Unique Continuation Property of the Fractional Elliptic Operators and Applications

Pu-Zhao Kow
Department of Mathematics, National Taiwan University

Thesis defense: May 28, 2021

Outline

- Part I: Landis conjecture (UCP at infinity)
- (1) fractional Laplacian with a drift term; (2) general Schrödinger equation of fractional type; (3) Schrödinger equation with half Laplacian
- Main difficulties. Proving UCP usually involves Carleman estimate, which works well for local operators. For non-local operator, we need some tricks.
- Part II: Localization of fractional elliptic operators
- Part III: General procedure of proving Landis conjecture and unique continuation property (UCP)
- Part IV: Landis conjecture for a special case - half Laplacian
- Part V: Strict monotonicity of eigenvalues and unique continuation property (UCP)

Part I: Landis Conjecture

What is Landis conjecture?

- We consider the following classical Schrödinger equation:

$$
\begin{equation*}
\Delta u+q u=0 \quad \text { in } \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

with $q \in L^{\infty}\left(\mathbb{R}^{n}\right)$.

- Let $u \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ such that $u(x)=\exp (-|x|)$ for all $|x|>1$.
- There exists a constant $C>0$ such that $|\Delta u| \leq C^{2}|u|$ in \mathbb{R}^{n}, that is, u satisfies (1) with

$$
q(x)= \begin{cases}-\frac{\Delta u(x)}{u(x)} & \text { if } u(x) \neq 0 \\ 0 & \text { if } u(x)=0\end{cases}
$$

- By scaling, we can make $|q| \leq 1$: Precisely, if we let $u_{C}(x)=u(C x)$, then $\left|\Delta u_{C}\right| \leq\left|u_{C}\right|$.

What is Landis conjecture?

- An example. We can choose a constant $C>0$ and construct a function $u \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{cases}u(x)=\exp (-C|x|) & \text { for all }|x|>1 \\ |\Delta u| \leq|u| & \text { in } \mathbb{R}^{n}\end{cases}
$$

Conjecture (Landis 60's)
Let $|q(x)| \leq 1$. If $|u(x)| \leq C_{0}$ satisfies $\Delta u+q u=0$ in \mathbb{R}^{n}, and

$$
|u(x)| \leq \exp \left(-C|x|^{\alpha}\right) \quad \text { for some } \alpha>1
$$

then $u \equiv 0$.

- Unique continuation property at infinity.

Some history of Landis conjecture

- Landis conjecture. $u \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfies Schrödinger equation. If $|u(x)| \leq \exp \left(-C|x|^{1+}\right)$, then $u \equiv 0$.
- This conjecture was disproved by Meshkov in 1991:
- Constructed complex-valued potential q and $u \not \equiv 0$ with

$$
|u(x)| \leq \exp \left(-C|x|^{\frac{4}{3}}\right) .
$$

- If $|u(x)| \leq \exp \left(-C|x|^{\alpha}\right)$ for some $\alpha>\frac{4}{3}$, then $u \equiv 0$.
- (Bourgain-Kenig '05) Proved Meshkov's result in quantitative form.
- Carleman estimate (cannot distinguish real or complex q and u)
- See (Davey '14) and (Lin-Wang '14) for Quantative Landis conjecture with drift term.
- (Kenig '06) Refined the conjecture for real-valued potentials q and u.
- Partial answers: (Davey-Kenig-Wang '17 '19), (Rossi '18), (Loguv-Mallinnikova-Nadirashvili-Nazarov '20)

Fractional Landis conjecture

- Let $s \in(0,1)$, and we consider the fractional Schrödinger equation

$$
(-\Delta)^{s} u+q u=0 \quad \text { in } \mathbb{R}^{n}
$$

where $\mathscr{F}\left((-\Delta)^{s} u\right):=|\xi|^{2 s} \hat{u}(\xi)$ and \mathscr{F} is Fourier transform.

- Both qualitative and quantative Landis conjecture proved in (Rüland-Wang '19).
- Let q is differentiable with $|x \cdot \nabla q(x)| \leq 1$:

$$
\text { If } \int_{\mathbb{R}^{n}} e^{|x|^{\beta}}|u|^{2} d x<\infty \text { for some } \beta>1, \text { then } u \equiv 0 .
$$

- For non-differentiable q, we consider $s \in\left(\frac{1}{4}, 1\right)$:

$$
\text { If } \int_{\mathbb{R}^{n}} e^{|x|^{\beta}}|u|^{2} d x<\infty \text { for some } \beta>\frac{4 s}{4 s-1} \text {, then } u \equiv 0 \text {. }
$$

- $\frac{4 s}{4 s-1} \rightarrow \frac{4}{3}$ as $s \rightarrow 1$.

Fractional Laplacian with a drift term

- Fractional Schrödinger equation with a drift term:

$$
\begin{equation*}
\left((-\Delta)^{s}+b(x) x \cdot \nabla+q(x)\right) u=0 \quad \text { in } \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

where b and q are scalar-valued functions. Motivated by (Rossi '18), we consider the drift term only involving the radial derivative.

Theorem (Ghosh-Salo-Uhlmann '20)
If $u \in H^{-r}\left(\mathbb{R}^{n}\right)$ for some $r \in \mathbb{R}$ and $u=(-\Delta)^{s} u=0$ in some open set $W \subset \mathbb{R}^{n}$, then $u \equiv 0$.
Corollary (Unique continuation property)
Let u be a solution to (2). If $u=0$ in some open set $W \subset \mathbb{R}^{n}$, then $u \equiv 0$.

- This dissertation is the first attempt to study the Landis conjecture (UCP at infinity) of (2).

Fractional Laplacian with a drift term

Theorem (Dissertation: Differentiable potential)
Let $n=1,2,3$. Let $s \in\left(\frac{1}{2}, 1\right)$ when $n=1,2$, and let $s \in\left(\frac{3}{4}, 1\right)$ when $n=3$. We assume that there exists a constant λ such that

$$
|q(x)| \leq \lambda \text { and } 0 \leq b(x) \leq \lambda|x|^{-\beta} \text { for all } x \in \mathbb{R}^{n} \text {, }
$$

and the radial derivatives of q, b satisfy

$$
|x \cdot \nabla q(x)| \leq \lambda \text { and }|x \cdot \nabla b(x)| \leq \lambda|x|^{-\beta} \text { for all } x \in \mathbb{R}^{n}
$$

for some $\beta>1$. If $u \in H^{s}\left(\mathbb{R}^{n}\right)$ is a solution such that

$$
\int_{\mathbb{R}^{n}} e^{|x|^{\beta}}\left[|u(x)|^{2}+|\nabla u(x)|^{2}\right] d x \leq \lambda,
$$

then $u \equiv 0$.

Fractional Laplacian with a drift term

Theorem (Dissertation: Non-differentiable potential)
Let $n=1,2,3$. Let s be given in previous theorem. We assume that there exists a constant λ such that

$$
|q(x)| \leq \lambda \text { and } 0 \leq b(x) \leq \lambda|x|^{-\beta} \text { for all } x \in \mathbb{R}^{n}
$$

and the radial derivatives of b satisfy

$$
|x \cdot \nabla b(x)| \leq \lambda|x|^{-\beta} \text { for all } x \in \mathbb{R}^{n}
$$

for some $\beta>\frac{4 s}{4 s-1}$. If $u \in H^{s}\left(\mathbb{R}^{n}\right)$ is a solution such that

$$
\int_{\mathbb{R}^{n}} e^{|x|^{\beta}}\left[|u(x)|^{2}+|\nabla u(x)|^{2}\right] d x \leq \lambda,
$$

then $u \equiv 0$.

Extension to fractional elliptic operators

Lemma (Bochner's formula)
Let $s \in(0,1)$, and define $\Gamma(-s):=\frac{1}{-s} \Gamma(1-s)$, then

$$
\begin{equation*}
\lambda^{s}=\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{-t \lambda}-1\right) u(x) \frac{d t}{t^{1+s}} \quad \text { for all } \lambda>0 \tag{3}
\end{equation*}
$$

- See e.g. (Schilling-Song-Vondracek '10).
- Let P be a second order elliptic operator in divergence form:

$$
P=\nabla \cdot A \nabla=\sum_{j, k=1}^{n} \partial_{j} a_{j k}(x) \partial_{k}
$$

Generalized Schrödinger equation of fractional type

- Since $-P$ is a non-negative operator, by formally replacing λ by $-P$ in Bochner's formula, this also suggests us to define

$$
(-P)^{s} u(x):=\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t P}-1\right) u(x) \frac{d t}{t^{1+s}}
$$

where $\left\{e^{t P}\right\}_{t \geq 0}$ is the semi-group generated by $-P$, see (Stinga-Torrea '10).

- Generalized Fractional Schrödinger equation:

$$
\left((-P)^{s}+q\right) u=0 \quad \text { in } \mathbb{R}^{n}
$$

with $s \in(0,1)$ and $|q(x)| \leq 1$.

Generalized Schrödinger equation of fractional type

- Ellipticity condition. There exists a constant $0<\lambda<1$ such that

$$
\lambda|\xi|^{2} \leq \sum_{j, k=1}^{n} a_{j k}(x) \xi_{j} \xi_{k} \leq \lambda^{-1}|\xi|^{2} \quad \text { for all } x \in \mathbb{R}^{n}
$$

- Regularity and symmetry. $a_{j k}=a_{k j}$ are Lipschitz.
- $A \approx \operatorname{Id}$ (i.e. $P \approx \Delta$) at infinity. There exists a constant $C>0$ and a sufficiently small parameter $\epsilon>0$ such that

$$
\begin{align*}
\max _{1 \leq j, k \leq n} \sup _{|x| \geq 1}\left|a_{j k}(x)-\delta_{j k}(x)\right|+ & \max _{1 \leq j, k \leq n} \sup _{|x| \geq 1}|x|\left|\nabla a_{j k}(x)\right| \leq \epsilon \tag{4a}\\
& \max _{1 \leq j, k \leq n} \sup _{|x| \geq 1}\left|\nabla^{2} a_{j k}(x)\right| \leq C \tag{4b}
\end{align*}
$$

- When $s=\frac{1}{2}$, we no need to assume (4b).

Generalized Schrödinger equation of fractional type

Theorem (Dissertation: Differentiable potential)
Let $s \in(0,1)$ and assume that $u \in H^{s}\left(\mathbb{R}^{n}\right)$ is a solution. We assume that the potential $q \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$ satisfies $|q(x)| \leq 1$ and

$$
|x||\nabla q(x)| \leq 1
$$

If u satisfies

$$
\int_{\mathbb{R}^{n}} e^{|x|^{\beta}}|u|^{2} d x \leq C<\infty \quad \text { for some } \beta>1
$$

then $u \equiv 0$.

Generalized Schrödinger equation of fractional type

Theorem (Dissertation: Non-differentiable potential)
Let $s \in\left(\frac{1}{4}, 1\right)$ and assume that $u \in H^{s}\left(\mathbb{R}^{n}\right)$ is a solution. We assume that the potential $|q(x)| \leq 1$. If u satisfies

$$
\int_{\mathbb{R}^{n}} e^{|x|^{\beta}}|u|^{2} d x \leq C<\infty
$$

for some $\beta>\frac{4 s}{4 s-1}$, then $u \equiv 0$.

- Using Fourier transform, it is easy to see that $(-\Delta)^{\alpha}(-\Delta)^{\beta}=(-\Delta)^{\alpha+\beta}$, and $(-\Delta)^{s}: \dot{H}^{\beta+s}\left(\mathbb{R}^{n}\right) \rightarrow \dot{H}^{\beta-s}\left(\mathbb{R}^{n}\right)$ is bounded for all $\beta \in \mathbb{R}$.
- However, extension of these properties to $(-P)^{s}$ is not trivial.
- For the case when $a_{j k} \in \mathcal{C}^{\infty},(-P)^{s}$ is a pseudo-differential operator of order $2 s$, see (Seeley '67).

A special case: Schrödinger equation with half-Laplacian

- Let $|q| \leq 1$ and let $u \in H^{\frac{1}{2}}\left(\mathbb{R}^{n}\right)$ be a solution to $(-\Delta)^{\frac{1}{2}} u+q u=0$.
- (Rüland-Wang '19) If there exists a constant $C>0$ such that

$$
\int_{\mathbb{R}^{n}} e^{|x|^{\beta}}|u|^{2} d x \leq C<\infty \quad \text { for some } \beta>2
$$

then $u \equiv 0$.
Theorem (Dissertation: Improvement)
If there exists a constant $C>0$ such that

$$
\int_{\mathbb{R}^{n}} e^{|x|}|u|^{2} d x \leq C<\infty
$$

then $u \equiv 0$.

- Here, the potential q need not to be real-valued. It is interesting to compare this result with the real-version of the Landis-type conjecture.

Part II: Localization of fractional elliptic operators

Half Laplacian

- We now introduce an equivalent definition of $(-\Delta)^{s}$ on \mathbb{R}^{n}.
- (Kwaśnicki '17). There are at least 10 equivalent definitions.
- To motivate the ideas, here we perform some formal computations.
- In order to make things easy, we first consider $s=1 / 2$.
- Write $x=\left(x^{\prime}, x_{n+1}\right) \in \mathbb{R}_{+}^{n+1}:=\mathbb{R}^{n} \times \mathbb{R}_{>0}$. For a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we consider a function $\tilde{u}: \mathbb{R}_{+}^{n+1} \rightarrow \mathbb{R}$ satisfies

$$
\begin{cases}\Delta \tilde{u}=\Delta_{x^{\prime}} \tilde{u}+\partial_{n+1}^{2} \tilde{u}=0 & \text { in } \mathbb{R}_{+}^{n+1}, \\ \tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\} .\end{cases}
$$

Half Laplacian

- Taking Fourier transform with respect to variable x^{\prime}, we reach

$$
\begin{cases}-|\xi|^{2} \hat{\tilde{u}}+\partial_{n+1}^{2} \hat{\tilde{u}}=0 & \text { in } \mathbb{R}_{+}^{n+1} \\ \hat{\tilde{u}}=\hat{u} & \text { on } \mathbb{R}^{n} \times\{0\}\end{cases}
$$

where $\hat{\tilde{u}}=\mathscr{F} \tilde{u}$ and $\hat{u}=\mathscr{F} u$.

- Plugging the special solution $\hat{\tilde{u}}\left(\xi, x_{n+1}\right)=\hat{u}(\xi) \phi(z)$ with $z=|\xi| x_{n+1}$, we obtain

$$
\left\{\begin{array}{l}
-\phi(z)+\partial_{z}^{2} \phi(z)=0 \quad \text { for } z>0 \\
\left.\phi(0)=1 \quad \text { (we additional assume } \lim _{z \rightarrow \infty} \phi(z)=0 \text { and } \phi \in \mathcal{C}^{0}\right)
\end{array}\right.
$$

- The unique solution (with additional conditions) is given by $\phi(z)=e^{-z}$.
- We obtain a special solution $\hat{\tilde{u}}\left(\xi, x_{n+1}\right)=\hat{u}(\xi) e^{-|\xi| x_{n+1}}$.

Half Laplacian

- Since $\hat{\tilde{u}}\left(\xi, x_{n+1}\right)=\hat{u}(\xi) e^{-|\xi| x_{n+1}}$, we have

$$
\lim _{x_{n+1} \rightarrow 0} \partial_{n+1} \hat{\tilde{u}}\left(\xi, x_{n+1}\right)=-|\xi| \hat{u}(\xi) .
$$

- In view of Fourier definition, it is make sense to define

$$
\begin{cases}\Delta \tilde{u}=\Delta_{x^{\prime}} \tilde{u}+\partial_{n+1}^{2} \tilde{u}=0 & \text { in } \mathbb{R}_{+}^{n+1} \\ \tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\} . \\ -(-\Delta)_{\mathrm{CS}}^{1 / 2} u\left(x^{\prime}\right):=\lim _{x_{n+1} \rightarrow 0} \partial_{n+1} \tilde{u}(x) & \text { for all } x^{\prime} \in \mathbb{R}^{n} .\end{cases}
$$

- The half-Laplacian can be defined in terms of Dirichlet-to-Neumann map (DN-map) of a harmonic functions in half space \mathbb{R}_{+}^{n+1}.

Fractional Laplacian of order $0<s<1$

- We now perform the similar formal computations for $(-\Delta)^{s}$ with $0<s<1$.
- For a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we consider a function $\tilde{u}: \mathbb{R}_{+}^{n+1} \rightarrow \mathbb{R}$ satisfies

$$
\begin{cases}\nabla \cdot x_{n+1}^{1-2 s} \nabla \tilde{u}=0 & \text { in } \mathbb{R}_{+}^{n+1}, \tag{5}\\ \tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\} .\end{cases}
$$

- Note that (5) is equivalent to

$$
\begin{cases}\Delta_{x^{\prime}} \tilde{u}+\frac{1-2 s}{x_{n+1}} \partial_{n+1} \tilde{u}+\partial_{n+1}^{2} \tilde{u}=0 & \text { in } \mathbb{R}_{+}^{n+1} \\ \tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\}\end{cases}
$$

Fractional Laplacian of order $0<s<1$

- Taking Fourier transform with respect to variable x^{\prime}, we reach

$$
\begin{cases}-|\xi|^{2} \hat{\tilde{u}}+\frac{1-2 s}{x_{n+1}} \partial_{n+1} \hat{\tilde{u}}+\partial_{n+1}^{2} \hat{\tilde{u}}=0 & \text { in } \mathbb{R}_{+}^{n+1} \\ \hat{\tilde{u}}=\hat{u} & \text { on } \mathbb{R}^{n} \times\{0\},\end{cases}
$$

where $\hat{\tilde{u}}=\mathscr{F} \tilde{u}$ and $\hat{u}=\mathscr{F} u$.

- Plugging the special solution $\hat{\tilde{u}}\left(\xi, x_{n+1}\right)=\hat{u}(\xi) \phi(z)$ with $z=|\xi| x_{n+1}$, we obtain

$$
\left\{\begin{array}{l}
-\phi(z)+\frac{1-2 s}{z} \partial_{z} \phi(z)+\partial_{z}^{2} \phi(z)=0 \quad \text { for } z>0 \\
\phi(0)=1 \quad \text { (we additional assume } \lim _{z \rightarrow \infty} \phi(z)=0 \text { and } \phi \in \mathcal{C}^{0} \text {) }
\end{array}\right.
$$

- The unique solution (with additional conditions) is given by

$$
\phi(z)=\frac{2^{1-s}}{\Gamma(s)} z^{s} K_{s}(z) \quad, K_{s}=\text { modified Bessel function of } 2^{\text {nd }} \text { kind. }
$$

Fractional Laplacian of order $0<s<1$

- Using the properties of the modified Bessel functions, we have

$$
-\lim _{z \rightarrow 0_{+}} z^{1-2 s} \partial_{z} \phi(z)=\frac{2^{1-2 s} \Gamma(1-s)}{\Gamma(s)} .
$$

- Hence, by writing $c_{s}:=\frac{\Gamma(s)}{2^{1-2 s \Gamma(1-s)}}>0$ (indeed, $c_{1 / 2}=1$), we have

$$
c_{s} \lim _{x_{n+1} \rightarrow 0} x_{n+1}^{1-2 s} \partial_{n+1} \hat{\tilde{u}}\left(\xi, x_{n+1}\right)=-|\xi|^{2 s} \hat{u}(\xi) .
$$

- In view of Fourier definition, it is make sense to define

$$
\begin{cases}\nabla \cdot x_{n+1}^{1-2 s} \nabla \tilde{u}=0 & \text { in } \mathbb{R}_{+}^{n+1} \\ \tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\} \\ -(-\Delta)_{C S}^{s} u\left(x^{\prime}\right):=c_{s} \lim _{x_{n+1} \rightarrow 0} x_{n+1}^{1-2 s} \partial_{n+1} \tilde{u}(x) & \text { for all } x^{\prime} \in \mathbb{R}^{n} .\end{cases}
$$

- $(-\Delta)^{s}$ can be defined in terms of DN-map of a degenerate elliptic equation in half space \mathbb{R}_{+}^{n+1}.

Fractional Laplacian of order $0<s<1$

Theorem (Caffarelli-Silvestre '07)

Let $s \in(0,1)$ and $u \in H^{s}\left(\mathbb{R}^{n}\right)$. Let $(-\Delta)_{\mathrm{F}}^{s}$ be the fractional Laplacian defined via Fourier transform. Let

$$
\tilde{u} \in \dot{H}^{1}\left(\mathbb{R}_{+}^{n+1}, x_{n+1}^{1-2 s}\right):=\left\{v:\left.\mathbb{R}_{+}^{n+1} \rightarrow \mathbb{R}\left|\int_{\mathbb{R}_{+}^{n+1}} x_{n+1}^{1-2 s}\right| \nabla v\right|^{2} d x<\infty\right\}
$$

be a solution to the extension problem (which is a degenerate elliptic equation). Then $(-\Delta)_{\mathrm{F}}^{s}=(-\Delta)_{\mathrm{CS}}^{s}$.

- $(-\Delta)_{\mathrm{F}}^{s}$ is defined via Fourier transform, which is non-local.
- $(-\Delta)_{\mathrm{CS}}^{s}$ is defined via a local (but degenerate) elliptic equation.
- Using this equivalent definition, we can obtain Carleman estimate in the extended space \mathbb{R}_{+}^{n+1} rather than the original \mathbb{R}^{n}.

General elliptic operator of fractional type

- The localization technique of $(-\Delta)^{s}$ also works for Bochner elliptic operator $(-P)^{s}$.
- For $s \in(0,1)$, we consider a solution \tilde{u} of the degenerate elliptic equation

$$
\begin{aligned}
{\left[\partial_{n+1} x_{n+1}^{1-2 s} \partial_{n+1}+x_{n+1}^{1-2 s} P\right] \tilde{u}=0 } & \text { in } \mathbb{R}_{+}^{n+1} \\
\tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\}
\end{aligned}
$$

- (Stinga-Torrea '10) The fractional operator $(-P)^{s}$ (defined via Bochner's formula) satisfies

$$
-(-P)^{s} u\left(x^{\prime}\right)=c_{n, s} \lim _{x_{n+1} \rightarrow 0} x_{n+1}^{1-2 s} \partial_{n+1} \tilde{u}(x)
$$

for some $c_{n, s}>0$. In fact, if $s=\frac{1}{2}$, then $c_{n, s}=1$.

Part III: General procedure of proving Landis conjecture and unique continuation property (UCP)

- We now sketch the general procedure of proving Landis conjecture and unique continuation property (UCP) for fractional elliptic equation.
- To explain this general procedure, as an example, we here consider Landis conjecture for general Schrödinger equation of fractional type.
- We consider the fractional Schrödinger equation

$$
\left((-P)^{s}+q\right) u=0 \quad \text { in } \mathbb{R}^{n}
$$

where $P=\nabla \cdot A \nabla$ satisfies some conditions, and $P \approx \Delta$ at infinity.

Step 1: Localization

- Using the Caffarelli-Silvestre type extension, we can localize $\left((-P)^{s}+q\right) u=0$ as the following:

$$
\begin{cases}{\left[\partial_{n+1} x_{n+1}^{1-2 s} \partial_{n+1}+x_{n+1}^{1-2 s} P\right] \tilde{u}=0} & \text { in } \mathbb{R}_{+}^{n+1}, \\ \tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\}, \\ c_{n, s} \lim _{x_{n+1} \rightarrow 0} x_{n+1}^{1-2 s} \partial_{n+1} \tilde{u}(x)=q\left(x^{\prime}\right) u & \text { on } \mathbb{R}^{n} \times\{0\},\end{cases}
$$

where we recall $x=\left(x^{\prime}, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R}_{+}=\mathbb{R}_{+}^{n+1}$.

- We called \tilde{u} the Caffarelli-Silvestre type extension of u.

Step 2: Boundary decay implies bulk decay

Proposition

Let $s \in(0,1)$ and $u \in H^{s}\left(\mathbb{R}^{n}\right)$ be a solution to $\left((-P)^{s}+q\right) u=0$, with $|q(x)| \leq 1$ and some appropriate assumptions. Assume that $P \approx \Delta$ at infinity. If there exists $\alpha>1$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{|x|^{\alpha}}|u|^{2} d x \leq C<\infty \tag{6}
\end{equation*}
$$

then there exist constants $C_{1}, C_{2}>0$ so that the Caffarelli-Silvestre type extension \tilde{u} of u satisfies

$$
\begin{equation*}
|\tilde{u}(x)| \leq C_{1} e^{-C_{2}|x|^{\alpha}} \quad \text { for all } x \in \mathbb{R}_{+}^{n+1} . \tag{7}
\end{equation*}
$$

- Here, we remark that both (6) and (7) decay at the same rate $\alpha>1$.
- This enables us to obtain a Carleman estimate in the extension \mathbb{R}_{+}^{n+1}.

Step 2: Boundary decay implies bulk decay

- Idea. Propagation of smallness. The extension problem is simply an elliptic equation in $\left\{x_{n+1}>c\right\}$, therefore, we have 3-ball inequality.
- We only need to pass the boundary decay on $\mathbb{R}^{n} \times\{0\}$ to a small neighborhood. This technical part relies on a delicate Carleman estimate.

Source: (Rüland-Wang '19)

Step 3: Carleman estimate

Theorem (Carleman estimate for non-differentiable potential)
Let $a_{j k} \approx \delta_{j k}$ at infinity (as well as other assumptions). Let $s \in(0,1)$ and let $\tilde{u} \in H^{1}\left(\mathbb{R}_{+}^{n+1}, x_{n+1}^{1-2 s}\right)$ with $\operatorname{supp}(\tilde{u}) \subset \mathbb{R}_{+}^{n+1} \backslash B_{1}^{+}$be a solution to

$$
\begin{aligned}
{\left[\partial_{n+1} x_{n+1}^{1-2 s} \partial_{n+1}+x_{n+1}^{1-s} \sum_{j, k=1}^{n} a_{j k} \partial_{j} \partial_{k}\right] \tilde{u}=f } & \text { in } \mathbb{R}_{+}^{n+1}, \\
\lim _{x_{n+1} \rightarrow 0} x_{n+1}^{1-2 s} \partial_{n+1} \tilde{u}=V \tilde{u} & \text { on } \mathbb{R}^{n} \times\{0\} .
\end{aligned}
$$

Let $\phi(x)=|x|^{\alpha}$ for $\alpha \geq 1$. Then $\exists C>0$ such that for all $\tau \gg 1$ we have

$$
\begin{aligned}
& \tau^{3}\left\|e^{\tau \phi}|x|^{\frac{3 \alpha}{2}-1} x_{n+1}^{\frac{1-2 s}{2}} \tilde{u}\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2}+\tau\left\|e^{\tau \phi}|x|^{\frac{\alpha}{2}} x_{n+1}^{\frac{1-2 s}{2}} \nabla \tilde{u}\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2} \\
& \leq C\left[\left\|e^{\tau \phi} X_{n+1}^{\frac{2 s-1}{2}}|x| f\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2}+\tau^{2-2 s}\left\|e^{\tau \phi} V|x|^{(1-\alpha) s} \tilde{u}\right\|_{L^{2}\left(\mathbb{R}^{n} \times\{0\}\right)}^{2}\right]
\end{aligned}
$$

Step 4: Trace estimate

- Unlike the classical Carleman estimate on \mathbb{R}^{n}, there is a boundary term in the Carleman estimate on half-space \mathbb{R}_{+}^{n+1} :

$$
\begin{aligned}
& \tau^{3}\left\|e^{\tau \phi}|x|^{\frac{3 \alpha}{2}-1} x_{n+1}^{\frac{1-2 s}{2}} \tilde{u}\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2}+\tau\left\|e^{\tau \phi}|x|^{\frac{\alpha}{2}} x_{n+1}^{\frac{1-2 s}{2}} \nabla \tilde{u}\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2} \\
& \leq C\left[\left\|e^{\tau \phi} x_{n+1}^{\frac{2 s-1}{2}}|x| f\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2}+\tau^{2-2 s}\left\|e^{\tau \phi} V|x|^{(1-\alpha) s} \tilde{u}\right\|_{L^{2}\left(\mathbb{R}^{n} \times\{0\}\right)}^{2}\right] .
\end{aligned}
$$

- We need the following trace estimate to "absorb" the boundary term.

Lemma (Rüland '15)

Let $\sigma \in(0,1)$. Then there exists constant $C=C(n, \sigma)>0$ such that

$$
\|v\|_{L^{2}\left(\partial \mathcal{S}_{+}^{n}\right)} \leq C\left[\beta^{1-\sigma}\left\|\theta_{n+1}^{\frac{1-2 s}{2}} v\right\|_{L^{2}\left(\mathcal{S}_{+}^{n}\right)}+\beta^{-\sigma}\left\|\theta_{n+1}^{\frac{1-2 s}{2}} \nabla \mathcal{S}^{n} v\right\|_{L^{2}\left(\mathcal{S}_{+}^{n}\right)}\right]
$$

for all $\beta>1$, where $\theta=\left(\theta_{1}, \cdots, \theta_{n}, \theta_{n+1}\right) \in \mathcal{S}_{+}^{n}, \nabla_{\mathcal{S}^{n}}=\left(\Theta_{1}, \cdots, \Theta_{n}, \Theta_{n+1}\right)$, and Θ_{k} are vector fields on \mathcal{S}^{n}.

Step 4: Trace estimate

- Write the trace estimate as

$$
\beta^{2-2 \sigma}\|v\|_{L^{2}\left(\partial \mathcal{S}_{+}^{n}\right)}^{2} \leq C\left[\beta^{4-4 \sigma}\left\|\theta_{n+1}^{\frac{1-2 s}{2}} v\right\|_{L^{2}\left(\mathcal{S}_{+}^{n}\right)}^{2}+\beta^{2-4 \sigma}\left\|\theta_{n+1}^{\frac{1-2 s}{2}} \nabla_{\mathcal{S}^{n}} v\right\|_{L^{2}\left(\mathcal{S}_{+}^{n}\right)}^{2}\right] .
$$

- Indeed, we shall choose $\beta \approx \tau$ (up to some suitable multiplicative constant), where τ is the parameter in the Carleman estimate

$$
\begin{aligned}
& \tau^{3}\left\|e^{\tau \phi}|x|^{\frac{3 \alpha}{2}-1} x_{n+1}^{\frac{1-2 s}{2}} \tilde{u}\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2}+\tau\left\|e^{\tau \phi}|x|^{\frac{\alpha}{2}} x_{n+1}^{\frac{1-2 s}{2}} \nabla \tilde{u}\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2} \\
& \leq C\left[\left\|e^{\tau \phi} X_{n+1}^{\frac{2 s-1}{2}}|x| f\right\|_{L^{2}\left(\mathbb{R}_{+}^{n+1}\right)}^{2}+\tau^{2-2 s}\left\|e^{\tau \phi} V|x|^{(1-\alpha) s} \tilde{u}\right\|_{L^{2}\left(\mathbb{R}^{n} \times\{0\}\right)}^{2}\right]
\end{aligned}
$$

- The boundary term for large $\tau \gg 1$, when $s>\frac{1}{4}$.
- Finally, we can prove $\tilde{u} \equiv 0$ using a contradiction argument, and hence $u=\left.\tilde{u}\right|_{\mathbb{R}^{n} \times\{0\}} \equiv 0$.

Part IV: Landis conjecture for a special case - half Laplacian

Special structures of half-Laplacian

- Using the Caffarelli-Silvestre extension, we can reformulate the equation $(-\Delta)^{1 / 2} u+q u=0$ in \mathbb{R}^{n} as

$$
\begin{cases}\Delta \tilde{u}=0 & \text { in } \mathbb{R}_{+}^{n+1}, \\ \tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\}, \\ \lim _{x_{n+1} \rightarrow 0} \partial_{n+1} \tilde{u}=q u & \text { on } \mathbb{R}^{n} \times\{0\} .\end{cases}
$$

- Since \tilde{u} is harmonic in \mathbb{R}_{+}^{n+1}, this suggests us to introduce a conformal mapping from the ball to the upper half-space, and back.
- Idea. Finding a mapping which preserves Laplacian.

Conformal mapping

- For each $x \in \mathbb{R}^{n+1} \backslash\{0\}$, we define $x^{*}:=x /|x|^{2}$, i.e. the inverse relative to the unit sphere \mathcal{S}^{n}.
- Let $s=(0, \cdots, 0,-1)$ be the south pole of \mathcal{S}^{n}, and we define $\Phi: \mathbb{R}^{n+1} \backslash\{s\} \rightarrow \mathbb{R}^{n+1} \backslash\{s\}$ by

$$
\Phi(z):=2(z-s)^{*}+s
$$

- We also can regard Φ as a homeomorphism from $\mathbb{R}^{n} \cup\{\infty\}$ (one-point compactification) onto itself by defining $\Phi(s)=\infty$ and $\Phi(\infty)=s$.

Lemma (see e.g. Axler-Bourdon-Ramey '92) $\Phi: \mathbb{R}^{n+1} \backslash\{s\} \rightarrow \mathbb{R}^{n+1} \backslash\{s\}$ is injective. Furthermore, it maps $B_{1}(0)$ onto \mathbb{R}_{+}^{n+1}, and also maps \mathbb{R}_{+}^{n+1} onto $B_{1}(0)$.

Conformal mapping

- Given any function w defined on a domain $\Omega \subset \mathbb{R}^{n+1} \backslash\{s\}$, the Kelvin transform of w, which is the function $\mathcal{K}[w]$ on $\Phi(\Omega)$, is defined by

$$
\mathcal{K}[w](z):=2^{\frac{n-1}{2}}|z-s|^{1-n} w(\Phi(z)) .
$$

Lemma (see e.g. Axler-Bourdon-Ramey '92)
Let Ω be any domain in $\mathbb{R}^{n+1} \backslash\{s\}$. Then w is harmonic on Ω if and only if $\mathcal{K}[w]$ is harmonic on $\Phi(\Omega)$.

Main ideas

Sketch of the proof. Since $\Delta \tilde{u}=0$ in \mathbb{R}_{+}^{n+1}, then $\Delta(\mathcal{K}[\tilde{u}])=0$ in $B_{1}(0)$. Using the boundary to bulk decay result above, the boundary decay $\int_{\mathbb{R}^{n}} e^{|x|}|u|^{2} d x \leq C$ implies bulk decay $|\tilde{u}(x)| \leq C e^{-|x|}$. Indeed,

$$
|\mathcal{K}[\tilde{u}](z)| \leq C \exp \left(-\frac{c}{|z-s|}\right) \quad \text { near the south pole } s .
$$

Since we can extend $\mathcal{K}[\tilde{u}]$ on $\overline{B_{1}(0)}$, using a result in (Jin '93), we conclude that $\mathcal{K}[\tilde{u}] \equiv 0$, therefore, we conclude $\tilde{u} \equiv 0$ (hence $u=\left.\tilde{u}\right|_{\mathbb{R}^{n} \times\{0\}} \equiv 0$).

- If we employ the ideas for general $(-\Delta)^{s}$ or $(-P)^{1 / 2}$, indeed $\mathcal{K}[\tilde{u}]$ satisfies an elliptic equation on $B_{1}(0)$. However, in this case, it cannot be extended to $\overline{B_{1}(0)}$ (precisely, at the south pole s).
- After we transform the decay from boundary to bulk, the proof uses conformal geometry rather than Carleman estimate, which even does not depend $\left.\tilde{u}\right|_{\mathbb{R}^{n} \times\{0\}}$. Therefore, it doesn't matter whether q is real-valued or not.

Part V: Strict monotonicity of eigenvalues and unique continuation property (UCP)

Some results for elliptic operators

- Let Ω be a Lipschitz domain in \mathbb{R}^{n}, and let A be a second order elliptic operator given by

$$
A u:=-\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j}(x) \partial_{j} u\right)+a_{0}(x) u
$$

with $a_{0}(x) \geq 0, a_{0} \in L^{r}(\Omega)$ for some $r>\frac{n}{2}$, and $\left(a_{i j}(x)\right) \in L^{\infty}(\Omega)$ is symmetric and satisfies the elliptic condition.

- Given a weight function $m \in L^{r}(\Omega)$, where the exponent r is given above, we consider the eigenvalue problem

$$
\begin{cases}A u=\mu m(x) u & \text { in } \Omega \tag{8}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

- It is known that the eigenvalues of (8), depending on m, form a countable sequence:

$$
\cdots \leq \mu_{-2}(m) \leq \mu_{-1}(m)<0<\mu_{1}(m) \leq \mu_{2}(m) \leq \cdots
$$

Some results for elliptic operators

- If m is non-negative (resp. non-positive), then the sequence of eigenvalues is bounded below (resp. bounded above).
- In fact, by using a variational characterization of eigenvalues, we can observe that each μ_{k} is non-increasing in the weight function m.
- That is, if $m(x) \leq \hat{m}(x)$ a.e., then $\mu_{k}(\hat{m}) \leq \mu_{k}(m)$.
- (Figueiredo-Goessez '92) $\mu_{k}(m)$ is strictly decreasing in $m \Longleftrightarrow$ the corresponding eigenfunction enjoys the unique continuation property from a set of positive measure (a.k.a. measurable unique continuation property, MUCP).
- We say that $u_{k}(x)$ has the MUCP, if $u=0$ in $E \subset \Omega$ with $|E|>0$, then $u \equiv 0$ in Ω.
- (Tsouli-Chakrone-Rahmani-Darhouche '12) A similar result was proved for the bi-harmonic operator $(-\Delta)^{2}$.
- (Frassu-lannizzoto '20) The equivalence of strict monotonicity and MUCP was further extended to some non-local operators.
- In this dissertation, we established the equivalence of strict monotonicity of eigenvalues and measurable unique continuation property (MUCP) for the spectral elliptic operator $(-P)^{\gamma}$, where $\gamma \in \mathbb{R}_{+} \backslash \mathbb{N}$.

Definition of spectral fractional Laplacian

- We first explain the definition of $(-P)^{\gamma}$ for $\gamma=s \in(0,1)$.
- Recall. It is known that the eigenvalues of $-P u=\lambda u$ in Ω for $u \in H_{0}^{1}(\Omega)$ form a countable sequence $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow+\infty$.
- Let $\left\{\phi_{k}\right\}_{k=1}^{\infty}$ be the corresponding eigenfunctions, and we have

$$
-P u=\sum_{k=1}^{\infty} \lambda_{k} u_{k} \phi_{k} \quad \text { provided } \quad u=\sum_{k=1}^{\infty} u_{k} \phi_{k} \in H_{0}^{1}(\Omega) .
$$

- We simply define $(-P)^{s} u:=\sum_{k=1}^{\infty} \lambda_{k}^{s} u_{k} \phi_{k}$ for $u \in \operatorname{dom}\left((-P)^{s}\right)$.
- Here, the spectral elliptic operator $(-P)^{s}$ is not the restriction of the Bochner elliptic operator $(-P)^{s}$ for \mathbb{R}^{n} on Ω.
- Moreover, the spectral elliptic operator $(-P)^{s}$ does not included in (Frassu-lannizzoto '20).

Eigenvalue problem for Bi -harmonic operator

- It is natural to define $(-P)^{\gamma}$ for $\gamma \in \mathbb{R}_{+} \backslash \mathbb{N}$ using a similar manner as $(-P)^{s}$. However, we need to impose some suitable boundary conditions.
- Bi-harmonic operator with Dirichlet boundary condition:

$$
\begin{cases}(-\Delta)^{2} u=\lambda_{\mathrm{D}} u & \text { in } \Omega \\ u=0, \partial_{\nu} u=0 & \text { on } \partial \Omega\end{cases}
$$

- Bi-harmonic operator with Navier boundary condition:

$$
\begin{cases}(-\Delta)^{2} u=\lambda_{\mathrm{N}} u & \text { in } \Omega \\ u=0,-\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

- Existence of eigenvalues and eigenfunctions of both problems above are known.
- We will impose the Navier boundary condition for $(-P)^{\gamma}$.

Definition of spectral fractional Laplacian

- Assuming $\left(a_{i j}\right) \in \mathcal{C}^{2\lfloor\gamma\rfloor, 1}(\Omega)$, where $\lfloor\gamma\rfloor$ is the integer part of γ.
- Let $H^{\alpha}(\Omega)$ be the restriction of $H^{\alpha}\left(\mathbb{R}^{n}\right)$ to Ω, and let $\tilde{H}^{\alpha}(\Omega)$ be:
- When $0<\alpha<1 / 2, \tilde{H}^{\alpha}(\Omega):=H^{\alpha}(\Omega)$.
- When $1 / 2<\alpha<5 / 2, H^{\alpha}(\Omega):=\left\{H^{\alpha}(\Omega) \mid u=0\right.$ on $\left.\partial \Omega\right\}$.
- When $2 k+1 / 2<\alpha<2 k+5 / 2$,

$$
\tilde{H}^{\alpha}(\Omega):=\left\{H^{\alpha}(\Omega) \mid u=\cdots=(-P)^{k} u=0 \text { on } \partial \Omega\right\} .
$$

- When $\alpha=2 k+1 / 2$,

$$
\tilde{H}^{\alpha}(\Omega):=\left\{\begin{array}{l|l}
H^{\alpha}(\Omega) & \begin{array}{l}
u=\cdots=(-P)^{k-1} u=0 \text { on } \partial \Omega \\
(-P)^{\alpha} u \in H^{1 / 2}\left(\mathbb{R}^{n}\right) \\
\operatorname{supp}\left((-P)^{\alpha} u\right) \subset \bar{\Omega}
\end{array}
\end{array}\right\} .
$$

- $\operatorname{dom}\left((-P)^{\gamma}\right):=\tilde{H}^{2 \gamma}(\Omega)$, and $(-P)^{\gamma}: \tilde{H}^{2 \gamma}(\Omega) \rightarrow L^{2}(\Omega)$.

A properties of spectral fractional Laplacian

- We now exhibit a very basic but important properties of $(-P)^{\gamma}$.

Lemma

Let $\lfloor\gamma\rfloor$ be the integer part of γ and $s:=\gamma-\lfloor\gamma\rfloor$. If $u \in \operatorname{dom}\left((-P)^{\gamma}\right)=\tilde{H}^{2 \gamma}(\Omega)$, then

$$
(-P)^{\gamma} u=(-P)^{s}\left((-P)^{\lfloor\gamma\rfloor} u\right)=(-P)^{\lfloor\gamma\rfloor}\left((-P)^{s} u\right) .
$$

- The proof is easy. However, here we want to point out that the Navier boundary condition in $\tilde{H}^{2 \gamma}(\Omega)$ is essential in the proof.
- In fact,

$$
(-P)^{s} u:=\sum_{k=1}^{\infty} \lambda_{k}^{s} u_{k} \phi_{k} \quad \text { provided } u=\sum_{k=1}^{\infty} u_{k} \phi_{k}
$$

can be simply define without Navier boundary condition. However, the lemma cannot hold in this case.

- $(-P)^{\gamma}$ also called the Navier fractional elliptic operator.

Some remarks on UCP

- The localization technique of $(-\Delta)^{s}$ (as well as Bochner elliptic operator $(-P)^{s}$ in \mathbb{R}^{n}) also works for spectral elliptic operator $(-P)^{s}$ in Ω.
- For $s \in(0,1)$, we consider a solution \tilde{u} of the degenerate elliptic equation

$$
\begin{aligned}
{\left[\partial_{n+1} x_{n+1}^{1-2 s} \partial_{n+1}+x_{n+1}^{1-2 s} P\right] \tilde{u} } & =0 \\
& \text { in } \Omega \times(0, \infty) \\
\tilde{u}=u & \text { on } \Omega \times\{0\}, \\
\tilde{u} & =0
\end{aligned} \begin{aligned}
\text { on } \partial \Omega \times(0, \infty),
\end{aligned}
$$

- (GarcíaFerrero-Rüland '19) The fractional operator $(-P)^{s}$ (defined via Bochner's formula) satisfies

$$
(-P)^{s} u\left(x^{\prime}\right)=c_{n, s} \lim _{x_{n+1} \rightarrow 0} x_{n+1}^{1-2 s} \partial_{n+1} \tilde{u}(x)
$$

for some $c_{n, s} \neq 0$.

- There is also a corresponding extension problem for $(-P)^{\gamma}$ for each $\gamma \in \mathbb{R} \downarrow \mathbb{N}$.

Some remarks on UCP

- Formally, the extension problem for spectral elliptic operator is very similar to the one for Bochner elliptic operator:
- Extension problem for Bochner elliptic operator

$$
\begin{array}{rlr}
{\left[\partial_{n+1} x_{n+1}^{1-2 s} \partial_{n+1}+x_{n+1}^{1-2 s} P\right] \tilde{u}} & =0 & \text { in } \mathbb{R}_{+}^{n+1} \\
\tilde{u}=u & \text { on } \mathbb{R}^{n} \times\{0\} .
\end{array}
$$

- Extension problem for spectral elliptic operator

$$
\begin{array}{rlrl}
{\left[\partial_{n+1} x_{n+1}^{1-2 s} \partial_{n+1}+x_{n+1}^{1-2 s} P\right] \tilde{u}} & =0 & \text { in } \Omega \times(0, \infty) \\
\tilde{u}=u & \text { on } \Omega \times\{0\}, \\
\tilde{u}=0 & & \text { on } \partial \Omega \times(0, \infty) .
\end{array}
$$

- Unique continuation can be proved using the same Carleman estimate in $\mathbb{R}_{ \pm}^{n+1}$.

$\mathcal{T H A N K}$ YOU

