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Highlights of the dissertation Abstract

Outline

Part I: Landis conjecture (UCP at infinity)
» (1) fractional Laplacian with a drift term; (2) general Schrédinger equation of fractional
type; (3) Schrodinger equation with half Laplacian
» Main difficulties. Proving UCP usually involves Carleman estimate, which works well for
local operators. For non-local operator, we need some tricks.

o Part Il: Localization of fractional elliptic operators

@ Part Ill: General procedure of proving Landis conjecture and unique continuation property
(UCP)

@ Part IV: Landis conjecture for a special case - half Laplacian

e Part V: Strict monotonicity of eigenvalues and unique continuation property (UCP)
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Introduction Landis conjecture

What is Landis conjecture?

@ We consider the following classical Schrédinger equation:
Au+qu=0 inR" (1)

with g € L®(R").
o Let u € C?(R") such that u(x) = exp(—|x]|) for all |x| > 1.
o There exists a constant C > 0 such that |Au| < C?|u| in R”, that is, u satisfies (1) with
Au(x) .
— if u(x)#0
) =] u )
0 if u(x) =0.

i

@ By scaling, we can make |g| < 1: Precisely, if we let uc(x) = u(Cx), then |Auc| < |uc|.
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Introduction Landis conjecture

What is Landis conjecture?

o An example. We can choose a constant C > 0 and construct a function u € C?(R") such
that
u(x) = exp(—Clx|) forall [x| > 1,
|Au| < |ul in R".

Conjecture (Landis 60's)

Let |q(x)| < 1. If |u(x)| < Co satisfies Au+ qu =0 in R", and
lu(x)| < exp(—C|x|*) for some o > 1,

then u = 0.

@ Unique continuation property at infinity.
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Introduction Landis conjecture

Some history of Landis conjecture

e Landis conjecture. u € L*°(R") satisfies Schrodinger equation. If
lu(x)| < exp(—C|x[**), then u=0.
@ This conjecture was disproved by Meshkov in 1991:
» Constructed complex-valued potential g and u # 0 with

|u(x)] < exp(—Clx[3).

> If |u(x)| < exp(—C|x|*) for some o > 3, then u = 0.
e (Bourgain-Kenig '05) Proved Meshkov's result in quantitative form.

» Carleman estimate (cannot distinguish real or complex g and u)
@ See (Davey '14) and (Lin-Wang '14) for Quantative Landis conjecture with drift term.
@ (Kenig '06) Refined the conjecture for real-valued potentials g and wu.

» Partial answers: (Davey-Kenig-Wang '17 '19), (Rossi '18),
(Loguv-Mallinnikova-Nadirashvili-Nazarov '20)

Pu-Zhao Kow (NTU) UCP of Fractional Elliptic Operators May 28, 2021 6 /49



Introduction Landis conjecture

Fractional Landis conjecture

o Let s € (0,1), and we consider the fractional Schrédinger equation
(=AYu+qu=0 inR"

where 7 ((—A)*u) := [£]?50(€) and .F is Fourier transform.
@ Both qualitative and quantative Landis conjecture proved in (Riiland-Wang '19).
> Let g is differentiable with |x - Vg(x)| < 1:

B
If e™”|uf? dx < oo for some 8 > 1, then u=0.
Rn

> For non-differentiable g, we consider s € (3, 1):

8 4
If e " u[? dx < oo for some 3 > , then u=0.
R 4s —1
4s 4
@ ;o7 ~3ass— L
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Introduction Main results

Fractional Laplacian with a drift term

o Fractional Schrédinger equation with a drift term:
(“A)° + b(x)x -V +g(x))u =0 in R", 2)

where b and g are scalar-valued functions. Motivated by (Rossi '18), we consider the drift
term only involving the radial derivative.

Theorem (Ghosh-Salo-Uhlmann '20)

Ifue H"(R") for some r € R and u = (—A)°u =0 in some open set W C R", then u = 0.

Corollary (Unique continuation property)

Let u be a solution to (2). If u=0 in some open set W C R", then u = 0.

@ This dissertation is the first attempt to study the Landis conjecture (UCP at infinity) of

(2).
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Introduction Main results

Fractional Laplacian with a drift term

Theorem (Dissertation: Differentiable potential)

Letn=1,2,3. Lets e (%, 1) when n=1,2, and let s € (%, 1) when n = 3. We assume that
there exists a constant \ such that

lg(x)] < X and 0 < b(x) < x|~ for all x € R”,
and the radial derivatives of q, b satisfy

Ix - Va(x)| < X and |x - Vb(x)| < X|x|™? for all x € R"
for some > 1. If u € H*(R") is a solution such that
/ e’ [|u(x)|2 + [Vu(x)]?] dx < A,
Rn

then u = 0.
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Introduction Main results

Fractional Laplacian with a drift term

Theorem (Dissertation: Non-differentiable potential)

Let n=1,2,3. Let s be given in previous theorem. We assume that there exists a constant \
such that

lg(x)] < X and 0 < b(x) < \x|~? for all x € R",

and the radial derivatives of b satisfy

Ix - Vb(x)| < Ax|7# for all x e R"

for some 3 > ;2. If u € HS(R") is a solution such that

/ lxl? []u(x)\2+|Vu(x)\2 dx < ),
Rn

then u = 0.

Pu-Zhao Kow (NTU)

UCP of Fractional Elliptic Operators May 28, 2021 10/ 49



Introduction Main results

Extension to fractional elliptic operators

Lemma (Bochner's formula)
Let s € (0,1), and define T'(—s) := = ['(1 —s), then

1

s _ —tA _
A= F—s) /0 (e L)u(x) T+ for all A > 0,

@ See e.g. (Schilling-Song-Vondracek '10).

@ Let P be a second order elliptic operator in divergence form:

P=V.-AV = Z djajk(x)Ok-
Jrk=1
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Introduction Main results

Generalized Schrédinger equation of fractional type

@ Since —P is a non-negative operator, by formally replacing A by —P in Bochner's formula,

this also suggests us to define

(PYul) = g [ (e = ule)

where {etP} ;>0 is the semi-group generated by —P, see (Stinga-Torrea '10).

o Generalized Fractional Schrédinger equation:
((=P)*+qu=0 inR"

with s € (0,1) and |g(x)| < 1.
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Introduction Main results

Generalized Schrédinger equation of fractional type

o Ellipticity condition. There exists a constant 0 < A < 1 such that

n

MNEP < ap(x)gi&e < ATHEP for all x € R
j,k=1

@ Regularity and symmetry. aj = a; are Lipschitz.
o A~ 1Id (i.e. P~ A) at infinity. There exists a constant C > 0 and a sufficiently small
parameter € > 0 such that

max sup |aj(x) —di(x)| + max sup |x||Vak(x)| <e 4a
1<',k§n|x|21| J ( ) J ( )| 1<',k§n|x|21| H J ( )’ =5 ( )
max su Vza-k x)| < C. 4b

1<'7k§”\x|2p1’ ik(x)| < (4b)

o When s =1, we no need to assume (4b).

Pu-Zhao Kow (NTU) UCP of Fractional Elliptic Operators May 28, 2021 13 /49




Introduction Main results

Generalized Schrédinger equation of fractional type

Theorem (Dissertation: Differentiable potential)

Let s € (0,1) and assume that u € H*(R") is a solution. We assume that the potential
q € CL(R") satisfies |q(x)| < 1 and

Ix[[Va(x)| < 1.
If u satisfies

/ e‘x‘ﬁ|u|2 dx < C < oo forsome 3> 1,

then u = 0.
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Introduction Main results

Generalized Schrédinger equation of fractional type

Theorem (Dissertation: Non-differentiable potential)

Let s € (%,1) and assume that u € H*(R") is a solution. We assume that the potential
lg(x)| < 1. If u satisfies

/ e|X|B|u\2 dx < C< oo

for some 3 > 45 7, then u=0.

@ Using Fourier transform, it is easy to see that (—A)¥(—A)P = (~A)*+P, and
(—A) . HA+s(R") — HP=S(R™) is bounded for all 5 € R.

e However, extension of these properties to (—P)* is not trivial

@ For the case when aj € C*, (—P)® is a pseudo-differential operator of order 2s, see
(Seeley '67).
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Introduction Main results

A special case: Schrodinger equation with half-Laplacian

o Let |g| <1landletue H%(R") be a solution to (—A)%u—l— qu = 0.
o (Riiland-Wang '19) If there exists a constant C > 0 such that

8
/ e |u2dx < C < 0o for some 3> 2,

then u=0.
Theorem (Dissertation: Improvement)

If there exists a constant C > 0 such that
/ eMul?dx < € < oo,

then u = 0.

@ Here, the potential g need not to be real-valued. It is interesting to compare this result

with the real-version of the Landis-type conjecture.
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Part II: Localization of fractional elliptic operators
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[RYEFELET IR TETS AT E RS (IS  Some formal computations

Half Laplacian

We now introduce an equivalent definition of (—A)® on R".
(Kwasnicki '17). There are at least 10 equivalent definitions.
To motivate the ideas, here we perform some formal computations.

In order to make things easy, we first consider s = 1/2.

e 6 6 o o

Write x = (X, xp+1) € R := R" x R5q. For a function u: R" — R, we consider a

function & : Rfl — R satisfies

Ad=Ayii+02,i0=0 inR}
d=u on R"” x {0}.
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[RYEFELET IR TETS AT E RS (IS  Some formal computations

Half Laplacian

@ Taking Fourier transform with respect to variable x’, we reach
—[€2h+024G=0 in R},
=10 on R" x {0},

where 0 = % and 0 = Zu.

o Plugging the special solution &(&, xp41) = 0(€)p(z) with z = |€|x,41, we obtain

o

—¢(z) + 2p(z) =0 for z >0,
#(0) =1 (we additional assume lim,_,o ¢(z) =0 and ¢ € CO).

z

@ The unique solution (with additional conditions) is given by ¢(z) = e~

@ We obtain a special solution (¢, x,p1) = (€)elébn,
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[RYEFELET IR TETS AT E RS (IS  Some formal computations

Half Laplacian

e Since U(€,xpy1) = 0(&)e™ €1, we have

lim 8n+1f1(§,Xn+1) = —[¢la(é).

Xp+1—0

@ In view of Fourier definition, it is make sense to define

Al =Npii+02,,0=0 in R,

i=u on R"” x {0}.

—(—A)é/szu(x’) = lim Opp1d(x) forall x' € R".
Xp+1—0

@ The half-Laplacian can be defined in terms of Dirichlet-to-Neumann map (DN-map) of a
harmonic functions in half space Rfl.
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| RYEUFEV TN R T N E R T IYEL STl Some formal computations

Fractional Laplacian of order 0 < s <1

e We now perform the similar formal computations for (—A)® with 0 < s < 1.

@ For a function u: R" — R, we consider a function i : Rfl — R satisfies

V. xt2°Vi=0 in R},
i=u on R" x {0}.

o Note that (5) is equivalent to

1-2s .

Al + Ont1li+ 02,40 =0 inRTT,
Xn+1

i=u on R" x {0}.
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[RYEFELET IR TETS AT E RS (IS  Some formal computations

Fractional Laplacian of order 0 < s <1

e Taking Fourier transform with respect to variable x’, we reach

2 1-2s a 2 .
— €20+ Opsrli+ 0241 =0 in Ry
R n+1
u=14a on R” x {0},

where i = Ziiand 0 = Zu.
o Plugging the special solution u(&, xp41) = G(§)P(z) with z = |£|xp+1, we obtain

—o(z) + ﬂazqﬁ(z) +02¢(z) =0 for z >0,

V4
#(0) =1 (we additional assume lim,_, ¢(z) =0 and ¢ € C°)

@ The unique solution (with additional conditions) is given by
2l :
o(z) = @ZSKS(Z) , Ks = modified Bessel function of 2 kind.
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[RYEFELET IR TETS AT E RS (IS  Some formal computations

Fractional Laplacian of order 0 < s <1

@ Using the properties of the modified Bessel functions, we have

21 2sr( )
. 1-2s
i 2 70:0(2) = —
@ Hence, by writing ¢s := #5()1_5) > 0 (indeed, ¢;/» = 1), we have
Cs Xn!rllnlm Xn+1 8I1Jr1 ﬁ(€7Xn4r1) = _‘€|250(£)

@ In view of Fourier definition, it is make sense to define

V- xpii?Vi=0 in R

i=u on R" x {0}.

—(—A)ggqu(x’) = G I|nl0xnJrl $Opp1l(x) for all X' € R™.
n+1

@ (—A)* can be defined in terms of DN-map of a degenerate elliptic equation in half space
R
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Localization of fractional elliptic operators

Caffarelli-Silvestre extension

Fractional Laplacian of order 0 < s <1

Theorem (Caffarelli-Silvestre '07)

Let s € (0,1) and u € H*(R"). Let (—A);. be the fractional Laplacian defined via Fourier
transform. Let

~ : — 1 1-2
ie Hl(Riﬂ,x%st) = { v: R 5 R /RMIX,,JF15|VV|2 dx < oo }
+

be a solution to the extension problem (which is a degenerate elliptic equation). Then
(=8)k = (A)es-

@ (—A); is defined via Fourier transform, which is non-local.

o (—A)gg is defined via a local (but degenerate) elliptic equation.

@ Using this equivalent definition, we can obtain Carleman estimate in the extended space
R rather than the original R”.
Pu-Zhao Kow (NTU)
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Localization of fractional elliptic operators Caffarelli-Silvestre extension

General elliptic operator of fractional type

@ The localization technique of (—A)® also works for Bochner elliptic operator (—P)*.

e For s € (0,1), we consider a solution i of the degenerate elliptic equation

On 1% 70041 +Xpr i PG =0 in R
d=u onR"x{0}.
o (Stinga-Torrea '10) The fractional operator (—P)*® (defined via Bochner's formula) satisfies

_(—P)Su(x/) = Cns ; |+|1m_>0 X;;fSan_H L7(X)

for some ¢, s > 0. In fact, if s = % then ¢, s = 1.
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Part Ill: General procedure of proving Landis
conjecture and unique continuation property (UCP)
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General procedure of proving Landis conjecture and UCP Sketch of the general procedure

@ We now sketch the general procedure of proving Landis conjecture and unique
continuation property (UCP) for fractional elliptic equation.

@ To explain this general procedure, as an example, we here consider Landis conjecture for
general Schrédinger equation of fractional type.

@ We consider the fractional Schrédinger equation
(=P +qu=0 inR",

where P =V - AV satisfies some conditions, and P =~ A at infinity.
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General procedure of proving Landis conjecture and UCP Sketch of the general procedure

Step 1: Localization

@ Using the Caffarelli-Silvestre type extension, we can localize ((—P)® + q)u = 0 as the

following:
Ont1X 10011 + X5 1 PG =0 in R,
i=u on R" x {0},

Cns My 50 Xp 13 Ons1(x) = q(x')u on R” x {0},

where we recall x = (X, xp+1) € R” x Ry = R},

@ We called i the Caffarelli-Silvestre type extension of u.
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General procedure of proving Landis conjecture and UCP Sketch of the general procedure

Step 2: Boundary decay implies bulk decay

Proposition

Let s € (0,1) and u € H*(R") be a solution to ((—P)* + q)u = 0, with |q(x)| <1 and some
appropriate assumptions. Assume that P = A at infinity. If there exists a > 1 such that

/ e u? dx < € < o0, (6)

then there exist constants Cy, C; > 0 so that the Caffarelli-Silvestre type extension i of u

satisfies
|i(x)] < G @M for all x € R7HL. (7)

@ Here, we remark that both (6) and (7) decay at the same rate a > 1.

@ This enables us to obtain a Carleman estimate in the extension Rfl.
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General procedure of proving Landis conjecture and UCP Sketch of the general procedure

Step 2: Boundary decay implies bulk decay

o Idea. Propagation of smallness. The extension problem is simply an elliptic equation in
{x,,+1 > c}, therefore, we have 3-ball inequality.

@ We only need to pass the boundary decay on R” x {0} to a small neighborhood. This
technical part relies on a delicate Carleman estimate.

Xn+1

—2R -R R 2R X

Source: (Riiland-Wang '19)
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General procedure of proving

g Landis conjecture and UCP

Sketch of the general procedure

Step 3: Carleman estimate

Theorem (Carleman estimate for non-differentiable potential)

Let aj = 0j at infinity (as well as other assumptions). Let s € (0,1) and let
i € HYRY, x2 2°) with supp (i) C R\ B be a solution to

n

1-2s 1—s ~ . n+1

8n+1X,,+1 (9”+1 —+ Xpt1 E ajkajak] ag=f in R+ s
J,k=1

. 1—2 ~ ~
im X,i1 Opy1d = Vi onR"x {0}
Xp+1—0

Let ¢(x) = |x|* for « > 1. Then 3C > 0 such that for all T > 1 we have

3T 321 T 2 Ol S 2 |2
T ”e ’X‘ 2 "X U||L2 RTI) +T||e |X|2Xn+1 VUHB(RTI)
<cC |yef¢

3o Xl By + 72 2NV s o |
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General procedure of proving Landis conjecture and UCP Sketch of the general procedure

Step 4: Trace estimate

@ Unlike the classical Carleman estimate on R”, there is a boundary term in the Carleman
estimate on half-space R

3 30, 122 o o 1z25
T ||e7'¢‘x| 2 Xn+2:’l UHLz(R’J'fl) + T|‘e7'¢|x| 2 Xn+22,l quLz(R"Jfl)
221 2 2-2 1— ~(12
<C ||eT¢Xn+21 |X|f||L2(RQ+1) +7 S‘|eT¢V‘X|( a)su”Lz(R”x{O}) .
@ We need the following trace estimate to “absorb” the boundary term.

Lemma (Riiland '15)
Let o € (0,1). Then there exists constant C = C(n, o) > 0 such that

IWllixgost) < c[ﬁl N0Z: Vllixgsny + B0 I0LEs Vnvlue sn]

for all 3 > 1, where 0 = (61, ,0n,0n41) € ST, Vg = (01, -+ ,0,,0,11), and Oy are
vector fields on S".
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General procedure of proving Landis conjecture and UCP Sketch of the general procedure

Step 4: Trace estimate

@ Write the trace estimate as
2—
sy < €[00 Vi + 510, Vool

@ Indeed, we shall choose 3 ~ 7 (up to some suitable multiplicative constant), where 7 is
the parameter in the Carleman estimate

3y 21 15 2 o1 1S w2
T He |X| 2 Xn+1 UHLz(RT'l) +THe ’X‘2Xn+1 VUHLz(RT—l)
2521
< C[He”’xnfl XU T2 nny + 7227V Ix| a)s””fz(mm})}

@ The boundary term for large 7 > 1, when s > %

o Finally, we can prove ii = 0 using a contradiction argument, and hence u = {i|gny (0} = 0.
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Part IV: Landis conjecture for a special case - half
Laplacian
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A special case: half-Laplacian

Special structures of half-Laplacian

@ Using the Caffarelli-Silvestre extension, we can reformulate the equation
(—A)Y2u+qu=0inR" as

Al =0 in R7H,
i=u on R” x {0},

limy,,,—00nt1d = qu on R" x {0}.

@ Since i is harmonic in Rfl, this suggests us to introduce a conformal mapping from the
ball to the upper half-space, and back.

o Idea. Finding a mapping which preserves Laplacian.
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A special case: half-Laplacian

Conformal mapping

@ For each x € R™1\ {0}, we define x* := x/|x|2, i.e. the inverse relative to the unit
sphere S§".

o Let s=(0,---,0,—1) be the south pole of §”, and we define
¢ R\ {s} — R\ {s} by

®(z) :=2(z—s)" +s.

@ We also can regard ® as a homeomorphism from R” U {oo} (one-point compactification)
onto itself by defining ®(s) = co and $(c0) ='s.

Lemma (see e.g. Axler-Bourdon-Ramey '92)

& : R\ {s} — R™1\ {s} is injective. Furthermore, it maps B1(0) onto R, and also
maps Rﬁ'fl onto Bi(0).
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A special case: half-Laplacian

Conformal mapping

e Given any function w defined on a domain Q C R"1\ {s}, the Kelvin transform of w,
which is the function C[w] on ®(), is defined by

K[w](z) :=2"7 |z — s|""w(®(2)).

Lemma (see e.g. Axler-Bourdon-Ramey '92)

Let Q be any domain in R™1\ {s}. Then w is harmonic on Q if and only if K[w] is harmonic
on ().
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A special case: half-Laplacian

Main ideas

Sketch of the proof. Since Ai=0in R’jfl, then A(K[d]) = 0 in B1(0). Using the boundary
to bulk decay result above, the boundary decay fR" e‘x‘|u|2 dx < C implies bulk decay
|ii(x)| < Ce=™. Indeed,

IK[d](z)] < Cexp ( — |Zis|> near the south pole s.

Since we can extend KC[d] on Bi(0), using a result in (Jin '93), we conclude that K[d] = 0,
therefore, we conclude i = 0 (hence u = ii|gny oy =0). O

o If we employ the ideas for general (—A)* or (—P)'/?, indeed K[ii] satisfies an elliptic
equation on B;(0). However, in this case, it cannot be extended to Bi(0) (precisely, at the
south pole s).

o After we transform the decay from boundary to bulk, the proof uses conformal geometry
rather than Carleman estimate, which even does not depend i|gn, (0} Therefore, it
doesn’'t matter whether g is real-valued or not.
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Part V: Strict monotonicity of eigenvalues and unique
continuation property (UCP)
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Strict monotonicity of eigenvalues and UCP Introduction

Some results for elliptic operators

o Let Q be a Lipschitz domain in R”, and let A be a second order elliptic operator given by

28 ajj(x)0ju) + ag(x)u

ij=1

with ag(x) >0, ag € L"(Q2) for some r > 7, and (a;(x)) € L>°(Q) is symmetric and
satisfies the elliptic condition.

e Given a weight function m € L"(Q2), where the exponent r is given above, we consider the
eigenvalue problem

8
u=20 on 0Q. ()

@ It is known that the eigenvalues of (8), depending on m, form a countable sequence:

- < pa(m) < pei(m) <0 < pr(m) < pp(m) < -+

{Au = pum(x)u in Q,
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Strict monotonicity of eigenvalues and UCP Introduction

Some results for elliptic operators

e If m is non-negative (resp. non-positive), then the sequence of eigenvalues is bounded
below (resp. bounded above).

@ In fact, by using a variational characterization of eigenvalues, we can observe that each pux
is non-increasing in the weight function m.

» That is, if m(x) < m(x) a.e., then pk(M) < px(m).
o (Figueiredo-Goessez '92) pux(m) is strictly decreasing in m <= the corresponding
eigenfunction enjoys the unique continuation property from a set of positive measure
(a.k.a. measurable unique continuation property, MUCP).

o We say that uk(x) has the MUCP, if u =0 in E C Q with |E| > 0, then u=0in Q.

@ (Tsouli-Chakrone-Rahmani-Darhouche '12) A similar result was proved for the bi-harmonic
operator (—A)2.

o (Frassu-lannizzoto '20) The equivalence of strict monotonicity and MUCP was further
extended to some non-local operators.
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Strict monotonicity of eigenvalues and UCP Introduction

Main result

@ In this dissertation, we established the equivalence of strict monotonicity of eigenvalues
and measurable unique continuation property (MUCP) for the spectral elliptic operator
(—P), where v € Ry \ N.
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Strict monotonicity of eigenvalues and UCP Spectral fractional Laplacian

Definition of spectral fractional Laplacian

@ We first explain the definition of (—P)Y for v = s € (0, 1).
o Recall. It is known that the eigenvalues of —Pu = \u in Q for u € H}(Q) form a
countable sequence 0 < A\ < Ay < -+ = 400.

o Let {gzﬁk}io:l be the corresponding eigenfunctions, and we have

—Pu = Z >\kuk¢k prOVided u= Z ngbk € H(%(Q)
k=1 k=1

oo
e We simply define (—P)°u := Z)\f(ukqﬁk for u € dom ((—P)*).
k=1
» Here, the spectral elliptic operator (—P)® is not the restriction of the Bochner elliptic
operator (—P)* for R" on Q.
> Moreover, the spectral elliptic operator (—P)* does not included in (Frassu-lannizzoto '20).
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Eigenvalue problem for Bi-harmonic operator

@ It is natural to define (—P)7 for v € R4 \ N using a similar manner as (—P)°. However,
we need to impose some suitable boundary conditions.

@ Bi-harmonic operator with Dirichlet boundary condition:

(=A)2u=\pu in Q,
u=0,0,u=0 on 0f.

@ Bi-harmonic operator with Navier boundary condition:

(—A2u=Ayu inQ,
u=0,—Au=0 on 0Q.

@ Existence of eigenvalues and eigenfunctions of both problems above are known.

@ We will impose the Navier boundary condition for (—P)".
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Strict monotonicity of ei a Spectral fractional Laplacian

Definition of spectral fractional Laplacian

o Assuming (a;) € C?111(Q), where | 7] is the integer part of .
o Let HY(Q) be the restriction of H*(R") to Q, and let H*(Q) be:
> When 0 < o < 1/2, H2(Q) := H¥(Q).
> When 1/2 < o < 5/2, H*(Q) :={ H*(Q) | u=00n 0Q }.
» When 2k +1/2 < a < 2k+5/2,
A*(Q) :={ H¥(Q) | u=---=(—P)ku=00n0Q }.

» When oo =2k +1/2,

(—P)u € HY2(R")
supp ((—P)*u) C Q

u=---=(=P)*1u=0on o0 }

o dom ((—P)7) = F27(Q), and (—P)" : A27(Q) — L2(Q).
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Strict monotonicity of eigenvalues and UCP Spectral fractional Laplacian

A properties of spectral fractional Laplacian

@ We now exhibit a very basic but important properties of (—P)7.
Lemma

Let |7y| be the integer part of v and s :=~ — |v]. If u € dom ((—P)?) = H?Y(Q), then
(~P)u = (~PY((~P) " u) = (~P) T (~P)"u).

@ The proof is easy. However, here we want to point out that the Navier boundary condition
in H?Y(Q) is essential in the proof.

@ In fact,
[e.e] [e.e]
(=P)°u = Z)\f(ukg[)k provided u = Zuwﬁk
k=1 k=1
can be simply define without Navier boundary condition. However, the lemma cannot hold
in this case.

@ (—P)7 also called the Navier fractional elliptic operator.
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Some remarks on UCP

@ The localization technique of (—A)® (as well as Bochner elliptic operator (—P)* in R")
also works for spectral elliptic operator (—P)* in Q.
e For s € (0,1), we consider a solution i of the degenerate elliptic equation

8n+1xn+1 On+1 +xn+1 *Pli=0 inQ x(0,00),

d=u onQx {0},
=0 on 02 x (0, 00),

o (GarciaFerrero-Riiland '19) The fractional operator (—P)*® (defined via Bochner's formula)
satisfies

(—P)°u(x') = Cns I|1m 0x,1,+12 On+10(x)

for some ¢, s # 0.
@ There is also a corresponding extension problem for (—P)7 for each v € R\ N.
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Strict monotonicity of eigenvalues and UCP Caffarelli-Silvestre type extension

Some remarks on UCP

o Formally, the extension problem for spectral elliptic operator is very similar to the one for

Bochner elliptic operator:
» Extension problem for Bochner elliptic operator

1-2s 1-2s ~ H n+1
{anﬂxnﬂ Ony1 + Xp4 1 P} =0 inRI™,

d=u onR"x{0}.
» Extension problem for spectral elliptic operator
{3”1)(:;1250#1 + X,%J:lzsP} =0 inQ x(0,00),
d=u onQx{0},
=0 on dQ x (0,00).

@ Unique continuation can be proved using the same Carleman estimate in Rffl.

UCP of Fractional Elliptic Operators May 28, 2021

48 /49



UCP of Fractional Elliptic Operators May 28, 2021 49 / 49



	Highlights of the dissertation
	Abstract

	Introduction
	Landis conjecture
	Main results

	Localization of fractional elliptic operators
	Some formal computations
	Caffarelli-Silvestre extension

	General procedure of proving Landis conjecture and UCP
	Sketch of the general procedure

	A special case: half-Laplacian
	Strict monotonicity of eigenvalues and UCP
	Introduction
	Spectral fractional Laplacian
	Caffarelli-Silvestre type extension

	

