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ABSTRACT. In this paper, we study a Landis-type conjecture for the fractional Schrédinger
equation with a drift term. The Landis-type conjecture is a question of unique
continuation property from the infinity. More precisely, we would like to prove the
following: if any solution of the fractional Schrodinger equation with a drift term
decays at a certain exponential rate, then such solution must be trivial. By localizing

the equation with the help of Caffarelli-Silvestre extension, we solve the problem by

a delicate Carleman inequality in the (n 4 1)-dimensional half space.

1. INTRODUCTION

In this work, we consider the unique continuation from the infinity for the fractional
Schrédinger equation with drift term

(1.1) (=AY +b(z)x-V+q(z))u=0 in R"

where s € (0,1) and b, ¢ are scalar-valued functions. Precisely, we are interested in
investigating the decay rate of u at infinity that implies the solution w is trivial. This
problem is closely related to the Landis conjecture [KL88|. For s = 1, b = 0, Landis
conjectured that if if [g(z)| < 1 and |u(z)| < Cy satisfies |u(z)| < exp(—C|z|'"), then

u = 0. The Landis conjecture was disproved by Meshkov [Me91], who constructed a
complex-valued potential ¢ and a nontrivial complex-valued u with |u(z)| < C exp(—C|z|3)
such that wu is a solution of the Schrodinger equation with potential q. He also showed
that if |u(z)| < Cexp(—Clz|3T), then u = 0.

In view of Meshkov’s counterexample, Kenig [Ke06] refined the Landis conjecture and
asked whether this conjecture is true for real-valued potentials and solutions. This real
version Landis conjecture was confirmed partially in [KSW15| where n = 2 and ¢ > 0.
This result was later extended to the more general situation with A being replaced by
any second order elliptic operator [DKW17|. The Landis conjecture in the real case
with n = 1 was studied in [Ro18|. Recently, the real version Landis conjecture in the
plane case was resolved by Logunov, Malinnikova, Nadirashvili, Nazarov [LMNN20].

A Landis-type conjecture was considered in [RW19] for the fractional Laplacian with
b = 0. Both qualitative and quantitative estimates were proved in [RW19]. For example,
when ¢ is differentiable and satisfies

|z V()] <1,
if u satisfies the following decay behavior: 3 o > 1 such that
/e'xa|u|2dx < 00,
R
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then w = 0. On the other hand, for a non-differentiable potential ¢, if s € (1/4,1),
|q||zoe®n) < 1, and w satisfies the decay behavior: 3 o > =2 such that

4
4s—1
/e'xa|u|2d:v < 00,

R

then u = 0.

The main theme of this work is to extend the results in [RW19] to the fractional
Schrodinger equation with a drift term (1.1). The unique continuation property established
in [GSU20| states that if uw € H"(R") for some r € R and v = (—=A)°u = 0 in
some open set W C R", then u = 0. It follows from this property that the unique
continuation property holds for (1.1). However, to our best knowledge, the strong
unique continuation property for the fractional Laplacian with a drift term remains
open. Our work is the first attempt to study the unique continuation property for
any solution of the fractional Laplacian with a drift term that satisfies some decaying
condition. Motivated by the result of [Ro18|, we consider the drift term only involving
the radial derivative. Inspired by the ideas in [Me89] and [RW19], we show that if both
b and ¢ are differentiable, then any non-trivial solution of the fractional Schrédinger
equation does not decay super-exponentially at infinity. The detailed statement is
described in the following theorem.

Theorem 1.1. Lein =1,2,3 and

(1.2) s€(3,1) when n=1 or 2,
' se(3,1) when n=3.

We also assume that there exists a constant \ such that

(1.3) ()] <X and 0 <b(x) < Naz|™? forall x € R"
and the radial deriwatives of q,b satisfy

(1.4) lz-Vq(z)| <X and |z-Vb(x)| < Nz|™ for all x € R"
for some > 1. If u € H*(R") is a solution to (1.1) such that

(1.5) / e+’ [[u(x)|2 + | Vu(z) | dz < A,

then u = 0.

For non-differentiable potential ¢, we also can prove the following result.

Theorem 1.2. Let n =1,2,3 and s given in (1.2). Let > 4;151’ and both b, q satisfy
(1.3). Here we assume the radial derivative of b satisfies

|z - Vb(z)| < Nz|™  for all z € R™.
If u e H*(R") is a solution to (1.1) satisfying (1.5), then u = 0.

Remark 1.3. Since we treat the drift term as a lower order addition, it is reasonable
to expect that s > 1/2 in Theorem 1.1 and 1.2.

Like several existing results, we want to prove Theorem 1.1 and 1.2 by an appropriate
Carleman estimate. Since such estimate is a local estimate, we first localize the equation
(1.1) by the Caffarelli-Silvestre extension [CS07] and derive the Carleman estimate
for a degenerate elliptic equation in the (n + 1)-dimensional upper half-space R’
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Our strategy in proving both theorems is similar to that of [RW19]. We will mainly
handle the CS extended solution @ in R, The condition (1.5) can be considered as a
boundary decay for u. We then pass the boundary decay to the bulk decay of @ in ]R{Tl.
We would like to point out that unlike the pure potential case considered in [RW19],
here, in order to guarantee the bulk decay of @, we also need the boundary decay of Vu
due to the addition of the drift term.

We now comment on the form of drift coefficient in (1.1). Such choice is due to the
limitation in the Carleman estimate for « in RTI. Since the boundary term contains
the first derivatives of u, to bound this boundary term, we need to include the second
derivatives of @ in the Carleman estimate in view of the trace inequality (Lemma A.3).
However, the parameter appears in the first derivatives of u is 7, while the parameter
in the second derivatives of @ is 77! (see (4.4)). Without further restrictions, this
boundary term can not be removed. We also remark that the operator

(1.6) — ((=A)* + Az - V) (where X is a positive constant)

is related to a 2s-stable Ornstein-Uhlenbeck process in R? for s € (0,1), see [Jako8,
Sect. 2|. Precisely, let X; be the 2s-stable Ornstein-Uhlenbeck process in R?, given in
the following stochastic integral:

t
X, =eMX, + / e M9 dX,, Xo=0,
0

where the integral is in the Stieltjes sense, and (Xt, P*) is the isotropic 2s-stable Lévy
process in R? with index of stability s € (0,1) and characteristic function

EOXtE — ot for all ¢ € R? and for all ¢ > 0.

Here, [E* denotes the expectation with respect to the distribution P* of the process
starting from x € R?. Indeed, the infinitesimal genrator of X; is equal to (1.6).

This paper is organized as follows. In Section 2, we introduce some notations and
state the Caffarelli-Silvestre extension. In Section 3, we discuss how the boundary
decay of u implies the bulk decay of @ in R/*'. The derivation of the needed Carleman
estimate is discussed in great detail in Section 4. Section 5 is devoted to the proofs of
main results.

2. THE CAFFARELLI-SILVESTRE EXTENSION

Basically, we shall follow the definitions and notations in [RW19]. We now restate
what we need. Let R := R" x R, = { r= (2, Tny1) ‘ ¥ € R, xpq >0 } and
zo = (2/,0) € R™ x {0}. For r, R > 0, we denote

Bl(zg) :={ 2 e R"x {0} | |z —xo| <7 },
B :=B/(0), B;:=B.(0),
Atp={zeR"|[r<|z|<R},

Alg={zeR'x{0}|r<|z|<R }.

Bf(wg) ={ 2 e R ||z — x| <1 },
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For Q C R we define
HY(Q, 2172 = { v: Q=R /xiﬁﬂV@]Qdﬂv < 00 },
HY (Q,2).7) == { v:Q—R / 2 P (0] + [Vo]?) do < oo } :

Write © = 70, where > 0 and 6 € S7, ie., 0 = (¢,0,41) € S" with 0,41 > 0. We also
denote

HY(S",017%) =< v: S —R / O0n- 3 (Jv]? + [Vsnv]?) df < oo }’

where Vgn = (01, -+ ,0,,41). Here, O are vector fields on S™.
Fors € (1,1)andu € H*(R"),let a € H' (R 2122%) be a solution to the degenerate
elliptic equation

u=u on R™x {0},
where V = (V' 0,41) = (01, -+, On, Ong1). It was established in [CSO07] that

—(—=A)’u(z) = cps i hllgo Ty 30 1t()

for some constant ¢, ; > 0. In view of this observation, (1.1) can be reformulated as
the local, degenerate elliptic equation

V-2 3Vi =0 in R
(2.2) u=u on R™x {0},
Cns lim 2)73°0,410 = b2’ - V'u+qu on R™x {0}.
xn+1—>0

3. BOUNDARY DECAY IMPLIES BULK DECAY

In this section, we will show that the boundary decay (1.5) implies the bulk decay of
@ in R,

Proposition 3.1. Let s be given in (1.2) and @ € HY(RT™, 2,.5°) be a solution to
(2.2). Assume that there exists a constant X > 0 such that

(3.1) lg(2)] <X and |b(2)||2'| < N for all ' € R™

If there exist constants C, 8 > 1 such that (1.5) holds, then there exist constants Cy,c; >
0 such that

(3.2) la(z)| < Cret° for all x e R

The following lemma can be found in [RW19, Equ.(19)].
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Lemma 3.2. Let s € (3,1) and 0 € H'(R™, 2,73°) be a solution to (2.1). If z €
R™ x {0}, then there exist a=a(n,s) €(0,1) and ¢ = ¢(n,s) € (0,1) such that

1-2s
||$n+21 U||L2 (B.(z0))

< Ol o oy + 7 il o)
11—«
(33) X T's+1 lim ‘Tn—i-l an+1’ll +7“178HUHL2(B/ (w0))
ZTn+1—0 L2(B}g,(0)) 1or

for some positive constant C'.
Combining Lemma 3.2 and Lemma A.2 implies the following lemma.

Lemma 3.3. Let s be given by (1.2) and @ € H'(RY™, 2123 be a solution to (2.2).
If ¢ € L*(R"™) and b(z')x’ € (L*(R™))", then there exist « = «a(n,s) € (0,1) and
c=c(n,s) € (0,1) such that

||a||L°°(BE)
a
o[y, =2 ¢
< Crz K?’ 202y @ll oy )+ ”“HL2<316T)>
11—«
< 25| b’ - vlu—f—qUHL%Bwr + HUHL?(BiﬁT))
(3.4) +r%|ba’ - V'u + CJU||L2<BL3T>}

for all r > 1, where the constant C' is independent to r.

Proof. Given any r > 1, let #(z) = @(rz) in R”™ and v(2') = u(rz’) on R" x {0}. Note
that
Cn,s xnli{rio $n+1 50 10(T) = Cp s xnlgxi ;an 3n+1[ (Tx)]

=TCys lim Oan *Op10(rx)

Tn41—>

1+28(

=7rcys lm 7 T2pi1)' 2 0p 1 ti(r)

rZy+1—0

=1%cps lim (ra,q)' 0, 0(re)
racn+1—>0

= r2¢ [b(r:t/)rx/ -V'u(rx) + q(rx)u(rx)} (By (2.2))
= r*b(ra’)a’ - V'[u(rz)] + r¥*q(ro)u(rz)
= r**b(ra’)a’ - V'o(z) + r*q(ra)v(z),
that is,
V-xl¥Ve=0 in RO
(3.5) v=v on R™x {0},

Cps lim ox"“ *0p110 = b2’ - V'v+qv on R" x {0},
Tn4+1—



LANDIS-TYPE CONJECTURE 6

where b,(z') := r*b(rz’) and q,(2') := r**q(rz). Applying Lemma A.2 to (3.5) with
p =2 (since (1.2)) a; = 0 and ay = bz’ - V'v + g,v, we obtain that
(3.6) 19l e 7,y < C“anrl Ol 2 sy + lora” - V0 + qrvl| L2
where C'= C(n, s). Since v(x) = u(rz), we have
19l e 7,y = ERnSEI‘)x‘ }1|?7(l“)| = xeRiilllﬁﬂgg [a(re)] = l[all 52,

On the other hand, we can derive
2s —2s
o ol2aqary = | B2 0(@) P da = 2, 2 2 g
ceRTT |z<1
and
Ib,2" - V"0 + qvl[22 ) = /| | b, ()" - V'u(2') + g (2" )v(2)] da’
z’|<1

= b’ - V4 qul| T2
Thus, (3.6) implies

N T
HaHLOO(B:FM) <Cr 2 [?"s 1H33ni1 UHL?(Bj) +7%||ba’ - V'u + C]UHLQ(B;)] :

Here, » > 1 is arbitrary and C'is independent of r. Replacing r by cr, where c is the
constant given in Lemma 3.2, we have

n

—2s
“ﬂHLOO(Bj;/ ) < Cr—> {7’8 IHan al| e (B&) +r2ba’ - V'u + qul|r2(m; )}

Here, C'is another constant independent of . Combining this inequality with (3.3) and
using
Cns xnli{go xn+1 *Opp1t = bx' - V'u + qu,
we obtain our desired result. O
We are ready to prove the main result of this section.

Proof of Proposition 3.1. Let R > 1 be sufficiently large and zo € R™ x {0} with |x¢| =
32R. From (1.5), it follows that

A > / ell” {]u(:c’)|2 + |V’u(x’)|2} da’'
Bigr(zo)

>t [ )+ Vel a
Bigr (o)

= 8 g+ 17l 0|
that is,
(3.7) el 221, o) + 1V 228y )y < Ce™™
for some constants C' and ¢ Note that the Caffarelli-Silvestre extension @ satisfies

1-2s B
Hxnjl VUHLZ(R1+1) S C' and ||U(.,xn+1)“L2(Rn) S ||uHL2(R")
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(see [St10, page 48-49]). Thus, we have

. 16R
o2y Wiy < [ N0 T ) e

16R
sé V2 2y e

(16R)2—25
= WHUH%%W)

S CR2723.

Plugging ¢, s limy, ,, 0 2553 Op1@ = bz’ - V'u + qu into (3.3) (with r = R) and using
(3.1) yields

1-2s - s
[ UHLQ(BZLR(xO)) < Ce %",

Next, choosing 7 = <& in (3.4) and putting together (3.1) and (1.5), we have

- _ERB
1l oo, oy < Ce™™ for |ao| = 32R,
64

which implies

~ —GRP

1l o (5%, 2oy < Ce for all large R > 1.

The decay estimate (3.2) then follows from the chain-of-balls argument described in
[RW19, Proposition 2.2, Step 2|. O

4. CARLEMAN ESTIMATES

This section is mainly devoted to the derivations of Carleman estimates. We will
discuss the estimates corresponding to both differentiable and non-differentiable potentials.

4.1. Carleman estimate with differentiable potential. The proof of the Carleman
estimate below follows from the argument in [RW19].

Theorem 4.1. Let s € (3,1) and let @ € H'(R}, 2,,1°) with supp(a) C R\ Bf
be a solution to

Vez, 'Vi=f in RT
U=u on R™x {0},

hpgoxwr1 Oprt =Wa'-V'u+Vu+g on R"x {0},
Tn+1

where f € LR, 72{111) is compactly supported in R g € L*(R") is compactly
supported in R"™, and ' - V'W, o' - V'V exist. Let a > 1 be a real constant and define
¢(x) = || If

W(z') >0 forall 2’ €R"\ By.
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Then there exists a real number 19 > 1 such that
3a g 1220 o 1228
7—3||67'¢|l‘| 20‘ ITL—FI U||L2 Rn+1) + T||6T¢|[L‘|§J}n_’2_1 VU’HiZ(Ri‘H)
1—
Fr el Sy Vi V) Ry,

251
< Ol [,

+ 7)€@ 2 V2wl 3o @ o) + Tl 22 |2 VYUl g0
+ 72 W 2 oy + 72l N1 VW2 g0
+ 7—2‘|67¢’x‘%u”%2(ﬂ§nx{0})
+ 7 e VIR (2 V) g o)
+ 1 e 272 |2 VVIE (@ V) [Fa g o)
+ e W2 (2 VW) agn oy + €712 VIR (@ V') |32 s oy
+ [le |73 (o - v/u)”%Q(R”X{O})

ro|Ba . L2s T = s
(4.1) + 72222l gl e gop + €722 2] (27 V9 | Lo o)

for all T > 1q. Here, the positive constant C' is independent of T.

Proof. Step 1: Pass to conformal polar coordinates. Let x = ¢'0 with t € R and
6 eS8t Setuw:=e "3*t{, we have

o (n—2s8)%1_ - )
9,,11_’_%882 + Vsn 9n+1 Vgn 9711_&8%] U = f n Sﬁ X R,

(4.2)

. — 95 . .
lim 012 . Vsl = <V—" ; SW)@+Wata+g on 9ST xR,

9n+14)0

n+2s t

where f =" 2 lf, v = (O 0,1), V=eXV, W =e>W, and §j=e"7 tg.
251
Next, by setting Agn = 9n+1 Van 01 Vs, 2, p(t) = ¢(e'f) = e, v = €70, 2 T,
f=e"f, and g = e™?g, (4.2) can be written as

(S—i—A)v—@nH in S? xR,
onlﬁg 0,3V v$7z9n+1 v=1+ W9n+1 Ov+g on OSY xR,
where
S =0+ Agn — (n =29 _428)2 + 72,

A= =270, — 7",

~ —2 ~ 2s— 1
I:= <V—” 5 SW>€n+1v—T<pW0n+1@
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To shortened the notations, we denote the norm and the scalar product in the bulk and
the boundary space by

) ol =l o liasexy, (o) = (o, @hrasyn
[ello:=1|e ||L2(assz)> (0,0)0 := <°,'>L2(aszxue)
and we omit the notation “limg,,,_,¢” in || @ || and (e, e).

Since S, A are only symmetric and anti-symmetric up to boundary contributions, we
can see that

ILo)* = 1501* + [ Av]|* + <[5 A]_ _>
(4.4) +47(0, v - v$n9n+1 U, 9n+1 0¢0)o

+27(0) v - V3719n+1 U, 6n+1 U)o.

From W > 0, it follows that (W 0,51 @v © 0n+1 U)o > 0 and
IL,o1* > [1So]* + || A7]|* + ([S, AJv, 7)
251 251
(4.5) +471(I1,4'0, 2 0v) + 47(g, ¢'0, 2, 070)o
+27(0) v - VSanH v gp”GnH U)o.

Step 2: Estimate the commutator term ([S, A|t, 7). The commutator term can
be computed explicitly

[S, A]U 3’90 ‘2 // 47@’/62 47-30/”(%@ o 7'90”//6-
Since supp(@) C R*™\ B, we can see that supp(v) C { (0,t) e ST xR[t>0 }.

Recall that o(t) = e”‘t for « > 1. We thus have |¢ |230 > ¢ in supp( ). By this
inequality, we can estimate

_ < 1_ _
(S, AJw,7) > 277 (") 70| + 47| (") 2 B, |2.
Combining this inequality with (4.5) yields
1L,0]|? > |1S7]2 + || AT|? + 27|l (¢") 2T || +4TH( 20,02
2s5—1
+47(1, @/enﬁ1 00)o + 47(q, ¢’ n+1 8t11>
(4.6) +27(0) v - V3n9n+1 U, 0n+1 U)o.

Step 3: Derive the full gradient inequality from the symmetric part ||Sv]|?.
Let ¢g be a positive constant to be determined later. Note that

A _ 2
R [
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Hence, we have

1 1=32s 2s—1 —1 25—1
COTH(QD/)QQTH%I Vsnen—il UHQ + COT<071H—% v V8”9n+1 v y P 0n+1 U>

= —co7{¢'v, Asn0)
1 3__
= cot | — (¢'D, 50) — ("0, 00) + ||(¢) 200> + 7°||(¢') 20||?

2Py b

(4.7) < —com{(¥'T, SF) — com{0"D, 00 + o7 || ()28, + 2073 ||(¢') 702
for all 7> 1. Combining (4.6) and (4.7) gives
|51 + [|AD|* + 27°)1¢ (") 701 + 47| (") 2 0,0
+eor||(¢)? ﬁvsneﬁmﬁ
+47(I, ¢ 9n+1 8tv>0 +47(q, ¢ 9n+1 0¢0)o
+ 27 (0} T - vgn0n+1 T, @ 9n+1 U)o
+ coT(0) v - vsnen?ﬁ, @/GE@)O
< || L0||? = com (D, ST) — coT ("D, O;0)
+ co () 205> + 20071 () 2.
Using ¢” = ay’ and choosing sufficiently small ¢ > 0, we can derive
IS + [|43]” + 7°]l¢' (") 27
7)) 202 + 7l (¢) 26,7, Vsnb, 7y 7
< C|IL0l” + 7L, ¢'0, 7 0m)ol +71(3, 20,71 Ol

(48) + T‘( +218y V5"971—&—1 v (lpl,en—i-l 6) |

for some positive constant C', which is independent of 7.

10

Step 4: Estimate the second derivatives from the symmetric part ||Sv]?.
Let ¢; be a positive constant to be determined later. In view of ¢/ > 1 in supp(v), we

obtain
I1ST]? > a1r ™M ()2 ST > ar (@) 28T - CrY|(¢) T E )%,
where S’ := 92 + Agn + 72(¢')2. Tt is clear that
t
N _1 _ _1~ _ 3_
(") 725 |1* = |I(¢") 720701 + [|(¢') "2 Asn®]|* + 74| (/)20
+ 2((¢") L0, AgnT) + 272(97T, ©'T) + 273 (AsnT, ©'T).
Repeating the integration by parts gives
(077, ¢'0) = —(0,,¢"T) - ||(¢')20,7))%,

I

1-2

N s 251
(AsnT, ¢'T) = —(0,57° - V8"9n+1 U, ‘9n+1 D)o — ()20, 21 Visnb,. 2, T,
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and
(") 0%, Agnv) (91+1 V- VgnGnH v, (¢')” lﬁnfl 7)o
- —\Iw‘l(w’)wﬁvsneﬁﬂlz
) 10,5 Va0, 7 0,
Therefore, we can derive

1572 > errY|(¢') 2572

_ _1 122 251
> exr )OI + 207 () 20, Vst o

—2s

+ a3l — e o ()20, 2, Visnb, 7 T2
— o170, ") — er7| (@) 20,02
— 2017 <91+?SV V3"9n+_1 0, (¢)” 19n-ﬁ1 82 )o

2s—1 —1

(4.9) —2017(0, 3% - Visn, 2, D, 0 9n+1 7).

Putting this inequality and (4.8) together and choosing sufficiently small ¢; > 0, we

have
P (") 312 + 71 (0") 20T + Il (¢) 36,7, Venby 2y T
) 2P + 7 () 26,7, Vienb, 2y Ot
< C|IL0)2 + 711, 0,2, 0ol + 71(G, £'6, 7, Aol
+ 02 - Visal, 7, B,0"0,7, Tl
(4.10) + 702 - Ve, 2, B, ()10, 2, 020 .

2 —1 ~
Step 5.1: Estimate the term 7|(/,¢'0, 2, &w) |+ 71(g, ¢'0,, 21 0,0)|. Write U :=
V- ”’TQSW Performing integration by parts leads to

!T<f79n+7ﬁ 00,71 0i0)ol
<U9n+1 v ¢,9n+1 U)o — <8tU9n+1 v, 0n+1 D)o ‘

L 1 =—__
< LII10131¢")2 9n+1 a5 + H!atUMSD'I?@nﬁ olls
N D T Il
< C|7(IVIzl¢"[20,2 oll5 + Tll[0:V]Z|¢'|26,.4 vll5

W1 126, 2, Bl + 710071236, UH0:|
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and
| 2a=1
| <7—(70 W9n+1 v , P Qn—il at@) |
=72[{(¢') W9n+21 ’U,9n+1 9v)ol

2s—1

<2(70 SDHWQn—H ?}, en—l-l U>0

Lo g s g5
2<<90) atWQn—l—l U,9n+1 U>0

=72

[\3|>—l

2 /l//l~l%—2 2 / Nl%—Q
< ()2 ()2 W20, 2 Tllo + S [l¢'10. W20, 2 Tl.

Also, we have

3 _1 221 3_
27, (¢') 20,2, 0:)| < T2I(¢))27IR + ()20, 2 8th0

25—1
7(g, 0,81 d0)ol = [(7(¥)
Combining all estimates together yields

TG0, 2 0%l + 713, 0,2, 0l

< C|rllIVIz]¢"|2 9n+1 2+ Tl10.V |2 |¢')2 9n+1 73
2 N i D 2, 1 ~1252;1—2
+7 ||(<P)2( )2IW 20,2, vllg + 77|’ |0:W |20, 2, P[5
3__
(4.11) + ()20, 2, 3tUHo+72H( 255

Step 5.2: Estimate the term 7|(0, v - V8n0n+1 v go”QnH T)o|. Recall that

lim
9n+1‘>

0‘91+1V Vgnﬁnﬂv—l—i—WQnH (9tv+g on 8S"><R

Similar as above, we can estimate

|< //9n+1 U> ‘

< Ol IE ()50, 2

25

l
LT3+ W3 () 26, 7, R

1
+ 7213 () 2126, 7, 3

By using integration by parts, we have

_ 2s—1 2s—1
TKWen-‘fl 8156 Sollen-il @> |

2s5—1
=T = _<atW0n+1 v, p 9n+1 U) <W6n+1 v, gpmenJrl U)
1 2s—

~ 2s5—1 ~
< 7lll0 13 (0")20, 5 B3 + 7l 12 (") 20,2, o]13

Also, we can derive
2s5—1

. 1 1 _
T1(3. 0,5 D)ol < 7l 2GR + 70" 26, TR,
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Hence, we obtain

2s—1
7‘|<9,11ﬁ51/ -Vsnl, 2, 7, "9n+1 7)o
1

< C| V13" 30,5 T+ TIIWIE (") 20,5 o3

2s—1

+ 710 ]2(¢")26, 2, 72
2s5—1

1 1,51 2521 1 _ 1_
+ 7012 (¢")2 W26, 2, Bl + 7ll(9") 26,2 o5 + 7l (¢")27ll5

(4.12)

Step 5.3: Estimate the term 77 1[(0. 3V - V5n9n+1 v, (¢')~ 9n+1 92v)o|. Once

again, we write U := V — = 2SVV Straightforward integration by parts implies

’7—71<U6n+1 v, (¢')” 9n+1 9;0)ol

= T_1|<U9n+1 7, ()7 Hgnfl at“>
(06,7, 87, (¢) 10,7, 0,0

< 706,27, 7, 0710,2, 0)| + 7 (0,060,277, (&)

2s5—1

<atU0n+1 v, (@l)_lenf1 aﬁ)o

lenﬁl atv> |

_ 1 _1 2l
+ Y02 ()" 26,.2 02

1. Using integration by parts again, we

2€at — e—at — 90— .

since (¢')72¢" = (ae*)2a
have

. 251 251
7__1|<U9n-i1 6 Sp_len—ﬁl 8t6>0|
—1

<U6n+1 v, (,0 9n+1 v) <atU8n+1 v (,0 9n+1 U>

=

1 2s—1

<O () 20,5 TR + T 10T e 20,7, Tl

Also, we can estimate
T (006,77, () 160,51 )l
- 25-1 25-1
=7 MO @) 20,57 () 720,51 o
~ 1 1 2s5—1
< T 0,013 () 20,7 Bl + T 1B ()20, a3

Combining these inequalities gives

-0 T (o —19%82—
|7— < n+1 v, (90 ) n+1 U> |

< O [O3 e (0)20, 5, B3 + 7 10T |26, 7, 3

(4.13) + 10T () 20,5 ol + D1 () 20,5 0l .
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On the other hand, using the integration by parts yields

0,7, O, ()16, 02T

—p—1

Y S N et S SNIN DUNSUIC
=T _§<W9n+1 &gv,—(go) ¥ 9n+1 atU>0—§<atW9n+1 o, ( ) 9n+1 &w)

< IWEe 30,7, 0|2 + 7 ||00W | 20,02

Also, we have

_ 2s—1 2s—1
|7'_1<T<P/W9nﬁ1 v, (@l)_lenfl at25>0|
~_ 2s—1 2s—1
= (W6, 2 7,0,7 0;0)
=|—(0 Wo. % o e%am — (W@Lgla@ e%am |
t n+1 Y5 Yn41 YtV/0 n+1 YtV Ynte1 U2V/0
~ 1 2s—1 ~ 1 2s—1
<|[[[W126,2, 0|5 + [[|0:W 26,2, O][5.

Also, we have

(g, () 0,7 Ol

o1

— 7 = (7.~ (&) 2" 0,2, Ao — (957, ()0, Aol
< 7 5,070, 7, Al + 17 () 20F, (&) 20,7, Aol
<o bgl2 + r—1|\so—ée7zatm|o

() 0l + 1) 20, Al

Combining these three inequalities with (4.13), we finally have

PRy Vs, 1, (9) 0,5 Ol

el 1 2ol _ ~01 1 2s=l
<ClrHIVIPe ()20, 2 vllg + 7 IIaV 2020, ol

RN | ,1251_2 1 1 12l
+r W™ ()20, 2, Tllg + 7|02 720, 71 Tllg
2s-1
1013 () 20,7, BTl + T IV IR () 26,7 A2

+ VW16, 7, 03 + 103726, 0,013

_1 21 _ _1_ _ 1.
(4.14) + 9726, 2, g + 7 ()" 2gllg + T 3(¢) 205 |-
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Step 6: Conclusion. It follows from (4.11), (4.12), (4.14), and (4.10), that
Tl (") 20 + 7l (") 2000 + 7ll(¢) 20,21 Vsub, 2y T

1—2s M
+ () 20202 + 7Y |(¢) 20,2, Vb, E 9,7

_ ~ 1 1251 ~ 1 1251
< CIL)? + 7V 19”26, 2 lls + 710V 21126, 2 B3

l
+ 72 ()2 ()2 W2 9n+1 7|12 + 7|0,V |2 90’9n+1 il
251
+72)(¢")20,. 7, |2

~ 2s5—1 ~ M
|0V ]2 () 20,2, 9|12 + T Y|V 2 () 26,2, 9,2

~ o1 251 ~ 1 251
+[[[W1]26,.¢, 8l + [[1a:W 126, 7 ool
1 2L 3_ 1l
(4.15) + 110726, 2, 0lls + 7M1 (¢") 2715 + [1(©") 29913 |-

Finally, expressing (4.15) by the Cartesian coordinates, we prove the desired estimate.
O

4.2. Carleman estimate with a non-differentiable potential. We now derive the

Carleman estimate in the case of a non-differentiable potential. The proof is modified
from that of [RW19, Theorem 5|, which uses the idea in [KLW16].

Theorem 4.2. Let a > 1, s € (3,1) and t € H (R, 2, ,3°) with supp (@) C B\ Bf
for some constant R > 1 be a solutzon to

V.2, PVa=f in R
u=u on R™x {0},

lim,, ., 0 Ty 1 O0nt=Wa' - V'u+Vu+g on R"x {0},

where f € LR, 225" is compactly supported in R, g € L*(R™) is compactly
supported in R™, x - VW exists, and W satisfies

(4.16) 0<W < Az|™ and |z- VW] < Az
Define ¢(x) := |z|*. Then there exist constants C, 19 > 1 such that

€))%

o 125
fL’n+1 u||L2 Rn+l) + 7—||67¢|J;|51‘nﬁ1 VUHiQ(R1+1)
< O|lle?z, 2, lal 112, ey + Tl (V] WD ul| 2 e goy)

T —)s 1
(4.17) + 1722 2 g e e oy

for all T > 7.

Proof. Step 1: Pass to conformal polar coordinates. As in the proof of Theorem 4.1,
we first pass to conformal polar coordinates and obtain (4.2). Let K > 1 be a constant
to be determined later and denote p(t) := ¢(e'). We split @ into & = u; + ug and
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supp (u1), supp (uz) C St x {t > 0}, where v, is a solution to

(4.18)
1232 1-2s 12s(n_2)2 22|/ |291 28 _~- n
lim 0720 - Vgnu, = f/—n_QsVT/ U+ Wy + G on 0S8 xR
0n+1_)0 n+1 Sl — t Wl g —+ .

The existence of u; is guaranteed by the Lax-Milgram Theorem in H'(S" x R, 0}77%).
Note that uy satisfies

(4.19)
o1~ 2382 gl—2s gL—2s (n — 2s)? — K272 [20 28 in S" xR
30 4+ Vgn - 013 Vgn — 007 W= ¢ 20, 7w in ST xR,
, hnloﬁrllﬁsl/ Vsntg = W dsus on OS! x R.
n+1

In what follows, we shall use the same notations as in the proof of Theorem 4.1.

Step 2: Elliptic estimate for u;. Test (4.18) by 72¢2™?|¢"|*u1, we obtain [RW19,
equation (42)]:
1-2s
P68, 2y Ol + 7000, 7, Vo
— 925)2 1-2s 1-2s
T LR e PP e

= —72<62wf, " Puy) + 72(e*™® hrn 091+1 v - Venur, |¢"|*u1)o

o 27_3<€2ﬂp|90”’280/97111%88tu17ul) o 27_ < 27-<p90//90///u179n+1 atul>

Taking K > 1 sufficiently large yields

2Hewg0”9n+1 Opuy ||* + T2He“"g0”9njl Vsnuy|]?
T A A

25-1
(4.20) < O|lle8, 2, fI? + 7°(e*? i, 91+1 v Venuy, [¢"[Pur)ol |-

Note that

72<€2wW5tU1, |80H|2U1>0

— —2T3<@,€2T@WU1, |<p”|2u1>0 . 7'2(627—[’0(8,5‘;[/)161, ’(,0”’2u1>0
identical to LHS

— 272X Wy, " 0"y o — ( MWy, |2 8tu1>
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which gives
72<627@W5’tu1, |cp"|2u1)0
= e W, | Py — 57 O s P
T2 <€2wV~VU17 ©" 0" u1)o
= PNl I a3 — e o
2l |2 | |2 W] 2 ua |2

Since s > 1, given any € > 0, we notice that 7% < er?*2* for all sufficiently large 7 > 1
and, hence,

|72(627¢W8tu1, " [Pun)ol
< ertt2 el IV s + 1007
In view of the inequality above, (4.20) becomes

K27_4||e7—<p //0 QQUIHQ

2”67@‘?”6%1. 8tu1H2 + 7'2’|€w%0//‘9n+21 VS"UIHQ n+1

2
< c{uewenﬂ FI2 4+ 722 e (7] + [T Jeota2 4+ 722 e e ““no]

(4.21) +ef“28[\le“” TSty ||2 + [|e7 || 2 ¢"|W|2u1||o+||eW|atwrzul|lo]

From (4.16), we have |¢/|2[W]2 < vAa and |8, |2 < v/A¢” in supp (uy). By the trace
inequality in Remark A.4 (see also [RW19, (41)]) and choosing e sufficiently small, the
last three terms in (4.21) can be absorbed into its left-hand-side, that is,

1 25
2H6w90”9n+1 (9tul||2 + TQHQW‘P”enjl v:S”ulH2 + 2K2 4H€w ,/Qnﬁl u1||2
25-1 ~ ~
(4.22) < Cllle™0, 71 fI? + 772" (V] + [W]e @l + 77 [le™¢"e™*"q]5 |,
which holds for all sufficiently large 7 > 1.
Step 3: Subelliptic estimate for u,. Applying Theorem 4.1 with V' = 0 and
g = 0, together with (4.16), we have
1 1-2s
e |20, 21 s
+ 7)€" |26, 2, Buus|) + 7€ |@"|26, 2, Visnusl|
1 1=2s 1-2s
+ 7 e () M 120, 7 Ofuall* + 7€ () T 20,21 VisnOyua®
(423) <0 [K“ el 2,2 w2+ el sl + He%%atuzﬂo]'

Again, by the trace inequality in Remark A.4, we can see that

1-2s 1-2s
727" [Py % < c[T‘*—%neww%enﬁfwn? + 72-28||e7¢|so"|%enffvswznﬂ.
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Since s > L, 72||e™|¢"|2uy |2 can be absorbed by the left-hand-side of (4.23). Likewise,

the term ||e™p~20,us|o can be dropped using a similar trace inequality. So, for large
T > 1, we reach

3MW¢WW9%4MW+TMWMWHMJ@WW+TWWWW0m4Vme
(424) < CK'7 €|/ 20, 7, il
Step 4: Conclusion. Combining (4.22) and (4.24) leads to
Pl Lo’ 120,28 P + Tl (20,7, 0> + Tl |36, Vsl
(4.25)
< OK[|e796, 2, FII2 + 72| (|V] + [W])e-ota2 4+ 722 |eme e 2]

and the required estimate follows by expressing the estimate above in the original
coordinates. O

5. PROOF OF LANDIS-TYPE CONJECTURE

We prove the main theorems in this section. We will discuss the cases of differentiable
and non-differentiable potentials separately.

5.1. Differentiable potentials.

Proof of Theorem 1.1. Step 1: Apply Carleman estimate. Let nz € C*(R’)
be a radial cut-off function satisfying that there exists a constant C' > 1, which is
independent of R > 2, such that

0, || <1lor|z|>2R,
nr(r) =
1, 2<|z| <R,
with

651) {!WR| <C, Vsl <C. in A,

IVnr| < C/R, |VPng| < C/R? in Apyp.
Define w := nru. By using radial dependence of ng, we have

V-2l 2V =f inRM,

n+1
where
(5.2) f=2x,3Vng - Vi+aV -2, 3°Vnr € >R, 22°5Y),
and

lim 2720, ,w=mng lim x'72°0,.,0+ lim =z Ont1Mp) U
Eni1—0 n+1 Yn+ n g 10 n+1 Yn+ Enp1—0 n+1( n+17] )

R[bx’ . V'u—l—qu] + lim N T, +2 (OrMrOn+1(|2])) 0

Tn+1—

1

=bx' - Vw+quw+g+ lim xi+218(8rn3)‘?|u
Tn41—

=br' - V'w+quw+g
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with g = — (2’ - V'ng)bu. Choose o with 1 < o < . Plugging these functions into the
Carleman inequality (4.1) with ¢(x) = |z|*, together with (1.3), and (1.4), we have

3 .7 %_ 1 T 8 %% 2
Pl ¥ By w2 e + el ) Vo2, e
+ T*1|]67¢\x|’5xnj1 V(- Vw)HiQ(RiH)
) 21 2
< Ol el PR

T 8 T -5
+7%le ¢|$|2w||i2 ®axop T lle la| > (- v/w)H%Q(R”X{O})

1+29

+72||€T¢|$| )7 (2" - V'nr)bull 22 gm0

(5.3) +{le =% [al*2’ - V(@ VnR)bu) 2o |

Step 2: Estimate the bulk contribution. Note that 1 < % in AE,zR and 1 < |z|
in Af,. Then we have

251
e[l 2, f||12 -

1-2s ~
< | Rt E el g, +R—2||e%nz1|x|w||ig(,4+m)

e, Vel + 2 el Vil |
Combining Proposition 3.1 and the arguments in [Kow19, RW19], we can show

1-2s ~
i, [0 2 el + B s B ol Vil ) =0

It follows from (5.1) and (1.5) that

lim sup [ 2)|e7|2| % 2] 2 (2 - V'nR)bul|72 @ o))

R—+00
+ ez~ % |zt - V(2 - V/UR)bU)H%%Rnx{o})]
< Ol ullFaqa,y + 1€V ullaga )
Taking R — 400 in (5.3) implies
3y 701221, 5 12 O 2
el ¥ a2y Wl e + Tl Vw2, e,
¥ fluewrxr%xﬁ RIS
< C|:||eﬂ'¢ 2 |x|UHL2 At T ||eT¢ .2 |x|VuHL2 (A+,) + ||€T¢$:fvw”i2(m“)
+ T2|’6T¢‘x’§w”L2(R"X{O}) + H6T¢|$’_§($ ) w)HL2(R"><{O})
(4) Tl + 1OV |

Step 3: Estimate the boundary contribution. By the trace inequality in
Remark A.4 (also see the similar arguments in [Kow19, RW19]), we can derive following
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two inequalities,

B
T2 7?22 wH%Q(R”X{O})

URE oy 8
< C|7°|em]x] xn+1w”L2(R1+1)+7—”e |22,y vaLZ(R:ﬁl)

and

_ _8
T ez 72 (@ - VW)l e oy

29
< Ol el Vg, + 71 ol S P T ey

)

By these two inequalities, for large 7, the boundary terms of (5.4) can be ignored and
we obtain

38 1 1=z2s
| Cadte Tni w||L2(B+\B+)

38 4 1z2s B 1=2s
S T3||67—¢|jj| 2 xnﬁl w”L%Ri'H) + 7—||e7'¢|§[7| anﬁl vw‘|ig(Ri+1)

_ g 1=2s
+ T 1||67¢|£L'| 21‘71_,2_1 V(l’vw)HiQ(RTH)

(5.5)

1-2s ~
< O|fen, 2, !$IU\|L2<A+ + e, 2y |2Vl e,
—+ 7'2H€T¢UH%2(A/172) + Hemﬁv/u"%Q(A’LQ) :

Pulling out the exponential weight in (5.5) and using w = @ in B¢ \ B, we have

7_367—4) 4)Hxn+1 U’HL? B*\B*)

< O g, + W Vilgag + i + IV 0l
It is obvious that e™®® > ¢™¢2) and thus
522
THxn-i-l uHLz(Bg\BZ)

1-25 1-2s
< Ol W+ W Vil + Tl + IVl

# 0, then

—2s
It ||'rn+1 UHLQ B+\B+)

—2s
Tl—lﬁn THan “”L2 (BE\BY) — oo,

which is a contradiction. Thus, we must have @ = 0 in By \ Bf, i.e., u=0in B} \ Bj.
Finally, by the unique continuation property |GSU20|, we conclude that u = 0. O

5.2. Non-differentiable potentials.

Proof of Theorem 1 2. Let ng be the cut-off function as in the proof of Theorem 1.1.
. Let w(t, 0) = u(t, 0)nr(e'd), where u := "2 4. In the proof, it
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will be more convenient to apply (4.25) with ¢(t) = e* rather than (4.17). Hence, we
can get

11228
T3|’€ngp/|g0//|29nﬁl wH%Z(S};xR)
TP //l%%—z T //l% —12
+ 7lle™|¢"[26, 21 atw”L%SixR) + 7lle™ @20, 21 VS"wHL2(Si><R)

(56) r 2s5-1 ~ — 25| T ~ T —ast—
< CO€7°0, 21 fllze(syury + 77 lle™ 9" (1] + b)) e T 2 (o5n )

n T2—25H6w ““g”y (887 xR)

where § = e¥'q, b = b, § = —(0ynr)bw, and
Fe ey

where f is given in (5.2). Recall in the proof of Theorem 1.1, we have shown that

limsup |[e” ¢9n+1 f||L2(S"><R)
R—o0

<C [||€w9n+21 aﬂ“%z(sgxu,z]) + (€70, 2 Vsnﬂ“%z(six[l,z]) + (|76, 7 ﬂH%?(szxm])

and

7_2723”67—@ " —ast~||L2 BS"XR)

< O el + 1

Following the exactly same argument as in the proof of [RW19, Theorem 2| and taking
into account the boundedness of ¢ and b in the support of w, the boundary term

T2 1em" (1] + [bh e Dl L2 o1 xmy

can be absorbed by the left-hand-side of (5.6), that is, we obtain
e 0, 2y T2 o
+ THGTSO’QO”’%eﬁath%Q(ssz) + T”ew|90”|%eﬁv‘s"w@?(szm)
(5.7) <C ||€w9¢ﬁatﬂ||i2(szx[1,2]) + ||€w9ﬁvsnﬂ||%2(szx[1,2])

1-2s
+ 1170, 21 Tl T2 gsn oy + 7

le” UH%?(A'LQ) +T2_28H€T¢V/UH%2(A'M) :
Next, from (5.7), it follows that
11228
73H6w¢/|<ﬂ”|29n+21 U||%2 (7 %[4,6])

9
< 7'3Hew<ﬂ |90”| 9 +1 w||L2 (ST xR)

Lo 1-2s
< O7h2s €746, 2, atuH%Q(Sfﬁx[l,?]) +[]e7%6, 2, Vsn,UH%Z(Six[l,Z])

1-2s
+ (€770, 44 ﬂH%Q(Sﬁx[l,Q]) + ||€T¢UH%2(A'L2) + ||€T¢VIUH%2(A’L2) :
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Pulling out the weight 7 gives
Tp(4)

1-2s
P70, 21 T T2 sy e

1-2s 1-2s
< CerPlpt=2 |:||0nd at“”%?(szxu,z]) + 116,74 VS"UH%Q(S:‘_X[I,Q])

120
+ 116,24 U||%2(51x[1,2}) + HUH%%A;,Q) + HV,UH%%A;,Q)}-
Clearly, e™#® < ¢7#(?) and thus
1-2s
2 1H9nf1 U‘|i2(31><[4,6])

1=2s 1=2s
< C|:||9nd 8tﬂ||%2(81><[1,2}) + 116,24 VSWH%?(SQXM})

1-2s
1 T + Nl + 1Vl

< oQ.

72
Since s > 3, letting 7 — oo, we conclude 6, 2, w =0 in 87 x [4,6] and so is u. Finally,

the unique contmuatlon property yields u = 0. 0

APPENDIX A. AUXILIARY LEMMAS

The following Caccioppoli’s inequality can be found in [RW19, Lemma 2.1].
Lemma A.1l. Let s € (0,1) and @ € HY (B}, x,.5%) be a solution to (2.1). Then

1/2 :|
L(B3,)

By the technique of Moser iteration, De Giorgi-Nash-Moser type theorems were
established in [JLX14, Proposition 2.6(a)|. Here we list the specific case that is useful
in the paper.

1-2s g 1=2s 1/2
[ vUHL?(BT*) <C|r 1||$n—il UHLQ(B;;) + ||U||L/2(B§T) lim xn+1 *Op i1

Tp1—

for some constant C' = C(n,s) > 0.

Lemma A.2. Suppose ai,as € L}, (R™) for some p > 2. Let t € H (R}, 2).7°) be
a weak solution to

V-2 3¥Vi=0 in R

u="u on R" x {0},

Cns lim Oa:nH 010 = a1 (2 )u + az(2’) on R™ x {0}.
Tn4+1—

Then there exists a constant C'= C(n, s, p, ||a1]|r(8;)) > 0 such that

lall oy, ) < C 2ty @ll 2y + llazll ooy

The following interpolation inequality was proved in [RW19, Proposition 2.5|, which
plays an important role in our proof.
Lemma A.3. Let g € (0,1) and v : 8T — R with v € H'(S?,0,73°). Then there exists
a constant C = C(n,o) > 0 such that

1-2s 1-20
[Vl z2osy) < € |8 10,71 Vllzap + 810,71 Visrollzzon)|
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for all 5 > 1.
Remark A.4. Applying Lemma A.3 to v(e) = u(t,e) fort € R, we have

/ |u<t,9)l2desc{52‘2” / O, lu(t,0)* do + 572 921215|V5nu(t,0>\2d9]

asn s? st

Multiplying the inequality above by a weight function w(t) > 0 and then integrating the
resulting inequality in t yields

1-2s 12s
wbal < €[22 wb0, 2, ull* + 872 |lw6, 7y Vnul?].
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