Hs(Ω), 0 < s < 1/2,

u ∈ Hs(Ω), u = 0 on ∂Ω, 1/2 < s < 5/2,

u ∈ Hs(Ω), u = Lu = · · · = Lku = 0 on ∂Ω, 2k + 1/2 < s < 2k + 5/2,

u ∈ Hs(Ω), u = Lu = · · · = Lk−1u = 0 on ∂Ω, Lku ∈ H1/2(Rn) with suppLku ∈ Ω,

s = 2k + 1/2.

Now we de�ne Lγ for γ ∈ R+ \ N as

(2.2) Lγu(x) :=
∞∑
k=0

λγk(u, φk)φk(x) in Ω

for u ∈ dom(Lγ) = H̃2γ(Ω). Thus, we have Lγ : dom(Lγ) → L2(Ω). We can see that for
u ∈ dom(Lγ)

Lγu =
∞∑
k=0

λγk(u, φk)φk =
∞∑
k=0

λ
s+bγc−1
k (u, λkφk)φk =

∞∑
k=0

λ
s+bγc−1
k (Lu, φk)φk

=
∞∑
k=0

λ
s+bγc−2
k (Lu, λkφk)φk =

∞∑
k=0

λ
s+bγc−2
k (L2u, φk)φk = · · ·

=Ls(Lbγcu).

On the other hand, we also have that for u ∈ dom(Lγ)

Lγu =
∞∑
k=0

λγk(u, φk)φk =
∞∑
k=0

λ
bγc
k (u, λskφk)φk =

∞∑
k=0

λ
bγc
k (Lsu, φk)φk = Lbγc(Lsu),

which immediately implies

(2.3) Lγu = Ls(Lbγcu) = Lbγc(Lsu).
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3. An Eigenvalue Problem: Strict Monotonicity and Unique Continuation

For γ ∈ R+ \ N we consider the eigenvalue problem

(3.1)

{
Lγu = µm(x)u in Ω,

u ∈ dom(Lγ),

where m ∈ L∞(Ω). We are interested in the connection between the strict monotonicity of the
eigenvalues µ(m) and the weight function m. The classical case γ = 1 was studied by de Figueredo
and Gossez in [FG92].
We �rst discuss the existence of discrete eigenvalues of (3.1). Since m is an inde�nite weight, we

will follow the approach used in [Fig82] (or [FI19]). In view of (2.3), Lγ is a self-adjoint operator
in L2(Ω) with domain dom(Lγ). The eigenvalue problem (3.1) can be expressed in the variational
form:

(3.2) a[u, v] = µ

∫
Ω

muv, for all v ∈ dom(Lγ), u ∈ dom(Lγ),

where a[·, ·] : dom(Lγ)× dom(Lγ)→ R is the bilinear form (inner product) de�ned by

a[u, v] :=

∫
Ω

(Lγu(x))v(x) dx.

Clearly, ‖u‖γ = a[u, u]1/2 induces a norm on dom(Lγ). However, dom(Lγ) is, in general, not
complete in ‖ · ‖γ. Thus, we need to consider a suitable extension of Lγ. Since Lγ is semibounded,
Lγ can be extended in the Friedrichs sense to H, the completion of dom(Lγ) in ‖ ·‖γ. Observe that

(3.3) a[u, v] =

∫
Ω

(Lγ/2u)(Lγ/2v) dx

for u, v ∈ dom(Lγ). Thus, we have

H = H̃γ(Ω).

To abuse the notation, we still denote its Friedrichs extension by Lγ. Note that the Friedrichs
extension of Lγ remains self-adjoint on H̃γ(Ω).

For �xed u ∈ H̃γ(Ω), the map v 7→
∫

Ω

muv is a bounded linear functional in H̃γ(Ω). By the

Riesz-Fréchet representation theorem, there exists a unique element in H̃γ(Ω), says Tu, such that

(3.4) a[Tu, v] =

∫
muv for all v ∈ H̃γ(Ω).

We can see that T is self-adjoint and bounded in H̃γ(Ω). We can further prove that

Lemma 3.1. The operator T : H̃γ(Ω)→ H̃γ(Ω) is compact.

Proof. Let {un} be a bounded sequence in H̃γ(Ω). Then there exists a subsequence, still denoted
{un}, such that

un → u weakly in H̃γ(Ω).

The compact embedding of H̃γ(Ω) ↪→ L2(Ω) (see, for example, [DPV12]), implies

un → u strongly in L2(Ω).

Substituting u = un − u and v = Tun − Tu in (3.4), we obtain

‖Tun − Tu‖2
γ ≤ ‖m‖L∞(Ω)‖Tun − Tu‖L2(Ω)‖un − u‖L2(Ω) → 0.

�
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Consequently, T has a set of countably many real eigenpairs {λ̃k, uk} in which λ̃k can only
accumulate at 0. Therefore, from (3.3), we have that∫

Ω

mukvdx = a[Tuk, v] = λ̃ka[uk, v] = λ̃k

∫
Ω

(Lγ/2uk)(L
γ/2v)dx,

i.e., ∫
Ω

(Lγ/2uk)(L
γ/2v)dx = µk

∫
Ω

mukvdx

for all v ∈ H̃γ(Ω), where µk = 1/λ̃k. In other words, the eigenvalue problem (3.1) has a double
sequence of eigenvalues

· · · ≤ µ−2 ≤ µ−1 < 0 < µ1 ≤ µ2 ≤ · · · ,
with the corresponding eigenfunctions {uk} in the weak sense. However, since µkmuk ∈ L2(Ω), we

have that Lγuk ∈ L2(Ω), which implies that uk ∈ H̃2γ(Ω)(= dom(Lγ)). In other words, (µk, uk)
solves (3.1) in the strong sense.
Repeating the arguments in [Fig82] (or in [FI19]), we can derive the following variational

characterization of eigenvalues. For the sake of completeness, we will provide its proof in Ap-
pendix A.

Proposition 3.2. The sequence of eigenvalues

· · · ≤ µ−2 ≤ µ−1 < 0 < µ1 ≤ µ2 ≤ · · · ,
can be characterized by

1

µn(m)
= max

Fn
inf

{∫
Ω

mu2 : ‖u‖γ = 1, u ∈ Fn
}
,

1

µ−n(m)
= min

Fn
sup

{∫
Ω

mu2 : ‖u‖γ = 1, u ∈ Fn
}
,(3.5)

where Fn varies over all n-dimensional subspaces of H̃γ(Ω). In particular, we have

(3.6)
1

µk(m)
=

∫
Ω

mu2
k with ‖uk‖γ = 1.

Following exactly the same argument as in [Fig82], we obtain the following result, which shows
some properties of the eigenvalues.

Proposition 3.3. Let Ω± := {x ∈ Ω : m(x) ≷ 0}, then
(i) |Ω+| = 0 =⇒ there is no positive µn.
(ii) |Ω−| = 0 =⇒ there is no negative µ−n.
(iii) |Ω+| > 0 =⇒ there is a sequence of positive µn → +∞.
(iv) |Ω−| > 0 =⇒ there is a sequence of negative µ−n → −∞.

Here, | · | denotes the Lebesgue measure of the set.

Proposition 3.4. Let m, m̂ ∈ L∞(Ω) such that m(x) ≤ m̂(x) for x ∈ Ω. For a given n ∈ Z \ {0},
if the eigenvalues µn(m) and µn(m̂) exist, then µn(m) ≥ µn(m̂).

Proposition 3.5. µn(m) is a continuous function of m in the norm of L∞(Ω).

Proposition 3.4 and Proposition 3.5 are immediate consequences of (3.6).
Now we use ≤6≡ to denote that the inequality holds a.e. with strict inequality on a set of positive

measure. The following results can be easily proved following the ideas in [FG92].

Proposition 3.6. Let m and m̂ be two weights with m ≤6≡ m̂. For any j ∈ N, if the eigenfunction
associated with µj(m) satis�es the MUCP, then the strict inequality µj(m) > µj(m̂) holds.
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Proposition 3.7. Let m be a given weight. Assume that µ(m) is an eigenvalue of (3.1) and the
corresponding eigenfunction u(m) does not satisfy the MUCP. Denote N = {x ∈ Ω : u(x) = 0}.
Note that |N | > 0. Then for any weight m̂ satisfying

{x ∈ Ω : |m̂(x)−m(x)| > 0} ⊆ N ,

we obtain that u(m) is also an eigenfunction of some eigenvalue µ(m̂) of (3.1) with weight m̂ and
µ(m̂) = µ(m).

Remark 3.8. Observe that µj(m) = −µ−j(−m), we can obtain an analogue result for negative
eigenvalues.

Remark 3.9. Proposition 3.7 implies that for some j ∈ N, if the eigenfunction corresponding to
µj(m) does not satisfy the MUCP, then µj(m) = µ`(m̂) for some ` ∈ N.

To make the paper self contained, we present the proofs of Proposition 3.6 and 3.7 here.

Proof of Proposition 3.6. By Proposition 3.2, there exists Fj ⊂ dom(Lγ) with dim(Fj) = j such
that

(3.7)
1

µj(m)
= inf

u∈Fj ,‖u‖γ=1

∫
Ω

m|u|2.

Pick any u ∈ Fj with ‖u‖γ = 1.

Case 1. If u achieves the in�mum in (3.7), then u is an eigenfunction corresponding to µj(m),
and by the MUCP assumption, we have that u > 0 a.e. and thus

1

µj(m)
=

∫
Ω

m|u|2 <
∫

Ω

m̂|u|2.

Case 2. If u does not achieve the in�mum in (3.7), then we have

1

µj(m)
<

∫
Ω

m|u|2 ≤
∫

Ω

m̂|u|2.

In view of both cases, we conclude that

1

µj(m)
<

∫
Ω

m̂|u|2, for all u ∈ Fj with ‖u‖γ = 1.

Since dim(Fj) = j <∞, by a compactness argument, we then obtain

1

µj(m)
< inf

u∈Fj ,‖u‖γ=1

∫
Ω

m̂|u|2 ≤ max
Fj

inf
u∈Fj ,‖u‖γ=1

∫
Ω

m̂|u|2 =
1

µj(m̂)
,

which leads to the desired result. �

Proof of Proposition 3.7. Let u ∈ dom(Lγ) be an eigenfunction associated with eigenvalue µ(m)
which vanishes on a set of positive measure N . In other words, we have and

Lγu = µ(m)mu = µ(m)m̂u in Ω,

that is, µ(m) is an eigenvalue of (3.1) with weight m̂.
�
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4. Remark on Unique Continuation Property

In this section, we would like to discuss the MUCP for the spectral fractional operator Lγ.
Following the exactly same ideas in Appendix A2 of [GR19] and [ST10], Lγu with u ∈ dom(Lγ)
can be determined by an extension problem. Firstly, we recall that the heat semigroup of L is
de�ned by

(4.1) e−tLu :=
∞∑
k=0

e−tλk(u, φk)φk(x).

Also, we de�ne the operator

Lb := x−bn+1(∂xn+1x
b
n+1∂xn+1 − xbn+1L)

and the iterated operator

Ljb := (Lb)
j for j ∈ N.

Proposition 4.1. Let γ ∈ R+\N and let u ∈ dom(Lγ). Then the Ca�arelli-Silvestre-type extension
of u(x), ũ(x, xn+1), satis�es the system

(4.2)

L
bγc+1
1−2s ũ(x, xn+1) = 0 in Ω× (0,∞),

lim
xn+1→0

ũ(x, xn+1) = u(x) for all x ∈ Ω,

lim
xn+1→0

Lk1−2sũ(x, xn+1) = cn,γ,kL
ku(x) in Ω, for all k = 1, · · · , bγc,

Lkũ(x, xn+1) = 0 on ∂Ω× (0,∞), for all k = 0, · · · , bγc,

lim
xn+1→0

x1−2s
n+1 ∂n+1L

bγc
1−2sũ(x, xn+1) = cn,γL

γu(x) in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1L

k
1−2sũ(x, xn+1) = 0 in Ω, for all k = 0, · · · , bγc − 1.

In fact, ũ(x, xn+1) can be expressed explicitly by

ũ(x, xn+1) := cγx
2γ
n+1

∫ ∞
0

e−tLu(x)e−
x2n+1

4t
dt

t1+γ
∈ C2(bγc+1),1(Ω× (0,∞)).

On the other hand, the extension solution ũ(x, xn+1) can also be written as

ũ(x, xn+1) := c̃γ

∫ ∞
0

e−tLLγu(x)e−
x2n+1

4t
dt

t1−γ
.

Setting ũ0(x, xn+1) := ũ(x, xn+1), we can rewrite system (4.2) as the following one

(4.3)

L1−2sũbγc = 0 in Ω× (0,∞),

L1−2sũj = ũj+1 in Ω× (0,∞), for all j = 0, · · · , bγc − 1,

lim
xn+1→0

ũj(x
′, xn+1) = cn,γ,jL

ju(x) in Ω, for all j = 0, · · · , bγc,

ũj = 0 on ∂Ω× (0,∞), for all j = 0, · · · , bγc.
lim

xn+1→0
x1−2s
n+1 ∂n+1ũbγc = cn,γL

γu in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1ũj = 0 in Ω, for all j = 0, · · · , bγc − 1.

All boundary conditions in (4.2) and (4.3) hold in L2 sense.
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In [GR19], the authors study the fractional operator Lγ in Rn for γ ∈ R+\N, where the fractional
operator Lγ is de�ned in terms of the spectral decomposition. Precisely, we write

(Lf, g) =

∫ ∞
0

λdEf,g(λ), for all f ∈ dom(L), g ∈ L2(Rn),

where dom(L) = {f ∈ L2(Rn) :
∫∞

0
λ2dEf,f (λ) < ∞} and dEf,g(λ) is the spectral measure

corresponding to L. The fractional operator Lγ is now de�ned by

(Lγf, g) =

∫ ∞
0

λγdEf,g(λ), for all f ∈ dom(Lγ), g ∈ L2(Rn),

where dom(Lγ) = {f ∈ L2(Rn) :
∫∞

0
λ2γdEf,f (λ) < ∞}. The extension problem related to Lγu

for u ∈ dom(Lγ) is similar to (4.2) and (4.3) except that Ω is replaced by Rn and no boundary
restrictions

Lkũ(x, xn+1) = 0 on ∂Ω× (0,∞), for all k = 0, · · · , bγc
and

ũj = 0 on ∂Ω× (0,∞), for all j = 0, · · · , bγc
are required.
In [GR19, Theorem 4], relying on the extension problem, the MUCP is established for the

equation

(4.4) |Lγu| ≤
bγc∑
j=0

|qj(x)||∇ju| in Rn

under suitable assumptions on aij(x) and qj. Besides of the extension problem, another key
ingredient in the proof of MUCP for (4.4) is the Carleman estimate for the extension problem.
Since the extension problem is local, the same Carleman estimate can be used to prove the MUCP
for

(4.5) Lγu = q(x)u in Ω

with q ∈ L∞(Ω). To state the MUCP result for (4.5), we �rst give the assumptions imposed on
aij:

(C1) (aij) : Ω→ Rn×n is symmetric, strictly positive de�nite and bounded;

(C2) (aij) ∈ C2bγc,1(Ω,Rn×n
sym ) with

∑2bγc+1
k=1 ‖∇kaij‖L∞(Ω) � δ for some su�ciently small parameter

δ > 0;
(C3) aij(0) = δij.

Repeating the proof of Theorem 4 in [GR19], we can prove that

Theorem 4.2 (MUCP for spectral fractional operator Lγ). Let u ∈ dom(Lγ) satisfy

Lγu(x) = q(x)u(x) in Ω,

where ajk satis�es the conditions (C1)�(C3) and q ∈ L∞(Ω). If there exists a measurable set E ⊂ Ω
with |E| > 0 such that u = 0 in E, then u ≡ 0 in Ω.

For other UCP results for the fractional operators, we refer the reader to [FF14], [Rül15], [Yu17],
etc. and references therein.
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Appendix A. The Min-Max Principle of Eigenvalues of Compact Operators

In this section, we shall prove the min-max principle in Proposition 3.2. The content of this
section can be found in [Fig82] or [FG92]. Let H be a Hilbert space, and T : H → H be a compact
symmetric linear operator. First of all, we recall a well-known facts about the compact linear
operators.

Proposition A.1 (Existence of orthonormal eigenfunctions). If

λn = sup{(Tx, x) : ‖x‖ = 1, x ⊥ φ1, · · · , φn−1} > 0,

then there exists φn ∈ H with ‖φn‖ = 1 and φn ⊥ φ1, · · · , φn−1 such that

(Tφn, φn) = λn and Tφn = λnφn.

Similarly, if

λ−n = sup{(Tx, x) : ‖x‖ = 1, x ⊥ φ−1, · · · , φ−(n−1)} < 0,

then there exists φ−n ∈ H with ‖φ−n‖ = 1 and φ−n ⊥ φ−1, · · · , φ−(n−1) such that

(Tφ−n, φ−n) = λ−n and Tφ−n = λ−nφ−n.

Using Proposition A.1, we can obtain the following min-max principle.

Proposition A.2. For each positive integer n, λ±n can be characterized as

λn = max
Fn

inf{(Tx, x) : ‖x‖ = 1, x ∈ Fn},(A.1)

λ−n = min
Fn

sup{(Tx, x) : ‖x‖ = 1, x ∈ Fn},(A.2)

where the maximum (minimum) is taken over all subspaces Fn of H with dim(Fn) = n.

Proof. Here we only prove (A.1). The proof of (A.2) is similar.
Given any subspace Fn of H with dim(Fn) = n, choose x ∈ Fn with ‖x‖ = 1 and x ⊥

φ1, · · · , φn−1. By Proposition A.1, we have (Tx, x) ≤ λn. By arbitrariness of such x, we reach

inf{(Tx, x) : ‖x‖ = 1, x ∈ Fn} ≤ λn for all subspace Fn of H with dim(Fn) = n.

This implies

(A.3) sup
Fn

inf{(Tx, x) : ‖x‖ = 1, x ∈ Fn} ≤ λn.

By Proposition A.1, we can choose F̃n := span{φ1, · · · , φn}. For each x ∈ F̃ with ‖x‖ = 1, we can
write

x =
n∑
i=1

xiφi with
n∑
i=1

x2
i = 1.

For such x, we have

(Tx, x) =
n∑
i=1

x2
iλi ≥

n∑
i=1

x2
iλn = λn.

This shows that the supremum in (A.3) is attained by F̃n. So we can write "max" rather than
"sup". �
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