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Preface

The main theme of this lecture note is to explain

e the equivalence of analyticity (complex differentiability), Cauchy-Riemann equation,
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e Morera theorems (Section 4.7.1); and

e the Cauchy residual theorem (Theorem 5.3.6).

This lecture note is prepared for the course Complex Analysis during Fall Semester 2023 (112-
1), which gives an introduction to complex numbers and functions, mainly based on [BIN10|,
but not following the order. The e-book is available in https://www.lib.nccu.edu.tw
(NCCU library). The lecture note may updated during the course.
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Exam rules.

(1) Textbook or other materials are not allowed to be used during exams.

(2) All electronic devices (including calculator, smartphone, pad, computer, ...) are
prohibited during exams.

(3) One also not allowed to bring your own extra paper. TA will provide answer sheets.

(4) Before go to washroom, one must inform us before do so.

(5) If you violate one of the above rule, we will immednate terminate your writing and
the marks of the exam/quiz will be 0.
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CHAPTER 1

The complex numbers

1.1. Definition of complex plane C

We shall introduce the complex plane using a rather simple (and direct) way. Given a
number z € Ry, it is well-known that the square root v/z of = is well-defined, which satisfies

(1.1.1) (Vo) = -r =1z foralaz>0.

This arises a natural question: It is possible to extend (1.1.1) for all x € R? Or, we shall
ask: How to define i = /—17 Clearly, we should expect that

(1.1.2) i =1

We will answer this question in Section 4.4.
Formally, we expect the linearity

(1.1.3a) (a+1ib) + (c+id) = (a+c¢)+i(b+d) forall a,b,c,d e R.
By using the formal identity (1.1.2), we also formally computed that
(a+1ib) - (c +id) = ac + ibc + iad + i*bd
(1.1.3b) = (ac — bd) +i(ad + bc) for all a,b,c,d € R.
At this point, we not yet define the element i, therefore the identities (1.1.3a)—(1.1.3b) are not

yet well-defined. However, we can rephrase (1.1.3a)-(1.1.3b) without involving the formal
element i (which is not yet well-defined).

DEFINITION 1.1.1. We define the set C := R x R = {(z,y) : z,y € R}. We define the
binomial operations “+” and “-” on C by

(1.1.4a) C+C—C, (a,b)+ (c,d):=(a+ec,b+d),
(1.1.4Db) C-C—=C, (a,b)-(¢,d):=(ac—bd+ ad+ be).

PROPOSITION 1.1.2. (C,+,) is a field with additive identity (0,0) and multiplicative
identity (1,0).

REMARK 1.1.3. The main point here is to define what is the meaning of “divide an element
by another element”. Here the multiplication is sometimes called the complex multiplication,
not the inner product of R". While reading research articles, remember to make sure the
definition of the multiplication (for example, the - in the CGO solution means inner product
[Sal08]).

PROOF OF PROPOSITION 1.1.2. Verify (C, +) forms a commutative group with additiv-
ity identity (0, 0).
Additive associativity. ((ai,b1) + (az2,b2)) + (a3, b3) = (a1,b1) + ((az, b2) + (as, bs))
Additive identity. (a,b) + (0,0) = (0,0) + (a,b) = (a,b)

1



1.1. DEFINITION OF COMPLEX PLANE C 2

Additive inverse element. One can easily verify that the additive inverse of (a,0b) is
(—a,=b):
(a,b) + (—a, —=b) = (—a, —b) + (a,b) = (0,0).
In other words, —(a,b) = (—a, —b).
Additive commutative. (a,b) + (¢,d) = (¢,d) + (a,b)
We now verify some properties of the multiplication operator.
Multiplicative associativity. One can directly verify that

((ahbl) . (a2»b2)) ° (a37b3)
= (ayag — byby, a1by + asby) - (as, bs)

= (’ala—Qaﬂ - ’ azbby ‘ - ’ a1 babs ‘ — ’ asb1bs

aiasbs ‘ - ’ b1b2bs3 ‘ + ’ aiazby ‘ + ’ azasby

6]

),

9

and
(a17b1) : ((CLQ, b2> : (a37b3))
= (a1, b1) - (azas — babs, asbs + agbs)

= ((a1a2a3]— ’ a1babs ‘ - ’ azbiby ‘ - ’ azbiby

a1a2b3 ‘ + ’ a1a3b2 ‘ + ’ (lQCLgbl ‘ — ’ blbgbg

6]
therefore ((al, bl) . (CLQ, bg)) . (ag, bg) = ((ll, bl) . ((0,2, bg) . ((l3, b3))
Multiplicative identity. (a,b) - (1,0) = (1,0) - (a,b) = (a, b)
Multiplicative inverse element. For each (a,b) # (0,0), we define

(1.1.5) (a,b)™! :—( - - )

a?+ b a? + b?

),

I

We see that
1 a —b a —b B

as well as (a,b)™! - (a,b) = (1,0).
Multiplicative commutative. (a,b) - (¢,d) = (¢,d) - (a,b)

The above four axioms imply that (C\ {(0,0)},-) forms a commutative group. We have
one more axiom to verify:
Distributive laws. This properties describe how the additive operator and multiplicative
operator act together. We compute that

(a1,b1) - ((az, b2) + (as, b3))
= (a1, b1) - (az + as.bs + b3)
= (a1az + ajaz — byby — bibs, ar1by + a1bs + bias + byag)
= (ayag — biby, a1by + bias) + (ayaz — bybs, ai1bs + byag)
= (a1,b1) - (az,b2) + (a1,b1) - (as, b3)
and the multiplicative commutative also gives us that
((az,b2) + (az, b3)) - (a1, b1) = (a2, b2) - (a1,b1) + (az, bs) - (a1, b1).
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We conclude our proposition. O

The additive identity (0,0) is unique: If (0’,0”) is also an additive identity, then
(0,0) = (0',0") + (0,0) = (0,0) + (0, 0") = (0',0").

Similar argument also shows that the multiplicative identity (1,0) is unique. In the context
of abstract algebra, we sometimes called (0,0) the zero, and called (1,0) the one. We now
define the “mysterious” element i rigorously.

DEFINITION 1.1.4. We define i := (0,1) € C, and we call it the imaginary unit.

Obviously,
(1.1.6) (a,0) - (z,y) = (azx, ay),
and therefore in particular,

(a,0) - (b,0) = (ab,0).
In addition, we have
(a,0) 4+ (b,0) = (a + b,0).
Therefore, the mapping
t:R—{(a,0):a €R}, awr (a,0)
is a field isomorphism. Therefore, we somehow abuse the notation by simply writing
R={(a,0):a e R}, 1=(1,0).
Since
(#,y) = (2,0) + (0,9) = (2,0) - (1,0) + (y,0) - (0, 1),

then we see that:

LEMMA 1.1.5. Each complex number z = (x,y) can be written uniquely in the form
z=ux +1iy. The map

RxR—C, (z,y)—zx+yi
18 a bijection.

DEFINITION 1.1.6. If z = z+iy, then we write fRe z := x (the real part of z) and Jmz :=y
(the imaginary part of z). Note that Jmz is a real number. We also define the conjugate z
of z by z =2 —1iy.

It is useful to observe that

therefore,

1
(1.1.7) %ez:§(z+2), Jmz=—(z—-2) =
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where i1 is given by (1.1.5). From (1.1.3b), it is also useful to see that
(@+ib)-(ctid)
= (ac — bd) + i(ad + bc)
ac — bd) — i(ad + be)
ac — (=b)(=d)) +i(a(=d) + (=b)c)
a—1ib) - (c — id)
a+1ib) - (¢ +id),

=
=
=
=

that is,
(1.1.8) zw=7%-w forall z,weC.
Therefore, one also can write (1.1.6) as
a(x +1iy) = az + iay.
One can directly verify that
(£i)? = 4i-4i=(0,£1)-(0,%£1) = (-1,0) = —1.
This somehow suggests (1.1.2). At this moment, we first keep this question in mind, we will

come back to answer this later.

1.2. Topological aspects of C

We now discuss the topological aspects of the complex plane, in other words, we want to
discuss how the open sets in C looks like and define the continuous functions on C. Here we
also refer to the monograph [Mun00] for general abstract theory.

1.2.1. Sequences in C. In this section, we shall see that there are many facts in calculus
also holds true for complex numbers.

DEFINITION 1.2.1. The absolute value (or modulus) |z| of z, is defined by
12| := V2Z = /(Re 2)2 + (Tm 2)2 = ||(Re 2, Tm 2) ||ge,

which is just simply the Euclidean norm in R2.

It is not difficult to see the absolute homogeneity (i.e. |rz| = |r||z] for all » € R) and
positive definiteness of |- | (i.e. |z| > 0 and the equality holds if and only if z = 0). To verify
that | - | is a norm, we only need to verify the following:

LEMMA 1.2.2 (Triangle inequality, subadditivity). |21 £ 22| < |21]| + |22| for all z1, 2, € C.
PROOF. We now define the inner product on R? = C by
(21, 22) 1= (Rez1)(Rezg) + (Tmzy)(TJmzo) for all 21, 20 € C.
One sees that (z,2) = (Re 2)? + (Jm 2)? = |z|2. We also see that
|21 £ 22 = (21 £ 29,21 £ 2) = |21|> £ 2(21, 22) + |22)?
(laa] + [22])* = |21 + 2]z [[22] + |22],
therefore it is suffice to show the following Cauchy Schwartz inequality

+(21,20) < |z1||22] equivalently, |[(z1, 22)| < |21]|22]
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In fact, we only need to prove the above inequality for the case both z; # 0 and 25 # 0. In

this case, by writing w; := ﬁ and wy 1= %, we only need to prove
Since |w;| = |ws| = 1, then

0 < |wy + ws|?* = (wy £ wo, wy £ wy) = 2+ 2(wy, ws),
which concludes (1.2.1). O

REMARK 1.2.3. We recall that (C,+,-) forms a field, where - represents the complex
multiplication. As a comparison, (R?, +, (-, -)) forms a ring, but not a field. Roughly speak-
ing, we cannot define quotient for inner product, but we can define quotient for complex
multiplication.

DEFINITION 1.2.4. The sequence {z,}n,en converges to z in C if the sequence of real
numbers |z, — z| converges to 0. Precisely, given any ¢ > 0, there exists N > 0 such that
|z — 2z,| < eforalln > N.

EXERCISE 1.2.5. Show that
max{|Re z|, |TJm z|} < |z| < |[Rez| + |[Tmz|.
From this, one can easily see that z, — z if and only if Re z, — Rez and Jm 2z, — Tm 2.
We also can rephrase the above definition in a more geometric terms:
(1.2.2) Given any € > 0, there exists N > 0 such that z, € B.(z) for all n > N,

where B,(z) is the ball in R? with radius r and centered at 2. In the context of complex
analysis, some authors refer B,.(z) the disk.

While taking limit, we always need to check whether it exists or not, which is very
inconvenient. For future convenience, here we recall a simple but nice concept, called the
limit supremum and limit infimum. This should be already taught in calculus course. Here
we follow |[Rud76, Definition 3.16|. Given any sequence {a,} C R, we define

limsupa, := lim sup a,, = inf sup a,,,
n—00 n—=00 m>n neN py>n
liminf a, := lim inf a,, = sup inf aq,,.
n—00 n—o0o m>n neN m2n

Unlike limit, both limit supremum and limit infimum always exist (because sup,,-,, @, and
inf,,>, a,, are monotone), but may takes “values” 00 ¢ R (but only make sense for R). It
is clear that

liminf a,, < limsupa,
n—oo n—o00

limsupa, <limsupb,, liminfa, <liminfb, ifa, <b, for all n > N for some N > 0.

n—00 n—o00 n—00 - n—oo

In addition, for a real-valued sequence {a,} C R, one has

(1.2.3) lim a, = axx € R <= limsupa, = liminf a,, = a, € R.

n—oo n—n n—n
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However, one has to be careful that, we only have subadditivity (resp. superaddivity) property
for limit supremum (resp. limit infimum,):

(1.2.4) n—0o for {a,}, {bn} C R,

lim sup(a, + b,) < lim sup a, + lim sup b,
n—oo
liminf(a, + b,) > hm mf a, + liminf b,
n—o0 n—oo
holds whenever the right hand side is not oo —co or —oo+00. For the case when lim,, ., b,

exists and finite, by writing a, = (a, + b,) + (—=by), using (1.2.4) we obtain
{ hm sup a, < lim Sup(an +b,) — lim b,
n—oo

hm mf ay, > hm mf (an + by,) — lim b,
n—oo

n—oo

which implies

n—oo

lim inf a,, + hm b > hm mf (apn + by).

n—oo

{ lim sup a,, + hm b, < hmsup(an + by),

Combining this with (1.2.4), we reach

e when lim b,, exists and finite.

lim sup(a,, + b,) = hm 1SUp an + hm by,

(1.2.5) 00
liminf(a, + b,) = hm 1nf an, + hm bn n—oc0

n—oo

If {a,} is bounded and lim,_ . b, exists which converges to some b > 0, by writing
anb, = ayb + a,(b, — b) and using (1.2.5), one sees that

. . (v20) (. .
limsup(a,b,) = limsup(a,b) = (hm sup an) ( lim bn) ,
n—o0

.. .. (020) (. . .
liminf(a,b,) = liminf(a,b) = (hm inf an> ( lim bn>.
n—00 n—00 n—00 n—oo
If we choose trivial sequence b, = b > 0 for all n, then we reach
(1.2.7) lim sup(ba,) = blimsupa, for b > 0.
n—oo n—o0

However, one should be aware that when b > 0, we have

limsup(ba,) = — lim inf(|bla,) = —|b| hm 1nf a, = bliminfa, for b <O0.
EXERCISE 1.2.6. Compute limsup,,_,.(a,b,) and liminf,,_, . (a,b,) when {a, } is bounded
and lim,,_, b, exists which converges to some b < 0.

If both {a,} and {b,} are non-negative, one also has

lim sup(a,b,) < (lim sup an) (lim sup bn)
(1.2.8) n—+00 n—00 n—s00 for non-negative {a,}, {b,}

lim inf(a,b,) > (lim inf an) (hm inf bn>

n—oo n—o0 n—oo

holds whenever the right hand side is not 0 - 0o or oo - 0. From (1.2.3) we have the following:
LEMMA 1.2.7. z, = z € C if and only if limsup,,_, . |z, — 2| = 0.

This simple observation can simplify the proofs. We can always take limit supremum in
the proof, which may simplify the proof in the future. One only need to be careful about
(1.2.4).
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DEFINITION 1.2.8. The sequence {z, },en is called a Cauchy sequence in C if, given any
€ > 0, there exists N > 0 such that |z, — z,,| < € for all n,m > N.

LEMMA 1.2.9. The complez field (C,|-|) is complete, that is, the sequence {z,} converges
if and only if {z,} is a Cauchy sequence.

PROOF. We first assume that the sequence {z,} converges to some limit z. By using the
triangle inequality in Lemma 1.2.2, one has
|20 — Zm| < |20 — 2| + |2 — 2ml,

which immediately shows that {z,} is Cauchy. Conversely, suppose that {z,} is a Cauchy
sequence. From Definition 1.2.1 it is easy to see that

|Re 2z, — Rez,| = |Re (2, — 20m)| < |20 — 2l

|Jm z, —Imz,| = |Im (2, — 20)| < |20 — 2m],
so that both {fRez,} and {Jm z,} form Cauchy sequence in R, therefore there exist a,b € R

such that

lim Rez, =a, lim IJmz, =0.
n—0o0 n—oo

We define z := a + bi, and from Exercise 1.2.5 and (1.2.4), one sees that
limsup |z, — z| < limsup (|Re (z, — 2)| + |[Im (2, — 2)])

n—00 n—o0
< limsup [Re (2, — 2)| + limsup [TJm (2, — 2)|
n—00 n—00
(1.2.9) = limsup |Re z,, — a| + limsup [Jm z,, — b| = 0,
n—00 n—00
which conclude our lemma. O]

DEFINITION 1.2.10. We now given a sequence {z }xeny C C, and we define its partial sum

n
Sy = E 2.
k=1

An infinite series Y o, 2z is said to converge in C if s,, converges in C.

The following basic properties can be proved using same ideas as in calculus:
(1) If >0, 2z and Y - | wy are converge in C, then Y, (2, £ wy) are converge in C.
(2) If >°.2, 2 is converges in C, then z;, — 0 € C.
(3) If >°p2, |zx| converges in R, then )% | z, converges in C (this can be easily proved
using triangle inequality in Lemma 1.2.2).

DEFINITION 1.2.11. If 377 | |2;| converges in R, then we say that > ;- z; converges in
C absolutely. Otherwise, we call the convergence is conditionally.

1.2.2. Open sets in complex plane C.

DEFINITION 1.2.12. Let 2 be a set in C. We say that € is open in C if, given any z € €2,
there exists a € > 0 such that B.(z) C (.

This means that the open sets in C is exactly same as in R2. Therefore we can borrow a
lot of topological terminology from R2:

(1) An open set  contained z sometimes called the neighborhood of z.
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(2) A set A is topological closed in C if its complement A® := C\ A is open in C. In
this case, A is closed in C if and only any Cauchy sequence {z,} C A converges to
a limit z € A.

(3) The boundary 0S of a set S is defined as: z € dS if and only if B.(z) NS # () and
B.(z) N St £ 0 for all € > 0.

(4) The closure S of a set S is defined by S := S U dS.

(5) Sometimes we called the boundary 0Bg(z) of a ball Bg(z) the circle.

(6) A set Sis bounded if S C Br = Bg(0) for some R > 0.

DEFINITION 1.2.13. A set S is called compact in C if the following holds:

S C U O, for some collection of open sets {0, }aea
aEA

= SC U 0, for some A" C A which is finite.
acN

In fact, we have the Heine-Borel theorem: S is compact in C if and only if S is topological
closed and bounded. Using Bolzano-Weierstrass theorem, we also see that S is compact in
C if and only if any sequence in S must have a subsequence which is converges in S.

DEFINITION 1.2.14. Let S be any set in C. A subset Sy C S is said to be relative open
in S if there exists an open set {2 C C such that Sy = S N 2. Similarly, a subset S; C S is
said to be relative topological closed in S if there exists a topological closed set F' C C such
that S; = SN F. A set S is said to be connected if the following holds:

if Sy C S is both relative open and relative topological closed in S
(1.2.10) then either Sy =0 or Sy = S.

REMARK 1.2.15 (Relative open sets in open sets). If S is an open set (resp. topological
closed set) in C and Sy C S, then Sy is open (resp. topological closed) in C if and only if Sy
is relative open (resp. relative tolopogical closed) in S. This can be easily see by the trivial
set inclusion Sp = S N .S.

It is make sense to say that a set S is said to be disconnected if (1.2.10) does not hold.
This means that there exists ) # Sy € S

there exists () # Sy C S such that

Sp is both relative open and relative topological closed in S.

In this case, if we define S} := S\ Sy, it is easy to see that () # S; C Sy is also both relative
open and relative topological closed in S. Therefore one see that Sy and S; are both disjoint
(open) components of S.

DEFINITION 1.2.16. We denote [z, 25| the line segment with endpoints z; and z;. A
polygonal line is a finite union of line segments of the form [2g, 21] U [21, 22] U -+ - U [25,-1, 20].

LEMMA 1.2.17. Let Q2 be an open set in C. Then ) is connected if and only if for any
a,b € there exists a polygonal line in ) connecting a and b.

REMARK 1.2.18. Sometimes we also called an open connected set a region or domain.

ProoOF OF LEMMA 1.2.17. “=" Let a € Q) and let

A= { x e ‘ there exists a polygonal line connecting a and z } .
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It is clear that a € A, which shows that A # 0.

Given any x € A C , since 2 is open, then there exists € = ¢(x) > 0 such that B.(z) C .
Clearly any point in B.(z) can be connected to x by using a straight line, then any point in
Be(z) can be connected to a by a polygonal line. In other words, B.(z) C A. By arbitrariness
of x € A, we conclude that A is open in C, and hence also relative open in ).

Similar argument shows that 2\ A is also relative open in Q. This shows that A is relative
topological closed in €. Since A # (), then A = Q.

“e” Let ) # A C Q be a set such that it is both relative open and relative topological
closed in €. Suppose the contrary, that A # Q, i.e. Q\ A (). Choose a € Aand b€ Q\ A.
By assumption, one can find a polygonal line connecting a and b, says (29, 21] U [21, 20] U~ - - U
[2n—1, 2n]) With 29 = a and z, = b. We define a continuous function f on [0,n] by

f(t) =2+ (t—j)(zj+1 — z) when t € [j,j + 1] for j=0,1,--- ,n—1.

We now define the sets (called the preimage, this is just a notation, does not mean f is
invertible)

flAA)={zeQ|flx)e A}, [fHQ\A)={zeQ|f(x)eQ\A}.

Since both A and Q \ A are open (in C if and only if relative to ), then both f~'(A) and
S7Y(S\ A) are relative open in [0,n]. This is a special case of a general topological fact, but
here we give a simple argument to show that both f~'(A) and f~'(S\ A) are relative open
in [0,n]. We only show f~1(A) is relative open in [0, n], since the same thing can be done for
FHS\ A). Let zg € f71(A), i.e. f(xo) € A.

Case 1: 7y # 0 and z( # n. Since A is open, there exists € > 0 such that B.(f(z¢)) C A.
By continuity of f at x, there exists 6 > 0 such that

> y€Bs(zo0) <= f(Y)€Be(f(20))

—_—N— ~ -
Yy — ol <6 = |f(y) = f(xo)| <e.

Hence we see that
<= y€Bs(x0) = yef~1(A)

—N— ——N—
[y —wol <6 = fly)CA

this meas that Bs(z) C f~1(A).
Case 2: ry = 0 (similar treatment for z, = n). In this case, the continuity of f at
zo = 0 means there exists 6 > 0 (without loss of generality, we may choose 0 < n) such that

< y€Bs(20)N[0,n] <= f(y)€Be(f(20))

A

0<y=y—mo<0 = |f(y) — flzo)| <ce.

Hence we see that

A\

< yeBs(z0)N[0,n] < yef~1(4)
~ ™~ e N——
0<y=y—z0<d = fly)CTA.
This means that Bs(zo) N[0,n] C f~1(A).

Combining these two cases, we now conclude that

given any x € f~*(A), there exists § = §(z) > 0 such that Bs(x)N[0,1] C f~(A).
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This means that f~'(A) is relative open in [0, n|, because

open in C

=010 | Biwl@)
)

zef~1(A

Similar arguments also show that f~!(S\ A) is relative open in [0,n], and hence f~!(A) is
relative topological closed in [0,n]. Since the interval [0,n] is connected and f~'(A) # 0,
then f~1(A) = [0,n] and hence f~!(S\ A) = 0, which is a contradiction. This means that
the assumption A # () in the contradiction argument does not hold. Hence we conclude that
A=Q. O

REMARK 1.2.19. The above exhibits a standard argument when dealing with open con-
nected set:

(1) First show that the target set A (i.e. the set of the property which we wish to show)
is nonempty.

(2) Show that A is relative open.

(3) Show that Q\ A is relative open.

To show an open set is connected, one of course can try to construct a continuous path

In my opinion, even though Lemma 1.2.17 gives a quite easy understanding, but Mathe-
matically sometimes this characterization is not convenient to manipulate. Personally I prefer
the definition (1.2.10): Even though it is abstract, but this is quite convenient to manipulate
in Mathematical proof.

LEMMA 1.2.20. z, — z if and only if: Given any open set 2 5 z, there exists N > 0 such
that z, € Q) for alln > N.

PROOF. We first suppose that z, — 2. Given any open set {2 > z, by definition there
exists € > 0 such that

B(z) C Q.
By using (1.2.2), there exists N > 0 such that z, € B.(z) C Q for all n > N, which complete
our proof. The converse is trivial by choosing 2 = B.(z) for arbitrary ¢ > 0. OJ

1.2.3. Continuous functions on C.

DEFINITION 1.2.21. Let z € C and let 2 be an open neighborhood of z. We say that
function f : (2 — C is continuous at z if

2 —>2€C = f(z,) = f(2) e C.
Alternatively, given any € > 0, there exists 6 > 0, which depends on z, such that
(1.2.11) |f(2) = f(y)] <eforall |z—y| <o.

In other words, f(y) € B.(f(z)) for all y € Bs(x). We say that f is continuous on €2, denoted
by f € C(Q), if f is continuous at all point z € .

REMARK 1.2.22. If one can find § in (1.2.11) which is independent of z € €2, then one call
such function is uniformly continuous. In this case, it is also convenient to write (1.2.11) as

sup  |f(2) = f(y)] <«

z2,y€Q,|z—y|<d

This notation emphasized that ¢ is independent of both y and z.



1.2. TOPOLOGICAL ASPECTS OF C 11

If we split f into its real and imaginary parts
f(z) =u(z,y) +iv(z,y) forz=x+iy € Q
it is clear that f is continuous at z = = + yi if and only if both u and v continuous at (x,y).

DEFINITION 1.2.23. We say that f € C™ if and only if both w,v € C™, i.e. have
continuous partial derivatives of the m™ order.

DEFINITION 1.2.24. A sequence of functions {f,} is said to be converge to f uniformly
in €, if for each € > 0 there is an N > 0, which independent of z € €2, such that

(1.2.12) n>N = |fu(z) — f(2)| < eforall z € Q.
We now define the sup-norm on €2 by
lgllz=(e) = suplg(=)] forall g € C(Q2)
ze

By using this notations, we see that is equivalent to
(1.2.13) I fr = fllee(o) = sug |fu(2) — f(2)] <€ foralln> N.
ze

LEMMA 1.2.25. Let Q) be an open set in C. Then f,, converges to f uniformly in Q if and
only if limsup,, . || fn — fllz@) = 0.

Therefore, we also can say that f, — f in L>({2)-sense. Sometimes we also refer f the
uniform limit of f. It is well-known (see e.g. [Rud76]) that the uniform limit of real-valued
continuous function is continuous. By using the triangle inequality of || - || (), which can
be easily proved using Lemma 1.2.2, one can easily obtain the following lemma.

LEMMA 1.2.26. Let Q be an open set in C and let {f,} C C(Q). If f. converges to f
uniformly in , then f € C(Q).

COROLLARY 1.2.27 (Weierstrass M-test). Let 2 be an open set in C and let { f,} C C(Q).
If | felleee ) < My and >-77, My, converges in R, then Y -, fu(2) converges to a continuous
function uniformly in €.

PROOF. It is easy to see that f(z) = .-, fx(z) pointwisely. Moreover, we see that

limsup || f — Z fx = lim sup Z fx < lim sup Z M, =0,
n—00 1 Lo () n—00 A— Lo (@) n—00 j—
which concludes our corollary. O

REMARK 1.2.28 (A general trick). Here is a suggested standard procedure of proving
uniform convergence: First prove pointwise convergence to make sure the existence of limit
function (candidate), and then verify the convergence is uniform. This procedure is based on
the fact that the uniform limit is necessarily also a pointwise limit.



CHAPTER 2

Differentiation

2.1. Complex derivative and Cauchy-Riemann equation
Inspired by calculus, it is not surprising to introduce the following definition.

DEFINITION 2.1.1. A complex-valued function f, defined in a neighborhood of z, is said
to be (complex) differentiable at z if

flz+h) = f(2)

lim exists.
C3h—0 h
In this case, the limit is denoted by f'(2) or 9. f(2) or £ f(2) or <L f(2). Let € be an open set

in C. A function f: Q — C which is differentiable at every point € is also called (complex)
analytic or holomorphic in Q. A function f : C — C which is differentiable at every point C
is also called enture.

REMARK 2.1.2. It is important to note that in the above definition, h is not necessarily
real.

REMARK 2.1.3. Let ) be an open set in C. Some authors call a function f: Q — C is
called analytic at a point a € € if there exists an open neighborhood U C () of a such that
f is analytic in U. Personally, I would prefer to say

2.1.1 such function f is analytic near a € ) (rather than "at").
y

Throughout this course, we shall use the terminology (2.1.1) to avoid confusion.

EXERCISE 2.1.4. Show that the function f(z) = 2% is differentiable at z = 0, but not
analytic near z = 0.

This exercise reminds us to be carefully while stating the terms “at” and “near”.

LEMMA 2.1.5. If f and g are both differentiable at z, then so are hy = f+g and ho = fg.
If ¢ (z) # 0, then hs = f/g also differentiable at z. In the respective cases,

hi(2) = f'(z) + ¢'(2),
hy(2) = f'(2)g(2) + f(2)d'(2),
o) = £E)9) — FR) )
9*(2)
EXAMPLE 2.1.6. If P(2) = ap+ a2+ - +ayz" for some complex numbers ag, - - - , ay,
then P is differentiable at all points z and P'(2) = a; + 2a92 + -+ -+ NayzV"1

EXERCISE 2.1.7. Prove Lemma 2.1.5 and verify Example 2.1.6.

LEMMA 2.1.8. If f = u + iv s differentiable at z = x + iy, then the partial derivatives
Ouf and Oy f of f both exist, and they satisfy the Cauchy-Riemann equation O,f =i0,f.

12
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ProoF. The existence of 0, f and 0,f can be easily seen from the identities

feth) = fR) . flathy) = flay)
T 2 = Jim . = 0./ (z,y),
. flz+in) = f(z) . flm,y+h)—flz,y) 1
Rgl,?l,o ih - Rg}?—lﬂ) ih - }ayf (z,y).
Since f is differentiable at z, then the above identities must be identical, which conclude our
lemma. 0J

The converse of the above lemma does not hold true: There exist functions which are
not differentiable at a point despite the fact that the partial derivatives exist and satisfy the
Cauchy-Riemann equations here.

ExXAMPLE 2.1.9. We consider

zy(z+iy) 2 £ 0,

£(2) = o) = {O T

Since f = 0 on both axes z = 0 and y = 0, so that 0,f(0,0) = 9,f(0,0) = 0 (and hence
satisfies the Cauchy-Riemann equation). However, for each a € R, one sees that

lim fz) = f0) _ lim z(az)(z +ior) o .
z—0,y=ax z z=x+iax—0 2 + (CY.I’)Q 1+ a?

This shows that 0. f(0,0) does not exist. Suppose the contrary, that 9, f(0,0) exists, then

9, £(0,0) = i LSO SEZFO @ aer

C3z—0 z z—0,y=azx z 1 =+ 042

which is a contradiction since 0, f(0,0) is independent of «.

However, it is worth to mention and proof that the equivalence holds when f is sufficiently
regular:

THEOREM 2.1.10. Suppose that f € C' in a neighborhood of z = x + iy (sometimes we
simply say f € C' near z), that is, O,.f and 0,f are continuous in a neighborhood of z. We
have the following equivalence:

f satisfies the Cauchy-Riemann equation O, f =10, f at = <= f is differentiable at .
REMARK 2.1.11. If we write f = u+ iv, the Cauchy-Riemann equation can be written as
Oyu = Oyv, Oyu = —0,v.
From this, we see that
Au = 8§u + 8Zu = 0,0,v — 0,0,v = 0,
Av = 831} + 852} = —0,0,u + 0,0,u = 0,
in other words, both v and v are harmonic.

PROOF OF THEOREM 2.1.10. The implication “<” was proved by Lemma 2.1.8. We
only need to prove the implication “=".
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We write h = hy+ihs. By using mean value theorem (for real functions of a real variable),
one sees that

Re f(z+h)—Re f(z)  Re f(zx+h,y+ hy) — Re f(2)
h B hy + ihy
- Ref(r+hy,y+ hy) — Re f(z+ hy,y) N Re f(x + hy,y) — Re f(x,y)
hyi + 1hy hi + ihy

ho hq
h i, OyRe f(x+ hi,y+m2) + o h23 L Re f(z+n1,y)

lhg
h1 +1h218 Re f(x+ hy,y+m) +

hy
o th(’)‘x%e fle+m,y)

for some 7y < |hy| and 1y < |hy|. Using the exactly same arguments, one also see that

ihy 1 hq
—_ "2 “975 h
.amef([E+ 1;y+774) h1+1h2

9, Jm f(x +n3,y)

for some n3 < |hy| and ny < |hy|. Therefore, one has

fz+h) = f(2)

ih 1
= (50 G+ hay ) 4w ok by ) = 0.5 o))
1+ ihy

h
g (0 (R flw ) +10m [+ 15,)) = 0uf (2,9))
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By using the Cauchy-Riemann equation, we can write the above equation as

fz+h) = f(2)

= e (L SRef (o by + )+ 0m fo a4 m) — 20, (2, 9)
_h1+lh2 i Y eylx 1,Y 2 m j(r 1, Y N4 i yJ (L, Y
h . re
; (9, (e f(z +mu,y) +idm (2 +03,) — 0uf(2,))
1+ lhg
h e
= jih Oy Ref(z + hi,y +m) +idm f(z + hy,y +m)) — Oy f(2,y))
+ (9, (Re f(z +n1,y) +iTm f(2 + 13, 9)) — Ouf(2,7))
hi + ihy
= m (3y9%ef(x -+ hl, Y -+ 772) — ay%Q f(l', y))
ihy ~ ~
T (0,9m f(z + hi,y +n4) — 0,0m f(x,y))
hy
M (0:Ref (2 +m,y) — OuNRe f(x,y))
ihy ~ ~
Hence
lim sup fleth) = JGE) 0. f(2)
C3h—0 h
< limsup |9,Ref(x + hi,y + n2) — O, Re f(z,y)|
C35h—0
+ limsup |0,Jm f(z + hy,y + 14 — 0,Im f(z,y)|
C>h—0
+ lim sSup |8x9{ef(x + s y) - axme f(l‘7 y)l
C>h—0
+ limsup [0, Im f(z + n3,y) — 0,Tm f(z,y)|
Csh—0
which complete our proof with 0, f = 0, f. OJ

REMARK 2.1.12. Suppose that all assumptions in Theorem 2.1.10 hold near z € C. Let f

be a complex-valued function which is analytic at z. By using the Cauchy-Riemann equation
and 0, f = 0, f, one see that

1 .
(2.1.2a) 0.f = 5(0uf =19, f).
We now define the operator & on C! function by

1
(2.1.2h) O:f = 5 (0uf +19,f).

By introducing this notation, one sees that Theorem 2.1.10 can be restated as

f is differentiable at z <= 0sf =0 at z

(2.1.3) (assuming that all assumptions in Theorem 2.1.10 hold)
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In particular, the operators (2.1.2a) and (2.1.2b) are called the Wirtinger operators.

REMARK 2.1.13. Wirtinger operators can be defined in terms of weak derivatives (even
distributional derivatives), and it interesting to mention that the quasiconformal mapping is
related to the Beltrami equation:

O:f = po,f with ||p|lr~ <c< 1.

When p = 0, this reduces to (2.1.3) (Note: We called a mapping is conformal if it is holo-
morphic and injective, therefore the term “quasiconformal” make sense). For more details
about the quasiconformal mapping and Beltrami equation, one can refer to the monograph
[AIMO09].

Warning: If 0-f # 0 (i.e. does not satisfy Cauchy-Riemann equation), the func-
tion 0. f in (2.1.2a) is not equivalent to the one we introduced in Definition 2.1.1.

Warning: Even though (2.1.3) suggests that analytic function must not contained
Z, to show a function is analytic or not, we still have to verify the definition
carefully, see Exercise 2.1.4.

Warning: Always remember to check the assumptions in Theorem 2.1.10.

EXAMPLE 2.1.14. Any complex-valued polynomial P takes the form P = ZLO Q,, for
some N € Zx( with

Qn(z) = Qn($a y) = Z Cn,kzn_kyk
k=0

= Crot" + Cpn @™ 'y + Croz™ 2> + - + Crnty”

for some Cy,, € C. One computes that

n—1 n
20:Qn(2) = Y Cup(n = k)a" *1yf 1) Cp k" FyH!
k=0

k=1
n—1 n—1 ~ ~ ~
= Z Crp(n — k)z" ™ 1yF 4 iz Cr iy (ki + D" 1yP
k=0 k=0
n—1 n—1
= Z Chi(n — L T iz Ch, k1) (k + D)z F 1y
k=0 k=0
n—1
= Z (C’n,k(n — k) + iCn’(kJrl)(k + 1)) :En_k_lyk.
k=0

If P satisfies the Cauchy-Riemann equation (that is, P is analytic), then
Cni(n—k)+iCy gyy(k+1)=0foralln=0,1,--- ,Nand k=0,--- ,n — 1L

By using induction, one also can verify that

(2.1.4) Cnyk:ik<z>6’n70 foraln=0,1,--- ,Nand k=0,--- ,n— 1.
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Substitute (2.1.4) into P, one reaches

(2.1.5) ZCHOZ< )x" (iy)* nﬁ%cnoxﬂy choz

Combining with Example 2.1.6, we know that a polynomial P enjoys the following property:
(2.1.6) P is analytic <= P takes the form (2.1.5).

Therefore, if a polynomial takes the form (2.1.5) (or in Example 2.1.6), we called it an analytic
polynomial.

An application. In one of my research paper |[KLSS22|, we use complex polynomial to
construct some explicit examples of domain which is non-scattering with respect to some
acoustic wave (which satisfies time-harmonic wave equation).

2.2. Power series

Example 2.1.14 immediately suggests a wider class of direct functions of z, those given
by “infinite polynomials” in z:

DEFINITION 2.2.1. A power series in z is an infinite series (in the sense of Defini-
tion 1.2.10) of the form 7, Cy2".

We now prove some properties which are similar to the power series on R (see e.g.
[Rud76]).

THEOREM 2.2.2. Given a sequence {Cy} C C.
(a) If limsup ]C’kﬁ =0, then > Cyp2* converges absolutely for all z € C. In addition,

k—o0

for each v >0, S" Cyz"* converges uniformly' in z € B,.
(b) If lim sup |Ck|% = +o0, then > Cp2* converges for z =0 only.

k—o0

(c) If 0 < limsup\Ck\% < +oo, then Y Cy2" converges absolulely for |z| < R and
k—ro0
diverges for |z| > R, where

-1
(2.2.1) R= (hmsup\ckﬁ) .

k—o00

In addition, for each 0 < e < R, Y. Cy2* converges uniformly* in z € Bg_..

REMARK 2.2.3 (Inconclusive on Bg). For (a) and (b), we simply say the radius of con-
vergence R = oo and R = 0 respectively. The uniform convergence only holds true for Br_.,
but not for Bg. If the uniform convergence is on Bg, then the sequence converges on |z| = R
however this is not true, see Exercises 2.2.6, 2.2.7 and 2.2.8.

IThe rate of convergence depends on r. We do not know whether the series converges uniformly on the
whole C or not.

2The rate of convergence depends on e. We do not know whether the series converges uniformly on the
whole Bg or not.
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REMARK 2.2.4 (Structure of power series). If z € C satisfies |z| > R, then by (1.2.7) we

have
1 < Rz = limsup |Ck|* |2| = limsup |C2"|%.
k—o0 k—o0
This shows that the sequence {Crz*}ren does not converge to 0. Otherwise, suppose the
contrary that {Cy2*}ren converge to 0, then it must be bounded, says |Cy2*| < L for all k.
Hence we see that
lim sup |Ckzk|% < lim sup Lt = 1,
k—o00 k—o0

which is a contradiction. Since {Cpz*}ren does not converge to 0, thus > C2* diverges.
In view of Theorem 2.2.2, it is make sense to call such constant R is called the radius of
convergence of the power series > Cj.2".

REMARK 2.2.5. By using previous remark, it is important to notice that, if > Cpz*
converges at 2o, then it also converges in B, i.e. the ball with radius |z| (not include the

boundary, which is inconclusive). Similarly, if Y Crz* diverges at 2, the it is also diverges
in C \ BIzo\-

PROOF OF (A). For each 7 > 0, there exists N > 0, which depends on 7, such that
1 1
G| < o= forall k> N = |Gy < o for all k > N,
T

e For each z € C, by choosing 7 = |z|, we see that

hmsupz |Cy2"| = hmsupz |Cy|r® < hmsupz

n—oo k>n k>n

which concludes that the series converges absolutely at each z € C.
e On the other hand, for each r > 0, one can choose 7 = r to see that

Z C’kz

k=n

lim sup sup
n—oo zEB,

< hmsupz |Cy|r™ < hmsupz

n—oo k>n n—00 k>n

which concludes that the series converges uniformly in B,.
O

PROOF OF (B). For any z # 0, there exists a sequence {k,} C N with k, — 400 such
that

= 1 k k
> — for alln = |Cy, 2" | = |Ck, ||z|™ > 1 for all n,

|C,
2|
which shows that Y 2% does not converges for all z # 0 (Note: If Y Cy2* converges, then
it is necessarily that Cyz* — 0, which will led a contradiction). O

PROOF OF (C). We first consider the case when |z| > R. There exists § > 0 such that
|z| = R+ 4§, and there exists a sequence {k,} C N with k,, — 400 such that

1 1
|Ch, [Fr = 5 for all n = |Cy,2"| = |C, ||2[* > 1 for all n,
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so that Y Cpz" does not converges. We now fix any 0 < 7 < R, and we write 26 = R—7 > 0.
By using the definition of (2.2.1), one see that there exists N > 0, which depends on 7, such
that

L1
<
Gt < 7= R—35

e or each z € By, by choosing 7 = |z|, we see that

— 95\ "
hmsupZ|C’kz | = hmsupZ|C’k|r < hmsupz (};_;) =0,

n—oo n—oo

— 925\ "
s forallk= N = |C|7* < (R 5) for all k > N.

which concludes that the series converges absolutely at each z € Bpg.
e On the other hand, for each 0 < € < R, we choose 7 = R — € to see that

ZCkz <hmsupZ\Ck|r <hmsupz<]; 265) =0,

n—00
k=n

limsup sup
n—o0 zEBR_.

which concludes that the series converges uniformly in Bg_..
O

When the radius of convergence R € (0,00), there is no guarantee for the convergence or
divergence at z € 0Bg (however, this is related to Fourier series, see Remark 2.3.7 below).
This demonstrates by the following exercises.

EXERCISE 2.2.6. Show that the radius of convergence of > °° nz" is R = 1, and the
series also diverges for |z| = 1.

EXERCISE 2.2.7. Show that the radius of convergence of Y -~ n~2z" is R = 1, and the
series also converges for |z| = 1.

EXERCISE 2.2.8. Show that the radius of convergence of > °° n~'2" is R = 1. In addi-
tion, show that the series converges for all z € 9B; \ {1} but diverges at z = 1.

We now show that power series, like polynomials, are differentiable functions of z (in the
sense of Definition 2.1.1).

THEOREM 2.2.9. Suppose that the series f(z) = Y °,Cn2" has the radius of con-
vergence 0 < R < +oo given in (2.2.1) (see Theorem (2.2.2)), then f'(z) exists
(in the sense of Definition 2.1.1) and equal to

(2.2.2)  g(z) = Znan”_l = ZnC’nz”_l = Z Conz™  with  Chy := (m + 1)Crops
n=0 n=1 m=0

in Br, and g also has the radius of convergence R, which is same as f. As an immediate
consequence, power series are infinitely differentiable (in the sense of Definition 2.1.1) within
their domain of convergence.

PrROOF. We divide the proof into several steps.

Step 1: Radius of convergence. By using (1.2.6) one sees that

lim sup |é’m|% = limsup |nC’n|ﬁ = lim (n%)% lim sup |C’n|ﬁ = limsup |C’n|ﬁ
o

m—00 n—o00 n— n—o00 n—o0o
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There exists a subsequence {C,, } such that

1
limsup |C,, |n T = 11m |Ch, |”k I = hm |Ch |"k T = hm |Cy | ™

n—o0

< lim sup \Cm\ﬁ = limsup |C,|7.

k—00 m>n, n—00

Conversely, we also can find another subsequence {C,,} such that

-1
lim sup |C,, \n = hm |Ch, "= lim |Cn£]ﬁnﬁi€ = lim |C’n£\ﬁ
n—oo — {—00

< hm sup |Cp,| ™1 —hmsup|(]n|ﬁ.

=00 m>n, n—00

Combining the above three equations, we reach

lim sup |Cpo |7 = lim sup |C| 7,

m—r0o0 n—o0

hence we conclude that g also has the radius of convergence R, which is same as f.

Step 2: Show that f’ exists and it equal to g. We now further divide our discussions
in subcases.

Step 2a: When R = co. Given any h € C\ {0} with |h| < 1. The absolute convergence
allows us to rearrange the sum, hence

f(z+h})b f(z ZC z+h _chz —iCnbn,
n=0

where
)" — 2" 1 [
by, = % —n" = 7 (% (Z) hFznk z”) —nz""!  (binomial theorem)
71n Y 2k n—k _ - k—1_n—k n—lin Y 1 k-1 n—k
=5 (k:)hz <>h z —nz —Z A R 2",
k=1 k=1 k=2
Then
= (n n— e
< () 1 k<]h|Z( )il
—2
< |h| (Z) |z|"™* = |h|(|z| +1)* (again binomial theorem),
k=0
and hence

< +00 because R=c0
7\

2)| <D ICllbal < 10D [Cul(l2] + 1)
n=0 n=0

Taking h — 0 (in the sense of limit supremum), we conclude f’ exists and f'(z) = g(z) for
all z € C.

’f(erh) —fz)
h
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Step 2b: When 0 < R < co. Given any |z| < R, and write |z] = R— 20 for some 6 > 0. We
now let h € C\ {0} with |h| < min{é,1}. Then |z+h| < |z|+|h| < R—20+d=R—-6 <R,

and as in above, we can write

f(z ‘f’h})L f(z ZC b, b, = - (Z) =1k
k=2

If z =0, then b, = k"' and the proof follows easily (left as exercise). We now consider the
case when z # 0. For each 2 < k < n we see that

n\ n—k+1/( n \ n—k+1 n—(k-1)+1/ n
k)~ Tk k—=1) "k k—1 k-2
n—-2+1 n-2-1)+1/ n \ n-1 n o n
S R (k—Q)_ 2 '”(k—Q)S” k—2

. —kt1 n—(k—1)+1
since both 2 . and =

d N P
’bn’ §n2kz:(k )‘h|k 1‘ | E_ | ’2 Z: g |h’k 2|Z’ (k—2)
= 2|h|
()W i < Z()mm =i
=2
2| N

h
= TT E (|z] +|R])™ (binomial theorem)
zZ

n?|h|

< TR =0 = o ((R= o)

are monotone decreasing on k. We now have

then we now reach

< +oo0 since ¥Yn—1 as n—oo
7\

0 L "o . "
9| £ X Culll < %Zﬂ Cal (R~ o)n?)

Taking h — 0 (in the sense of limsup), we conclude f’ exists in Bg and f'(z) = g(z) for all
Z € BR. O

flz+h) = f(z) _
h

EXERCISE 2.2.10. Show that if f(z) = Y~ C,z" has a nonzero radius of convergence,
then
F(0)
n!
where f™ is the n'® derivative of f (in the sense of Definition 2.1.1). Show that for each
n=0,1,2, - that

C, = foralln=0,1,2,---,

(n+2)!

f™(z) =nlCy + (n4 D)!Chyrz + o

Cn+2z2+...

for all z in the domain of convergence.
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THEOREM 2.2.11 (Uniqueness of power series). Suppose that the power series f(z) =
Yo o Cnz™ has a nonzero radius of convergence. If there exists a sequence {z;} in the domain
of convergence such that

2z, —>0€C, 2z #0and f(z) =0 forall k=1,2,3,---
then f = 0.
REMARK 2.2.12. If a power series equals to zero at all the points of a set with an accumu-
lation point at the origin, the power series is identically zero in the domain of convergence.

As an immediate consequence, if Y a,2" and Y b,z" converge and agree on a set of points
with an accumulation point at the origin, then a,, = b, for all n.

Proor. We want to show C,, = 0 for all n = 0,1,2,--- by using strong mathematical
induction.

e By continuity of f at the origin, we see that
Co= f(0) = lim f(z) = lim f(zx) =0.
Z—+00 k—o00

e We now assume the induction hypothesis that C; = 0 for all j = 0,1,2,--- ,n — 1.
The induction hypothesis guarantees that the function

g(z):%:Cn+0n+1z+cn+222+...7

is continuous at the origin by defining ¢(0) := C,,. Since

Flex)

n
2k

0= =g(z) forall k=123, -

then we conclude our result by taking k& — oo (so that z;, — 0).
We conclude the theorem by strong mathematical induction. 0
2.3. Exponential, sine and cosine functions

We define the exponential function
(2.3.1) e® :=e(cosf +1isinf) for all z =z +if € C.
It is easy to see that |e*| = e* and e* # 0 for all z =z + iy € C.

EXERCISE 2.3.1. Prove that e %2 = ¢*1e*2 for all 2q, 2o € C.

Euler’s formula is just a special case of (2.3.1):
(2.3.2) e = cosf +isinf for all # € R.

EXERCISE 2.3.2 (Euler, De Moivre). For each n € N, show that (cos@ + isinf)" =
cos(nf) + isin(nf) for all § € R.

It is useful to see that
(2.3.3) z=|z|e" forall z€C
for some 6 € [0, 27), which is just simply the polar coordinate in R?.

EXERCISE 2.3.3. Show that e” is entire (Definition 2.1.1) by verifying the Cauchy-
Riemann equation.
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EXERCISE 2.3.4. Prove that

with radius of convergence R = +oc.

By using Exercise 2.3.3 and Remark 2.1.12, one can easily see that
0.€* = 0y(e"(cosy +isiny)) = e*(cosy + isiny) = e* for all z =2z +1iy € C.
From (2.3.2), we see that
1
2i
cosf := %(eia + e forall § € R.

sinf := — (" —e™) forall § € R,

Therefore it is natural to define the entire functions

1 . .
(2.3.4a) sinz := E(elz —e¥) forall z € C,
i

1 . .
(2.3.4b) cos z = 5(612 +e ) forall z € C.

We remind the readers that cos z and sin z are not bounded in modulus by 1, since

1

2i
. Lo 9, »

cos(if) = 5(6 +¢e”) forall 0 € R.

sin(if) = — (e —¢?) forall § € R,

EXERCISE 2.3.5. Show that sin z and cos z are entire (Definition 2.1.1) by verifying the
Cauchy-Riemann equation. Verify the identities

sin2z = 2sinzcosz, sin’z+cos’z=1, (sinz) = cosz.
Compute (cos z)'.

EXERCISE 2.3.6. Show that sin z is entire by proving

AR

smz:z—g—l—g—-l----
with radius of convergence R = +oo. Show that cos z is entire by finding its power series

representation and compute its radius of convergence.
Finally, we end this chapter by the following remark.

REMARK 2.3.7. Let ) c,2" be a power series with radius of convergence of 0 < R < o0,
as described in Theorem 2.2.2. We do not know whether the power series converges on
z € 0Bp or not, see Exercise 2.2.6, Exercise 2.2.7 and Exercise 2.2.8. For each z € 0Bg, we
can write z = Re', and plut this form into the power series to obtain

(2.3.5) > e with &, = c,R".

The series (2.3.5) is indeed a special case of Fourier series of period 27, see e.g. my previous
lecture note [Kow22| for further details.



CHAPTER 3

Integration

In previous chapter, we are focusing in (complex) differentiability of complex-valued func-
tions. We now discuss its counterpart: the integral.

3.1. The fundamental theorem of line integral

Before we consider the function with complex domain, we first deal with the functions
defined on interval in R.

DEFINITION 3.1.1. Let ¢ = Rep +iJm¢ : [a,b] C R — C, which is continuous on [a, b],
that is Re ¢, Im ¢ € C([a,b]). The integral of ¢ is defined by

/ab¢(t)dt = /ab%e¢(t)dt+i/abjm¢(t)dt

where f; Re ¢(t) dt and fab Jm ¢(t) dt are just the usual Riemann integral.

DEFINITION 3.1.2. Let C = [ z(t) = 2(t) +iy(t) | a <t < b | be an (oriented) continuous
curve in C. If z and y are both differentiable at some t € (a,b), then we set

z(t) .= 2'(t) +1iy'(t) for such t.
We call the curve C is piecewise-C" if both z,y € C([a,b]) and x,y € C* on each subinterval
int [a, x1], int [x1, 23], ..., int [z,_1,b] of some partition of [a,b]. If in addition that Z(t) # 0
for all but finitely many ¢ € (a,b) (i.e. there are at most finitely many t, such that z/(¢y) =
y'(tg) = 0), then we called it a parametrizable continuous piecewise-C' curve.

REMARK 3.1.3. Usually we refer an oriented curve C smooth when both z,y € C*(a,b).
Therefore here we will not follow the terminology in [BN10|.

Finally, we define the important concept of a line integral. This concept also introduced
in the vector calculus, see e.g. [GM12].

DEFINITION 3.1.4 (Line integral). Let C = [ z(t) | be a parametrizable con-
tinuous piecewise-C'!' curve and suppose the complex-valued function f is continuous on C
(up to endpoints). The (line) integral of f along C is defined by

/f /f dz—/f o (1) dE = /f

where the integrand (i.e. the quantity being integrated) is the complex multiplication of

f(2(t)) and (t).

It is clear that the integral depends on the curve C, more precisely, the integral de-
pends on parametrization z (hence depends on its orientation). Therefore we denote
C = [ z(t) ‘ a<t<b } rather than { 2(t) ‘ a<t<b } to emphasize the orientation of

24
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the curve. However, it is possible to perturb the integral curve without changing the values
of the line integral [, f.

LEMMA 3.1.5. Let ¢ = [2(t) |a<t<b] and C; = [w(t)|c<t<d] be two
parametrizable continuous piecewise-C' curves in C. If there exists an injective C' map-
ping X : [c,d] — [a,b] such that

(3.1.1) AMce)=a, Ad)=0b, w(t)==z(\{)) foralltelcd],
then fc1 f= fcg f.
EXERCISE 3.1.6. Prove Lemma 3.1.5.

EXERCISE 3.1.7. Let C; = [ 2(t) [a<t<b ] and C; = [w(t) |c<t<d] be two
parametrizable continuous piecewise-C' curves in C. We define the relation ~ by
(3.1.2) Ci ~ Cy <= there exists A € C'([c,d]) satisfies (3.1.1).
Show that ~ is an equivalence relation, i.e. show that:

(1) Reflexivity. C ~ C for any parametrizable continuous piecewise-C! curve C in C.
(2) Symmetry. C; ~ Cy <= Cy ~ C, for all parametrizable continuous piecewise-C'
curves Cy,Cy in C.
(3) Transitivity. Let Ci,Co,C3 be parametrizable continuous piecewise-C'! curves in C.
If Cl ~ CQ and CQ ~ C3, then Cl ~ Cg.
Therefore, we can rephrase Lemma 3.1.5 as: If C; and Cy are parametrizable continuous
piecewise-C'! curves in C which are equivalent in the sense of (3.1.2), then fCl f= fcg f.

LEMMA 3.1.8. Let C = [ 2(t) ‘ a<t<d } be a parametrizable continuous piecewise-C!
curve in C. If we define

Ci=[z20b+a—-t)|a<t<b],
then fcrev f= —fc f.
One should notice that, C and C™" are identical as sets, but reverse oriented.
EXERCISE 3.1.9. Prove Lemma 3.1.8.
The following lemma exhibit a basic property of line integral.

LEMMA 3.1.10. Let C be a parametrizable continuous piecewise-C'' curve, then the map-
ping f > [, f is C-linear, that is,

(1) Jo(f +9) = [o f+ Jog forall f,g € C(C),
(2) [af=a [, f forall feC(C) and o € C.

Here C(C) denotes the collection of continuous functions on C (up to endpoints).
EXERCISE 3.1.11. Prove Lemma 3.1.10.

LEMMA 3.1.12. If the complex-valued function G € C([a,b]), then

/abG(t) dt| < /ab|G(t)|dt.

The LHS of the above integral is defined in the sense of Definition 3.1.1, while the RHS is
the usual Riemann integral.
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PrOOF. We first write f: G(t) dt in terms of polar coordinate, that is,

/abG(t)dt: /abG(t)dt e

for some 6 € [0,27). By linearity of [,, we reach

/a bG(t) dt‘ = / be—wG(t) dt = / ore (e G(t)) dt +1i / m (e G(t)) dt.

Taking real part of the above equation, we reach

/ dt‘ /9% e"gG )d

Since [Re (e ’G(t))] < [eTG(t)| = , by the monotonicity of the usual Riemann

integral, we reach
b b , b
/ G(t)dt‘ :/ Re (e G (1)) dtg/ |G(t)] dt,

which is our desired result. O

LEMMA 3.1.13. Let C be a parametrizable continuous piecewise-C' curve with length

H1(C), then
[ <1lme ) goratt 1 < c0)
c
REMARK 3.1.14. This implies that, although fc f depends on the parametrization of C,
it is possible to find an upper bound which is independent of parametrization. In particular,

the length of the parametrizable continuous piecewise-C' curve is exactly identical to its
1-dimensional Hausdorff measure [BBIO1, Theorem 2.6.2].

PROOF OF LEMMA 3.1.13. Write C = [ 2(t) | a <t <b ], and recall that

- / V@OR + G ORdt = / £(0)] .

By Lemma 3.1.12 we see that
< [0 < Il [0l

L=

We combine the above two equations and conclude the lemma. O

t)dt

LEMMA 3.1.15. Suppose { f.} is a sequence of continuous functions and f, — f uniformly
on the parametrizable continuous piecewise-C' curve C. Then

/f = lim fn
n—oo
PROOF. By (1.2.7), linearity of fc and Lemma 3.1.13, one easily sees that
dz = [ fu2)ds] - JCCENACITE
c
< %1 (C)limsup [|f — full =) = 0,

n—o0

= lim sup
n—oo

lim sup
n—oo
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which conclude our lemma. O

We now prove one of the main result of this section, which also can be regard as a
generalization of fundamental theorem of calculus (integral operator as an inverse operator
of differentiation operator).

THEOREM 3.1.16 (Fundamental theorem of line integral). Let C = [ z(t) ‘ a<t<b } be
a parametrizable continuous piecewise-C' curve. If f € C*(C) is (complex) differentiable on

C, then
szf@@ﬁ—ﬂd@)

REMARK 3.1.17. The C' assumption on f is to ensure that f' € C(C) so that [, f" is
well-defined according to Definition 3.1.4.

PROOF OF THEOREM 3.1.16. By assumptions, we have Z(¢) # 0 for all but finitely many
a <t <b. For such t, we can find 6; > 0 so that z(t + h) — 2(t) # 0 and a < t + h < b for all
|h| < 0;. We see that see that

flt+h) = J&0) _ fEE+R) = fE0) 2EEh) =20 oo <<,

h z(t+h) — z(t) h
which gives
o SR~ FE®) | (R 20
R3h—0  z(t + h) — z(1) R3h—0 h
) R (1) N (R R
Cow—z(t)  w — 2(t) R3h—0 h

= f'(2)].—. £(t) (complex multiplication).

Hence by the definition of line integral, one sees that

def b
[10a [ @l 2= [ S a=16m) - f6w),

where the last equality is just simply the fundamental theorem of calculus [Rud76, Theo-
rem 6.21]. O

3.2. Cauchy closed curve theorem in rectangle
We begin our discussions by the following definition.

DEFINITION 3.2.1. A parametrizable continuous piecewise-C' curve C =
[ 2(t) |a <t <b]is closed if z(a) = z(b). If, in addition, z(t;) # z(t2) for all t; < t, Wlth
(t1,t2) # (a,b), then we call such closed curve simple.

REMARK 3.2.2. The curve with shape “c0” is closed but not simple.

Here not to be confused with the terminology “topological closed”. For example, a straight
line with finite length is topological closed, but not closed in the sense of Definition 3.2.1.

For later convenience, we again clarify the following notion (despite we already introduced
before):
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DEFINITION 3.2.3. Let KC be a topological closed set in C. We say that f is analytic near
K if there exists an open neighborhood Q of K (i.e. an open set Q such that I C Q) such
that f is analytic in Q. If L = {z} is a one point set, then we say that f is analytic near z.
In particular, one sees that f is analytic near z if and only if there exists ¢ > 0 such that f
is analytic in the ball B.(z).

The main theme of this section is to prove the following result, which somehow can be
view as a generalization of Exercise 3.1.7, see also [GM12, Theorems 6.6.2 and 6.6.3] for
analogous result on vector fields on R".

THEOREM 3.2.4 (Cauchy closed curve theorem in rectangle). Let C be a parametrizable
continuous piecewise-C closed curve. If f is analytic near a topological closed rectangle R
such that C C R, then [, f =0.

REMARK 3.2.5. The above theorem holds true for any parametrization of the curve C.
The main point here is f has no singularity in the area enclosed by the curve C. If f has
some singularity inside it, then the above theorem does not hold. We will discuss such cases
later in Chapter 5. We also also prove a fairly general version of the Cauchy closed curve
theorem later in Section 3.3.

LEMMA 3.2.6. Let C be a parametrizable continuous piecewise-C" closed curve. If f(z) =
o+ Bz for some a, § € C (that is, a linear function), then [, f = 0.

PROOF. If we define F(z) := az + %622, by using Exercise 2.1.6, one has F/ = f. By
writing C = [ 2(f) |a <t < b | and using the fundamental theorem of line integral (Theo-
rem 3.1.16), one sees that

/C /= /C F' = P(:(5)) — F(2(a)) =0,

which immediately conclude our lemma. 0

EXERCISE 3.2.7. Let {K®} be a sequence of compact sets in C = R? such that ) D
K® > K® > ..., Show that ),y K*® # 0. [Hint: consider the complement of X*)|

We now prove the following technical lemma.

LEMMA 3.2.8 (Rectangle lemma). Let " be the boundary of a topological closed rectangle
R. If [ is analytic near R, then fr f=0.

PrOOF. Without loss of generality, we may choose a parametrization of I' in counter-
clockwise orientation, since the reverse orientation will gives a minus sign (Lemma 3.1.8),
which does not affect our lemma at all.

We split the topological closed rectangle R into 4 congruent subrectangles, by bisecting
each of the sides. We let I'1, 'y, '3, I'y denote the boundaries (counterclockwise orientation) of
the four topological closed subrectangles (also in counterclockwise order) as in the following
figure:
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—

I i

FS F4

F1GURE 3.2.1. Splitting a rectangle into 4 congruent subrectangles

Since the integrals along the interior lines appear in the opposite directions and thus
cancel (Lemma 3.1.8), hence we see that

Jr= ]

/f‘ for some i = 1,2, 3,4.
r

From this, one sees that

N

We denote I'© = TI' and T = T; for ¢ which satisfies the above inequality. Let R(!)
the topological closed rectangle enclosed by the closed curve I'). We now show (by using
mathematical induction) that one can obtain a sequence of topological closed rectangles

1
>
ﬁwﬁ_ﬂzj
where T'*) is the boundary of the R®).
We already show (3.2.1) when & = 1. We now assume the induction hypothesis

that (3.2.1) holds for k& = ¢. We now splitting the topological closed rectangle R into
Rgg), R;@, R:(f), R‘(f) as in Figure 3.2.1, where FZ@ are boundary of Rl@). We again see that

/r(/o = g/rjﬁ I
> =

1/ > L
" Al+1

!

(3.2.1) ROSRO SRE 5 ... with

)

From this, one sees that

Jio®

We now denote choose T := T® for i satisfies the above inequality and R“+Y be the
topological closed rectangle enclosed by the closed curve I'“*1). We now complete the proof
of (3.2.1) by induction.

By using Exercise 3.2.7, we know that (,.y R™ # 0. We now fix one 29 € 0,y R¥.
One sees that

/f‘ for some i = 1,2, 3, 4.
r

lim f(z) = f(20) = f'(2) < lim f(2) = f(20) = f'(20)(z — 2)

2—20 Z— 2 220 Z— 2

=0.
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For later convenience, we denote

f(2) = f(20) = f'(20)(z — 20)

zZ— 20

0, :=

so that
f(z) = f(z0) + f'(20)(z — 20) + 0, (2 — 20), lim o, =0.

Z—r20

By using Lemma 3.2.6, we see that

/ / (z — z0) dz.
T(n) )

Let s be the largest side of the original boundary I' (so that J#1(I") < 4s and |z — 2| < v/25),

then
4 2
Q%mﬂ)_—%%) <= wpk—mgvr.
AL 2n 2eT() 2n

By the definition of o,, given any € > 0, there exists N such that

2
lo.| <e forall |z — z| < \g;s,
which shows that

sup |o,| <e foralln > N.
2€l()

By using Lemma 3.1.13 and (3.2.1), by fixing any n > N, we see that

0. (2 — z)dz| < 425>
r(n)

el

f‘ — 4”

rn)

We see that the first and last terms of the above are independent of N. By arbitrariness of
¢, we conclude our lemma. O

We now prove an important theorem, which is analogue to the fundamental theorem of
calculus (antiderivative).

THEOREM 3.2.9 (Fundamental theorem of antiderivative in rectangle). If f is analytic
near a topological closed rectangle R, then there exists a function F which is analytic and F' =
f near R. Such analytic function F is called the (complex) antiderivative of f. Combining
this with the fundamental theorem of line integral (Theorem 3.1.16), we have

(3.2.2) Lf:lpzpmw—pmw)

for any parametrizable continuous piecewise-C' curve C = [ 2(t) ‘ a<t<b } CR.

REMARK 3.2.10. We will later show a fairly general version of the above theorem in
Theorem 3.3.10 later.

PROOF OF THEOREM 3.2.9. Without loss of generality, we may assume 0 € R. We
define

(3.23) F(z) = / FO)de = [ ro4
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where C; denotes the oriented curve consists of the straight lines from 0 to fRe z and then
from PRe z to z. For each h € C, we also denote

z+h
/ reac= [ o

where Cy denotes the oriented curve consists of the straight lines from z to z 4+ 2Reh and then
from z 4+ Qe h to z + h. By the definition (3.2.3), we have

Fz+4h) = / fac= [ o

where Cs denotes the oriented curve consists of the straight lines from 0 to Qe (z + h) and
then from Re (z + h) to z + h. In particular, one sees that

F@%ﬁ/HJK%K=F@+h%

see the following figure:

zZ+h z+h
z z
Z+Re h T |z+Reh 1
_I_ v —
—_— . >
0 fRez Re z PRe(z+th) O Re (z+h)

FIGURE 3.2.2. The sketch of the curves C;, C; and Cs

Since
F(z+h) / f(¢
and
from z to z+Reh from z+Reh to z+h
1 z+h 1 - A\ ~ 1 ~ -~ ~N
7 1dz:E((z—l—‘ﬁeh)—z)%—ﬁ((zﬁLh)—(z+9%eh)):
then

F(z+h) — F(z) 1 et
RS BRUGENEIES

Since 1 (Cy) = |Re h|+|Imh| < 2|4, finally by Lemma 3.1.13 and the (uniform) continuity
of f, we have

i sup F(z+h)— F(z) )
C35h—0 h

< hm sup

\hIHf F@)z=(c) " (C2)

< 2hmsup |f = f(2)][zeee,) =0

C>5h—0
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which conclude our theorem. O

With this fundamental theorem at hand, we finally now ready to prove the main result
of this section, that is, the Cauchy closed curve theorem in rectangle.

PROOF OF THEOREM 3.2.4. Write C = [ 2(t) | a <t < b | C R with z(a) = 2(b). Since
f is analytic near R, by the fundamental theorem of antiderivative in rectangle (Theo-
rem 3.2.9), there exists a function F’ which is analytic and F’ = f near R such that

/cf:/CF/:F(Z(b))—F(z(a)):()’

which immediately conclude the theorem. 0

3.3. Cauchy closed curve theorem in simply connected open sets

In this section will prove a version of Cauchy closed curve theorem, which generalized
Theorem 3.2.4. The main theme of this section is to remove the analyticity assumption on
rectangles. Let A and B are sets, then we denote the distance between them by

dist (A, B) = inf |a —b|.

acA,beB
If Ais a one point set {z}, we simply denote dist (zq, B).

DEFINITION 3.3.1. Let €2 be an open set. If €2 is connected and its complement is “con-
nected to oo by a continuous curve within e-neighborhood of C \ ©” in the following sense:
if for any zo ¢ 2 and € > 0, there is a continuous curve v = [y(t) : 0 < ¢ < oo| such that

dist (7(¢),C\ Q) < eforall t >0, ~(0)= =z, tlim |v(t)] = o0,
— 00
then we call such set € is simply connected open set in C.

EXAMPLE 3.3.2. The annulus { zeC ‘ 1<zl <3 } is not simply connected, because
its complement cannot be “connected to oo by a continuous curve within e-neighborhood of

C\ .

EXAMPLE 3.3.3. The infinite strip S = { 2€ C| -1 <Jmz <1 } is connected. Note
that in this case, C\ S is not connected.

EXERCISE 3.3.4. A set S is called star-like if there exists a point a € S such that the line
segment connecting a and z is contained in S for all z € S. Show that a star-like region is
simply connected.

We now exhibit an example to demonstrate the generality of Definition 3.3.1.
ExAMPLE 3.3.5. The complement of the connected domain
{ x+iy€C‘0<x§1,y:sin% }U{ iyEC\—1<y<oo }
is simply connected.

DEFINITION 3.3.6. Let I' be a polygonal path (Definition 1.2.16) consists of horizontal
lines and vertical lines, i.e. either parallel to real axis or parallel to v the imaginary axis.
The yg-level is the set

Iy ={z+iyw|zeR }NT.
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If{Ty,,---,T,,}, for some y; > yo > --- > y,, are all levels of I', then we say that n € N is
the number of levels. We also say I'y, the top level of I'. We also say that I" is the next
level of T'y,.

Yi+1

EXERCISE 3.3.7. Let K be a compact set in C and let F' be a topological closed set in
C. If KN F = 0, show that dist (K, F)) > 0. On the other hand, construct topological closed
sets F1, Fy in C such that Fy N Fy = () but dist (Fy, F3) = 0.

LEMMA 3.3.8. Let " be a simple closed polygonal path (Definition 3.2.1) consists of hor-
wzontal lines and vertical lines, such that it contained in a simply connected open set €). Let
{Lyy,---, Ty}, for some y1 > ya > -+ > y,, be all levels of I'. Let Xy be the topological
closed set in R such that

Iy ={a+ip|zeX; }.
Then the setR::{ z:x—l—iy\xEXl,yggySyl } s contained in €2.

SKETCH OF PROOF. Note that R is a finite union of disjoint topological closed rectan-
gles. In addition, by using Exercise 3.3.7, we also see that § := dist (I',C \ Q) > 0. Let
20 € R and let v be any continuous curve which “connecting 2z, to oo” in the sense of
v=[y(t):0 <t < oo] with

7(0) = 29, lim |y(t)| = oc.
t—o0o

In fact, we have v N T # (), this is just simply the fact that, a connected line from R (inside
the region bound by I') to outside the region bound by I', must pass through the boundary.
One can refer to [BIN10, Chapter 8| for those technical details.

We now want to show zg € €. Suppose the contrary, that zy ¢ Q. Since Q is simply
connected, there exists a continuous curve 7, “connected to oo by a continuous curve within

g—neighborhood of C\ ©”, that is,

J
dist (70(t),C\ Q) < 3 forallt >0, ~y(0)= z, tlim [70(t)] = o0.
—00

The previous paragraph says that 79 N T # (), then there exists o > 0 such that vo(tg) € T.
From this, we have

dist (Y0(to), C \ Q) > dist (I, C\ Q) = 4,

which is a contradiction. O

We now generalize the rectangle lemma (Lemma 3.2.8).

LEMMA 3.3.9. Let f be an analytic function on a simply connected open set €2, and let " be
a simple closed polygonal path consists of horizontal lines and vertical lines, which contained
in Q. Then [, f=0.

SKETCH OF PROOF. We will prove the result by induction on the number of levels. If I'
has only two levels, then I' is simply the boundary of a closed rectangle, and this case can
be concluded by the rectangle lemma (Lemma 3.2.8). The induction step can be done as in
the following diagram:
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L]

-

Enl 5

FIGURE 3.3.1. Induction hypothesis for I' with j-levels (red), and induction
step (blue)

Each induction step are done by the rectangle lemma (Lemma 3.2.8). O

From this, we can obtain Fundamental theorem of antiderivative in simply connected
domain.

THEOREM 3.3.10 (Fundamental theorem of antiderivative in simply connected domain).
If f is an analytic function on a simply connected open set ), then there exists a function
F which is analytic and F' = f in Q. Similarly, such analytic function F is called the
(complex) antiderivative of f. Combining this with the fundamental theorem of line integral
(Theorem 3.1.16), we have

(3.3.1) /Cf - /CF = F(2(b)) — F(2(a))

for any parametrizable continuous piecewise-C' curve C = [ z(t) ‘ a<t<b } CR.

SKETCH OF PROOF. Choose zy € €2 and define
P = [ 10
20

where the path of integration is the simple polygonal path consists of horizontal lines and ver-
tical lines, which contained in €. This is well-defined by the rectangle lemma (Lemma 3.3.9).
Then the rest of proof can be done as in Theorem 3.2.9, which we leave it as an exercise. [J

Finally, we state (without proof) the Cauchy closed curve theorem which we needed,
which can be proved using Theorem 3.3.10 following the arguments in Theorem 3.2.4. We
leave the proof as an exercise.

THEOREM 3.3.11 (Cauchy closed curve theorem in simply connected open set). Let f be
an analytic function on a simply connected open set ). For each parametrizable continuous
piecewise-C' closed curve C which contained in Q, then fc f=0.



CHAPTER 4

Properties of Analytic functions

Now we have obtained some fundamental tools connecting the differentiation and inte-
gration. We now ready to further study the analytic functions. We first consider the simplest
case: the entire functions, which is analytic in the whole C.

4.1. Cauchy integral formula for entire functions

We now try to study the situation stated in Remark 3.2.5. In order to deal with this case,
for each point a € C and an entire function f, we define the auxiliary function

f(Zz):g(a) 7Z # a?
(4.1.1) g(z) = {f’(a) —a

It is clear that g is continuous. One of the main theme of this section is to prove that g
is entire. We first prove the following technical lemma, which sometimes also referred as
“rectangle theorem”.

LEMMA 4.1.1. Let f be an entire function and let g be the auxiliary function given in
(4.1.1). If T is the boundary of a topological closed rectangle R, then ng = 0.

PROOF. If a ¢ R, then clearly g is analytic near R, and the lemma immediately follows
from Cauchy closed curve theorem (Theorem 3.3.11).
For the case when a € I' = OR, by using Cauchy closed curve theorem (Theorem 3.3.11)

one sees that
[o=[ o
r I

where I'; 5 a is the boundary of the square with side length €, as showed in the following
figure):

V' N
V' N

A 4

V' N

a
V; + + V:} :w} a
I

> I >

FIGURE 4.1.1. The sketch of the curves I'y and T’

By using Lemma 3.1.13, it is easy to see that

Jol=Lhs

By arbitrariness of ¢ > 0, we conclude that fr g=0.

< 4lgllzoe e < 49l e e
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For the case when a € int (R), by using Cauchy closed curve theorem (Theorem 3.3.11),

one sees that
[o=[o
I's

where T’y is the boundary of the square (which containing a in its interior) with side length
€, as showed in the following figure:

a 4 a a
| 4 d
14 A Al
< 20 . + "{AL + [ N B kA
< 14 i
VN
b I

v

FIGURE 4.1.2. The sketch of the curves I'y and T’

As in previous case, by using Lemma 3.1.13, it is easy to see that

Jol =1

By arbitrariness of € > 0, we conclude that fr g=0. O

< 4lgllz=(rae < 4llgll )€

The following exercise can be done using similar arguments as in the Fundamental theorem
of antiderivative in rectangle (Theorem 3.2.9) and the Cauchy closed theorem in rectangle
(Theorem 3.2.4):

EXERCISE 4.1.2. Let a € C and let f be an entire function. Show that there exists an
entire function G such that G’ = g, where g is the auxiliary function given in (4.1.1). In
addition, one also has fc g = 0 for all parametrizable continuous piecewise-C! closed curve
C. |Hint: g is continuous.]

REMARK 4.1.3. Even though we have Lemma 4.1.2, we still don’t know whether g is
entire or not. At this point, we do not know yet whether the (complex) derivative of entire
function is also entire or not.

We now prove the following lemma, which is related to Remark 3.2.5.

LEMMA 4.1.4. If C,(20) is the boundary of B,(zy) in counterclockwise orientation, that is,
Co(20) = [ Rel? + 2, ‘ 0<60<2r }, then

z—Q

1
/ dz =2mi  for all a € B,(2).
Cp(ZO)
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PROOF. We first consider the case when a = zy. In this case, from the definition of line
integral (Definition 3.1.4), we see that

1 2 iR i0
/ dz:/ S do = 2ri.
Cp(20) Z— 20 0 Re!

By using the fundamental theorem of line integral (Theorem 3.1.16)

1 1
[ e[ o)
Cp(20) (2 — 20) Cp(z0) Z— 2

Inductively, we also see that

1 1 1
4.1.2 / —dZ:——/ 0, (—) dz=0 forallk=12
(4.1.2) C,z0) (2 — 20)F T k Je,(z0) (2 — 20)*

We now prove Lemma 4.1.4 for a € B,(z). We write

1 1 1 1
— = . — forall z € C,(2).
z—a (z—2z)—(a—2) 2z—2 1—%
Since
a— zo la — zo|
4.1.3 = <1 for all C
( ) p—— ; or all z € C,(20),

then the fact that == =1+ w+w?+--- for w € C with |w| < 1 (geometric sequence), then
(4.1.4)

1 1 a— zp a—z)\’ >0 (a—z)*
z—a zZ—2 ( +Z—ZO+(2_ZO> + > Z(z_zo)kJrl or all z € C,(20)

k=0

Again by (4.1.3), we have

’ "L (a— z)" 1 i —  (a—2)"
e 2 (z— 2" z—a e 2 (z = z0)**
k=0 L (Cp(20)) k=n+1 L>(Cp(20))
o0 o k —
< limsup Z —(a 20) = —thHP Z la ZO| =0,
(2 — zp)kt!
OO h=n+1 0 L>(Cp(20)) T k=n+1

that is, the convergence in (4.1.4) is uniform. Therefore, from (4.1.2) we obtain

1 1
dz:/ dz + (a — zp) / ———dz = 27,
/Cp(zo) z—a Co(z0) Z — 20 Z Colz0) (2 — 20)FH1

which conclude our lemma. O

Warning: In general the infinite sum and integral are not commute. The
uniform convergence is a sufficient condition that guarantees that this idea work.

EXERCISE 4.1.5. Prove (4.1.2) by direct evaluation in the definition of line integral (Def-
inition 3.1.4).

We now ready to state and proof the main theorem of this section.



4.2. POWER SERIES (WITH R = co) AND ENTIRE FUNCTION 38

THEOREM 4.1.6 (Cauchy integral formula for entire functions). Let f be an entire func-
tion, let a € C and let C = [ Rel? ‘ 0<0<2m } with R > |a|. Then

_ 1 [ 1)
f(a) = % . mdz

PRrROOF. By Exercise 4.1.2 and Lemma 4.1.4, one has

O:/Mdz: Mdz—f(a) (2) dz = Mdz—27rif(a),
c zZ—a

crR—a crR—a crR—a

which conclude our theorem. O

4.2. Power series (with R = c0) and entire function

In Chapter 2 we have showed that each power series represents an analytic function inside
its domain of convergence. In real analysis, it is known that there exists a C*° function such
that its Taylor expansion does not converges to it. For example, we consider the function

fz) = {62 ,x >0,

0 ,x <0,

which is in C*(R) but f™(0) = 0 for all n € N (so that its Taylor expansion at 0 vanishes
identically, therefore does not converge to f). In other words, the differentiability (existence
of partial derivatives) does not guarantee the convergence of Taylor sequence. However, the
complex differentiation has the following surprising properties, which is the main result of
this section:

THEOREM 4.2.1. f is entire if and only if it has a power series representation
(centered at some a € C with radius of convergence = 00). In this case, for each a € C,
the complex derivatives {f*)(a)}32, exist and satisfies

(4.2.1) f(z) = i %(z —a)* for all z € C.
k=0 '

REMARK 4.2.2. The above theorem means that {f*)(a)}32, exist for all a € C, that is,
f is infinitely complex differentiable.

THEOREM 4.2.1. If f has a power series representation at a € C with radius of conver-
gence = 0o, L.e. there exist Cy € C such that f(z) = Y 7o, Ci(z — a)* for all z € C. By
applying Theorem 2.2.9 g(z) = f(z +a) = > =, Ckz", we know that g is entire, and so is f.

Conversely, we now suppose that f is entire. Given any a € C, we define the entire
function g(z) := f(z + a) for all z € C. If we can show that

> gk
(4.2.2) g(z) = Z gk—'(o)zk for all z € C,
k=0 '
then f(z) =g(z —a) = 12, g(k;!(o) (z—a)f =377, f“:!(“) (2 — a)*, which conclude (4.2.1).

It is remain to prove (4.2.2). Given any z € C, one can choose R > 0 such that |z| < R.
By using the Cauchy integral formula for entire function, one has

|
g(y)z—/ 9W) 4 forall y € By
16)

27T Jop, W — Y
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By using the geometric sequence (which used in the proof of Lemma 4.1.4), one sees that

1 1 1 Y y? T
w—y—w(l—%)—w+w2+w3jL —kzzow’“Jrl
which is uniformly converge, so that
— 1 g(w) k
g(y)zzﬁ(/%’ s dw)y for all y € Bpg.
k=0 R

Then by Exercise 2.2.10, one reach

(k)
L(/ g(w)dw) g_(O) forall k=0,1,2,---

27 . whtl k!
and hence
> a® (0
9
g(y) = Z k:'< )yk for all y € Br
k=0
Since z € Bg, then
> gk
_ 9" (0) 4
k=0
Since the above procedure holds true for all z € C, hence we conclude (4.2.2). O

EXERCISE 4.2.3 (Higher order Cauchy integral formula for entire functions). Let f be an
entire function, let a € C and let C = [ Rel? ‘ 0<6<2rm ] with R > |a|. Show that

f”‘%a)—ﬁ/c(fidz forall k=0,1,2,---

 2mi z —a)kt!

PROPOSITION 4.2.4. If f is entire, then the auziliary function g given in (4.1.1) is also
entire.

PROOF. We can write (4.2.1) as

_ i % (q

k=1

(z—a)f forall z€C,

where we choose a € C be the number as in (4.1.1). Dividing the above equation by (z — a),
we reach

9(2)

f(z_a :ifkl (z —a)k Zf z—a)m for all z # a.

k=1
Since ¢ is continuous on C, and the right hand side of the above inequality is entire (hence
continuous), thus the above identity also holds for all z € C, which completes the proof. [J

EXERCISE 4.2.5. Suppose that f is entire with zeros ay, as, - - - ay, that is, f(ax) = 0 for
k=1,2,---,N, and we define

for all z € C\{ai,as,--- ,an}.
z—ay)(z—az) (2 —ayn) \ar e wi
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Show that if lim,_,,, ¢(z) exists for all k =1,2,--- | N, then the extension g of g defined by

~ L g(Z) ,ZEC\{al,QQ,“',aN},
9(z) = limg(z) ,z=axfork=1,2,--- N,

zZ—ag

is also entire.

4.3. Liouville theorem and the fundamental theorem of algebra

By using the Cauchy integral formula for entire functions, we also can obtain some pow-
erful tools, which are well-known.

THEOREM 4.3.1 (Liouville theorem). A bounded entire function is constant.

PROOF. Let a and b represent any two complex numbers and let C' be any positively ori-
ented (i.e. counter clockwise oriented) circle centered at 0 and with radius R > max{|al, |b|}.
By using the Cauchy integral formula for entire functions (Theorem 4.1.6), we see that

1 1 1 b—
PSR B 0 DS B 0 DS B O CI (RO R
271 Joz—b 21 Jo 2z —a 271 Jo (z —a)(z — b)
Since the arc length #'(C) of C is 27 R, then

1 [fllee@lb—al [fllzoeo)|b — @l
1f(b) = fla)] < o H(C) = R.
2m (R — [a])(R - [b]) (R —[a])(R —[b])
Taking R — oo (in the sense of limit supremum), we conclude f(a) = f(b). Since a,b are
arbitrary, then we conclude our theorem. 0

THEOREM 4.3.2 (Extended Liouville theorem). Let A > 0, B > 0 and k € Z>,. If the
entire function f satisfies

(4.3.1) If(2)] < A+ Blz|F forall z € C,

then f 1s an analytic polynomial of degree at most k.

PROOF. We prove the above result by induction on k. The statement for £ = 0 is just
simply Theorem 4.3.1.

It is suffice to prove the result for £ = ¢ + 1 if Theorem 4.3.2 holds true for k = ¢ > 0.
Let g be the auxiliary function given in 4.1.1 and choosing a = 0. From Proposition 4.2.4 we
know that such ¢ is entire. We also see that

2) — ~ Z€+1
19(2)] = f(2) = FO _ |1+ 1F(0)] _ 24+ Blz|

|2 2| B |2|
and thus

<2A+ Blz|* forall |z] > 1,

9(2)] < Ngllze(s,) + 24 + Blz["

By using the induction hypothesis that Theorem 4.3.2 holds true for k£ = ¢ > 0, we know
that ¢ is an analytic polynomial of degree at most ¢. Since

f(2) = zg(z) + f(0) for all z # 0,

by analyticity of both f and g, in particular the above identity also holds true for all z € C.
Therefore f is analytic polynomial of degree at most ¢+ 1. This conclude Theorem 4.3.2 by
induction. ([l
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EXERCISE 4.3.3. Suppose f is entire and |f(z)] < A + B|z|2 for all z € C. Show that f
is linear polynomial.

EXERCISE 4.3.4. Suppose f is entire and |f'(z)| < |z| for all z € C. Show that f(z) =
a+ bz? with |b] < 3.

LEMMA 4.3.5. Let P(z) be a analytic polynomial which is not identical to a constant
function. Then there exists zy € C such that P(z) = 0.

PROOF. Suppose the contrary that such z; € C does not exist, that is, P(z) # 0 for all
z € C. Then by Lemma 2.1.5 one sees that f(z) := ﬁ is an entire function. Since P is
non-constant, then we can write

N
P(z) = Z ;!
=0

for some N € N with ¢y # 0 and ¢, = 0 for all n > N. Then we see that

N-1
.. > i N . il —
liminf |P(z)| > hzrgglf <|CN||Z| Z |c]|2] ) 00,

Z—00 -
Jj=0

which shows that
lim |f(z)] =0.

Z—r00

Therefore f is a bounded entire function, which is a constant by Liouville theorem (Theo-
rem 4.3.1), this shows that P must identical to a constant function, which is a contradic-
tion. 0

We finally end this section by proving an important theorem in the field theory.

THEOREM 4.3.6 (Fundamental theorem of algebra). Let P(z) be a analytic polynomial
which is not identical to a constant function, then there exists A, aq,--- ,an € C such that
P(z) = A(z—aq) - (z—ay) forall z € C. In other words, the complex field C is algebraically
complete.

PROOF. Write P(z) = E;.V:O ¢;z) for some N € N with ¢y # 0. Similar in the proof of
the extended Liouville theorem (Theorem 4.3.2), we see that the auxiliary function g given
in 4.1.1 and choosing a = « satisfies

l9(2)] < A+ BJ[",

and hence by the extended Liouville theorem (Theorem 4.3.2), g must be an analytic poly-
nomial. Again, similar in the proof of the extended Liouville theorem (Theorem 4.3.2), we
have

P(z) =g(2)(# —a) forall ze€C,

this shows that g must be a polynomial of degree N — 1. Repeating the above arguments on
g, we conclude our theorem:. ([l
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4.4. The roots of +1

We now include some materials from [FB09|. In the very beginning of this course, we
asked a question regarding how to define v/—1. By using the fundamental theorem of algebra
(Theorem 4.3.6), we now know that the equation 22 + 1 = 0 has exactly two solutions in C,
and they are +i. As a corollary, we note that

the equation 2° + 1 = 0 has no roots in R.

Therefore, the polynomial P(z) = 2% + 1 is irreducible in R[z]. For convenience, we usually
write v/—1 := i, but one should be aware that v/—1 is not well-defined as a function in
general. In complex analysis, we call —i is another branch of v/—1.

It is well-known that the n-root of 1 is well-defined in R, which is given by /1 = 1.
However, in complex field, we have the following interesting observation (one also asks similar
questions in finite field):

THEOREM 4.4.1. For eachn € N, there are eractly n different solutions {(;}}_, (or roots)
of 2" —1 =0, and they have the formula

21y 2m)
4.4.1 = cos —|—isin—7r‘] forj=0,1,2,--- .n—1.
( j J
n n

We called (4.4.1) the n'" roots of unity. We also called 2" — 1 the cyclotomic equation, since
(4.4.1) is exactly the vertex of reqular n-gon in C

PROOF. By using Exercise 2.3.2, one can directly verify that (4.4.1) are n different roots
of 2" —1 = 0. By using the fundamental theorem of algebra (Theorem 4.3.6), they are exactly
all the n different solutions. OJ

EXERCISE 4.4.2 (n-roots of —1). For each integer n > 2, determine all roots of the
equation z" 4+ 1 = 0.

4.5. Cauchy integral formula in a ball

We have proved the Cauchy integral formula for entire functions in Section 4.1. By
carefully inspecting the arguments, in fact we can obtain a local version. Here we will exhibit
the details.

Let f be an analytic function in a ball B,(zp). By using the fundamental theorem of
antiderivative in rectangle (see Theorem 3.2.9 and (3.2.3)), one sees that the function

F(z) = /Z f(Q)d¢ = /Cf(C) d( is analytic and satisfies F' = f on B,(z),

where C denotes the oriented curve consists of the straight lines from zy to zo + fRe (2 — 2)
and then from zg 4+ e (z — z) to z. It is important to notice that one can find a topological
closed rectangle consists of zo and z which is contained in B, (o).

We consider the auxiliary function ¢ similar to (4.1.1): If f is analytic in B,(z) and
a € B.(z), then we define the function

o JPE 2 e Bix) \ {a),
(4.5.1) g )_{f,(a) .
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which is continuous on B,(2). At this moment, we don’t know whether ¢ is analytic in D
yet. However, by continuity of g and following the same arguments as in Exercise 4.1.2, one
can show that

(4.5.2) there exists an analytic function G with G’ = g on B,(20).

In addition, one also has

(4.5.3) / g = 0 for all parametrizable continuous piecewise-C" closed curve C C B,.(z).
c

We now can easily proof the local version of Cauchy integral formula.

THEOREM 4.5.1 (Cauchy integral formula in a ball). Suppose that f is analytic in B,(z)
and let a € B,(z). For each 0 < p < r with a € B,(2), one has

_ 1 fw)
f(a)_2_7ri/c( - adw,

where Cy(zp) is the closed curve Cy(z9) = [ 20+ pe'? | 0 < 0 < 2 |, that is, C,(20) = 0B,(20)
with counterclockwise oriented.

PROOF. Let g be the auxiliary function given in (4.5.1). By using (4.5.3) and
Lemma 4.1.4, one has

_ flw)=fla) flw) f(a) B F(w) L
' /C”(ZO) w—a = /CP(ZO) w—a w /C,,(z()) w—a = /C (200 W — 0@ dw—2mif(a)

P

which conclude our theorem. O

EXERCISE 4.5.2. Let 2 be an open set, let f be an analytic function on 2 and let a € 2.
Show that f(a) is equal to the mean value of f takes around the boundary of any disc centered

at a contained in D, that is,
1 21 .
= %/0 fla+re?)dd

REMARK 4.5.3. As we see in Remark 2.1.11, an analytic function always a harmonic
function. In fact, the mean value theorem also holds true for harmonic function, see [GTO01].
This even holds true for Helmholtz operator A + k2, see e.g. my work [KLSS22, Appendix].

whenever 0B, (a) C D.

4.6. Power series (with R < co) and analytic function

In Chapter 2 we have showed that each power series represents an analytic function inside
its domain of convergence. We denote R be its radius of convergence. In Section 4.2 we have
showed the converve of this theorem for the case when R = co. We now turn to the question
about the case when R < oc.

THEOREM 4.6.1. If f is analytic in Bgr(2o), there exist constants Cy such that

= Z Ce(z — 20)%  for all z € Bg(z).
k=0
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PROOF. For each 0 < p < R, by using the Cauchy integral formula in a ball (Theo-
rem 4.5.1) with a = z, we have (Theorem 4.5.1)

f(z) = L/ J(w) dw for all z € B,(2).
Cp(20)

© 2mi Ww— 2z
Recall (4.1.4) and changing the notation z — w and a — z:

1 1 Z— 2y =2\ = (2 — )k
= -1 — f 1 C
R ( +w—20+(w—zo) + ) ;(u}—zo)k“ or all w € C,(20),

which converges uniformly on C,(zp). Combining the above two equations, we reach

[e.9]

L S w | (z—20)"
J(z) = 27 Z (/Cp(zo) (W — 2p)kH! ‘ > ( o)

k=0

Arguing as in Theorem 4.2.1 (which involving Exercise 2.2.10), we again have

LS, )
27 Cp(z0) (w — Zo)k+1 k!

and thus
(k)
f(z) = / l{:('ZO) (z — 20)" for all z € B,(z).
Since 0 < p < R is arbitrary, then we conclude our theorem. 0

From Theorem 4.6.1, we immediately conclude the following corollary.

COROLLARY 4.6.2 (Local power series representation). Let Q be an open set in C. Then
f is analytic in Q if and only if it has a local power series near each point in €1, i.e. for each
z0 € Q we can write f as

f(z) =) Cilz — )

for all z € Br(z), where R = sup r. In this case, the complex derivatives {f%® (z)}3,
By (20)CQ
exist and satisfies

k

£ (2
(16,1 fay =3 )

k=0

z—2p)

for all z € Bgr(zy), where R=sup 7.
By (20)CQ

REMARK 4.6.3. One sees that Theorem 4.2.1 is just a special case {2 = C of Corol-
lary 4.6.2. One should aware that the power series (4.6.1) in general not holds for all z € D,
i.e. not global! See Remark 2.2.5. This is the reason why we called (4.6.1) the local power
series.

PROPOSITION 4.6.4. If f is analytic near a, then so is the auziliary function g given in
(4.5.1).
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PRrROOF. By using Corollary 4.6.2, we see that

% k) (g
f(z)—f(a)zzf ()(z—a)k for all z near a.

k!
k=1
and thus
— X fk) o0 p(441)
9(z) = w = Z / k!(a) (z—a)ft = J;f—l——l()a!)(z —a)’ for all z # a near a.
k=1 =0
By continuity of g, we see that the above identity also holds true for z = a, which conclude
our proposition. O

THEOREM 4.6.5 (Uniqueness continuation property). Let f be an analytic function on an
open connected set Q). If there exists a nonempty open set D C  such that f|p = 0, then
f=01inQ.

REMARK 4.6.6. By using the Carleman estimate, this property can be extended to large
class of solution of elliptic equations and systems (recall that analytic function also harmonic,
see also Remark 2.1.11). A related problem is called the Landis conjecture, which can be
referred as the unique continuation property from infinity.

PRrROOF OF THEOREM 4.6.5. We will prove this using a standard argument for open con-
nected set in Remark 1.2.19. We define

A= 20 there exists a sequence {z,} C € such that
o 0 zn — 2o and f(z,) =0 for alln € N :

Since f is contiuous, one sees that
(4.6.2) f(2) =0if and only if z € A.

We first show that A is open (in C iff relative to Q, since 2 is open, see Remark 1.2.15).
Let zg € A. By Corollary 4.6.2, one can represent f using a local power series near zy, that
is, there exists € > 0 such that f(z) = Y, Ck(z — 2)* for all z € B.(zp). Then by the
uniqueness theorem of power series (Theorem 2.2.11) we see that f = 0 in B.(z), and hence
Be(z9) C A. By arbitrariness of z; € A, we conclude that A is open.

On the other hand, we want to show that ©\ A is open as well. We first see that (4.6.2)
is equivalent to

f(2) #0 <= z€Q\ A

Given any zo € Q\ A, we have f(z) # 0. We now choose € = 1| f(2)| > 0. By continuity of
f at zg, there exists 6 > 0 such that

we By(z) = |f(w) — f(z0)| < €= 5| (0)]
This gives
w € Bs(z)

= [f(20)| = |f(w)] < [f(w) = f(2)] < %\f(Zo)!

— Z1fCo)l < |f(w)
= f(w)#0 = weQ\A
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Hence we see that Bs(zg) C '\ A. By arbitrariness of zg € Q2 \ A, this shows that Q\ A is
open.

Since both A and Q\ A are open, by connectness of 2, we see that either Q = () or Q = A.
Since 2 D D # (), we finally conclude that Q = A, which conclude our theorem. O

COROLLARY 4.6.7 (Uniqueness theorem). Let f be an analytic function on an open con-
nected set Q). If there exists a sequence {z,} C Q such that z, — zo € Q and f(z,) =0 for
alln € N, then f =0 in Q.

PRrROOF. By using Corollary 4.6.2, one can represent f using a local power series near
2p. By using the uniqueness theorem of power series (Theorem 2.2.11), one sees that there
exists 7 > 0 such that f|p, ;) = 0. Hence our result immediately follows from the unique
continuation property of analytic function (Theorem 4.6.5). O

EXAMPLE 4.6.8. We consider f(z) = sin z, which is entire (i.e. analytic in 2 = C). One
sees that f has at least infinitely many zeros: f(nm) = 0 for all n € Z. These zeros does not
converge in C. In fact, by using Corollary 4.6.7, the set of zeros of f does not have a limit
point. Therefore, given any bounded set, it contains at most finitely many zeros of f.

EXAMPLE 4.6.9. We consider f(z) = sin(1), which is analytic in Q = C\ {0}. One sees
that f has infinitely many zeros: f(%) = 0 for all n € Z, and these zeros converge at 0. This
illustrate the analyticity assumption in Corollary 4.6.7 is essential.

THEOREM 4.6.10. If f is entire and if |f(z)] = o0 as z — oo, then f is a polynomial.

PROOF. By hypothesis, there exists R > 0 such that |f(z)| > 1 for all |z| > R. This shows
that f cannot have any zeros outside Bg(0), and hence there at most finitely many zeros in

Bgr(0). If not, by using Bolzano-Weierstrass theorem, there exists a sequence {z,} C Bg(0)

converges to z € Bg(0) with f(z,) = 0. Hence the uniqueness theorem in Corollary 4.6.7
(with Q@ = C) implies that f = 0 throughout C, which is a contradiction.

We now denote o, - -+ ,an € Bg(0) be the zeros of f (it is possible that o; = «; for some
i # 7). By using Exercise 4.2.5, we see that the function
fz
9(z2) = )

(z—aq)(z—ag) (2 —ay)
is entire and also g(z) # 0 for all z € C. Hence we see that

1 (z—a)(z—ag) (2 —an)

OB f(2)

is also entire. Since |f(z)] — oo as z — oo, then |h(z)| < A + |z|". By using the extended
Liouville theorem (Theorem 4.3.2), we see that h is a polynomial. But however h(z) = ﬁ #

0 for all z € C, then by fundamental theorem of algebra (Theorem 4.3.6), we conclude that
h is a constant function, says h(z) = k for some constant k # 0. By the definition of h, we
see that

J(2) = £z — )z —az) - (s — ),

which conclude our theorem. O
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4.7. Morera Theorems

The key result in our discussion of analytic functions so far has been the Cauchy closed
curve theorem (Theorem 3.3.11). In fact, the partial converse holds true as below (for future
convenience, we will refer all theorems in this section the “Morera theorems”):

THEOREM 4.7.1 (Morera). Let f be a continuous function in an open set Q. If

/Ff(z)dz—O

for all T the boundary of topological closed rectangle in €2, each segment is either horizontal

(i.e. parallel to real axis) or vertical (i.e. parallel to imaginary azis), then f is analytic in
Q.

REMARK 4.7.2. In view of the Cauchy integral formula (Theorem 4.5.1), one sees that
the continuity of f is a necessary hypothesis.

EXERCISE 4.7.3. Prove Theorem 4.7.1 by modifying the arguments in the fundamental
theorem of antiderivative in rectangle (Theorem 3.2.9).

Morera’s theorem is often used to establish the analyticity of functions given in integral
form.

EXERCISE 4.7.4. Using Morera’s theorem and Fubini’s theorem (carefully check the suffi-
cient conditions for Fubini Theorem!) to show that the function f(z) = [-° f% dt is analytic
in the left half plane { z € C | Re(z) <0 }.

THEOREM 4.7.5 (Morera’s uniform convergence theorem). Suppose {f,} represents a
sequence of analytic functions on an open set ) satisfies

lim ||fn, = flleexy =0 for all compact set K C (2,
n—oo
then f 1s analytic in §Q.

PROOF. Given any z € (, there exists r > 0 such that B.(z) C Q. We choose the
compact set K = Br(z). Hence we have

Jim [ = fllzeesy e =0

This shows that f is continuous on K. Furthermore, [Moreralfor each I" the boundary of any
topological closed rectangle in K, the uniform convergence of f,, to f (on I') guarantees that

/ f=1lm [ f,=0,
T n—oo T
where the second identity is just simplyby the Cauchy closed curve theorem (Theorem 3.3.11).

By Morera’s theorem, we conclude that f is analytic in B%(z). By arbitrariness of z € (), we
conclude the theorem. O

EXERCISE 4.7.6. Show that g(z) = zp + €2 with § = arg(z; — 20), maps the real axis
{ z€C|Imz=0 } onto the line L through 2 and z. Here argw is defined (modulo 27)
as that number 6 for which
Jmw Rew

sinf = ﬁ, cost =
w

jw|

Clearly, g defines an entire function.
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THEOREM 4.7.7 (Morera’s continuity theorem). Let 2 be an open set and let L be a
straight line in C. If f is continuous in Q and analytic in Q\ L, then f is analytic in .

PROOF. By using Exercise 4.7.6, it is suffice to show the theorem when L is the real axis.
Let zo € LN, and let r > 0 be such that B,(zy) C Q. Let I" the boundary of any topological
closed rectangle in B,(zy) which are parallel to the real and imaginary axes.

Case 1: L does not meet the topological closed rectangle enclosed by I'. In this
case, f is analytic near the topological closed rectangle and thus fF f =0 by Cauchy closed
curve theorem (Theorem 3.3.11).

Case 2: the bottom side of I' touches L. Let ¢ > 0 sufficiently small and let I'. be
the rectangle composed of the sides of I' with bottom side shifted up by €. By the continuity

of f, we see that
/f = hm f =0,

where the second identity follows by the Cauchy closed curve theorem (Theorem 3.3.11).
Case 3: the top side of I' coincides with L. We can treat this case similar as previous
case.
Case 4: The line L pass through the interior of the rectangle enclosed by I'. In
this case, we can divide the rectangle into two rectangle by L. Let I'y and I'y are boundary
of these two rectangles. By using Case 2 and Case 3, we see that fl“l f=0and fF2 f=0,

and hence [.f= [ f+ [, f=0.
Putting these 4 cases together, we conclude that f is analytic in B,(zp). By arbitrariness
of zy € L, we conclude our theorem. O



CHAPTER 5

Laurent series and the Cauchy residual theorem

5.1. Riemann’s principle of removable singularities

In Remark 3.2.5, we posting the question about what we get if we integral over a simple
closed curve which surrounding some singularity. We have encounter some singularities in
the Cauchy integral formula (Theorem 4.5.1). Before studying the singularities, let us first
classify the singularities. Then we can at least partially answer this question for some class
of singularities (so that make this course easier).

DEFINITION 5.1.1. We call the set Br(zo) \ {20} the punctured ball centered at z, with
radius R (or called the deleted neighborhood). A function f is said to have an isolated
singularity at zy if f is analytic in a punctured ball centered at zy and f is not complex
differentiable (in the sense of Definition 2.1.1) at z.

REMARK 5.1.2. By using Theorem 4.7.7, we see that z; is an isolated singularity if and
only if f discontinuous at 2.

DEFINITION 5.1.3. Suppose f has an isolated singularity at z.

(1) If there exists a function g, analytic near zg, such that f(z) = g(z) in a punctured
ball centered at zy, we say that f has a removable singularity at zg.

(2) If there exist functions A and B, both analytic near zo with A(zo) # 0 and B(z) = 0,
such that f(z) = % in a punctured ball centered at zp, then we say that f has a
pole at zg.

(3) If f has neither a removable singularity nor a pole at 2z, we say f has an essential
stngularity at zg.

In next section, we will fully characterize (necessary and sufficient condition) in next
section (Theorem 5.2.6) in terms of Laurent series. In plain words, removable singularity is
the one we can basically ignored, while essential singularity is the one that too difficult to
handle within this chapter. The pole is the one we want to discuss in this chapter. In this
section, we first study some sufficient conditions.

LEMMA 5.1.4 (Riemann’s principle of removable singularities). If f is analytic in a punc-
tured ball centered at zy and that lim,_,,,(z — 2z0) f(2) = 0, then f has at most a removable
singularity at zog, i.e. there exists a function A, analytic near zy, such that A = f in a
punctured ball centered at z.

PROOF OF LEMMA 5.1.4. If f is continuous at zy, then by Theorem 4.7.7 we know that
f is analytic near zy, and we have nothing to proof. If f is discontinuous at 2y, then 2, is an
isolated singularity of f. It is easy to see that the function

h(z) = { (=0f) et

49
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is continuous at zy. By using Theorem 4.7.7, we see that h is analytic near z;. Since

h(zo) = 0, then the function A(z) = Zh_(—zz) is analytic near zy (see Exercise 4.2.5). Since A = f
in a punctured ball centered at zy, then we conclude our lemma. O

REMARK 5.1.5. If f is analytic and bounded in a punctured ball centered at zy, then
clearly lim,_,, (z — 29)f(2) = 0, and thus the above lemma follows that f has (at most) a
removable singularity at z.

REMARK 5.1.6 (Riemann’s principle of removable singularities). If f is analytic in a
punctured ball centered at z; and there exists k € Z>( such that

analytic in a punctured
ball centered at zg
7\

. kL -1 _ (TERY: Vo
(5.1.1) zh—>Hzlo(Z 20)" f(2) = Zh_glo(z z0) ((z—20)"f(z)) =0,
by using the above lemma, we immediately see that there exists an analytic function A,
analytic near zg, such that
(5.1.2) A(z) = (z — 2)"f(2) in a punctured ball centered at z.

If £ = 0, this implies that z; is a removable singularity; if £ > 0, this implies that z; is a pole
of f.
DEFINITION 5.1.7. Let f as in (5.1.2). If k = 0, then we called such z; the pole of order

0 (can be either removable singularity or f is analytic near zo). If £ > 0 and A(zy) # 0, then
we say that the pole zy has order k.

REMARK 5.1.8. By using a mathematical induction, one can easily see that (5.1.1) implies
that the pole has order at most k. Therefore one also can refer the removable singularity as
the pole of order 0. This remark generalizes Exercise 4.2.5.

EXAMPLE 5.1.9. Suppose that f has an isolated singularity at o = 0 (says) and there
exists Cy > 0 such that it satisfies |f(z)| < |ZC—|% in a punctured ball centered at 0 for some
a > 0 with o ¢ Z. Let [a] be the smallest integer that > «, and let |« be the largest
integer that < a. One sees that

lim sup |2/ f(2)| = lim sup | 2|"*!| f(2)| < limsup Co|z|'*1=* = 0.
z—0 z—0 z—0

Then by Remark 5.1.6, one has

2l f(2) = A(2) in a punctured ball centered at 0
for some analytic function A. Hence it is not possible to find C; > 0 and |a] < f < «
such that |f(z)| > ‘S—ﬁ, in a punctured ball centered at 0 (otherwise one can easily obtain a
contradiction).

If f has an essential singularity at 2, then one sees that
if lim (2 — 20)"*! f(2) exists for some k € Zso, then lim (z — )" f(2) # 0,
Z—r20 -

Z—20
otherwise we can immediately obtain a contradiction from Remark 5.1.6. In this case, it is
not difficult see that lim, ., | f(z)| = co. But, however, we do not know whether lim,_,, (z —
20)*1 f(2) exists or not. We now closing this section by the following theorem.

THEOREM 5.1.10. If f has an essential singularity at zy, then for each R > 0 the set

f(Br(z0) \ {20}) :=={ f(2) | z € Br(20) \ {20} } is dense in C.
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PROOF. Suppose the contrary, that there exists a ball Bs(wp) in C such that

Bs(wo) N f(Br(z0) \ {20}) = 0.
This means that |f(z) — wo| > 0 for all z € Br(zp) \ {20}, therefore

1 1
'm < 5 for all z € Br(20) \ {20}

By using Remark 5.1.5, it follows that there exists a function A, which is analytic near zy,
such that

1 1
— = A(2) = f(2)=wy+ ——
in a punctured ball centered at zy. This implies that f has either a pole at zq (if A(z) = 0)
or a removable singularity at zo (if A(zo) # 0), which is a singularity. O

5.2. Laurent expansions
We now introduce a powerful tool to help us to study the isolated singularities.

DEFINITION 5.2.1. Let {4 }rez be a sequence in C. We say that ), _, px = L for some
L € Cif both >~ 1 and Z;:lfoo P = > pey B—k converge and satisfies

00 -1
ZM}«:‘F Z p = L.
k=0

k=—00

We first show that the Laurent expansion make senses:

LEMMA 5.2.2. The Laurent expansion f(z) = >, ., axz" is converge in the domain

<521) 14R1,R2 = { zeC ‘ Ry < ‘Z’ < Ry }
where
1 1 -1
(5.2.2) Ry =limsup|a_g|*, Ry= (limsup |ak|k> :
k—+o0 k—+o00

If 0 < Ry < Ry < +00, then f is analytic in the annulus €.

PROOF. By using Theorem 2.2.2; one sees that
o
fi(z) = Z az" converges and it is an analytic function on Bg,.
k=0
If Ry = 400, we interpret B, as the whole complex plane C. On the other hand, we also
see that

> N &, 1 1 1
fa(z) == ;a_k (;) = kzoo az" converges for those z € C with ‘7 =17 < R_1
In particular,
fa converges and it is an analytic function on C\ Bg,.
Hence we conclude the theorem with f = f; + fo. O

The following theorem shows that the Laurent series will be a very powerful tool to study
the singularities.



5.2. LAURENT EXPANSIONS 52

THEOREM 5.2.3. If f is analytic in the annulus Ag, r, (5.2.1) with 0 < Ry < Ry < 400,
then f has a Laurent expansion f(z) = >, ., axz” in Ap, g,

PROOF. Let C; and Cy represent circles centered at 0 of radii r; and 9 respectively, with
Ry <11 <71y < Ry, with counterclockwise orientation. We fix z € B,, \ B,, and see that

sy — L0 = 1)

w—z

is analytic at w € Ag, g,, and by Cauchy closed curve theorem (Theorem 3.3.11), we see that

/ g(w) dw = 0,
CQUCieV

where Ci® is given by Lemma 3.1.8. One has to be careful that the annulus is not simply

connected (Example 3.3.2). However, this problem can be overcomed by splitting the annulus
as showed in the following diagram:

FIGURE 5.2.1. Splitting the contour C, U Ci®V into two closed curves

Combining the above two equations, we reach

2Uc{ev w—z

=27i =0
7\ 7\
-

1 I _
= f(2) / dw—/ dw | =27if(z) forall z € B, \ B,,,
c, W— 2 w—z

where the first term is due to Cauchy integral formula (Theorem 4.5.1) and the second term
is simply by the Cauchy closed curve theorem (Theorem 3.3.11). Hence we reach

2mif(z) = (w) dw — f(w)

C2w—Z

dw forall z € B,, \ B,,.

Clw—Z
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Since |w| > |z| for all w € Cy, then recall the geometric sequence (see e.g. the proof of
Theorem 4.6.1)

1 1 1,z 2 — 2
— =4 —4+ — 4+ .- = fO a].l EC,
w—z wl-2%2) w w? wl ;MHI PR

which converges uniformly on Cs. Since |w| < |z| for all w € Cy, similarly we have the
geometric sequence

1 1 1 2 — wk
— :___ﬂ_w__...:_zw for all w € Cy,

k41
k=0

which converges uniformly on C;. Combining the above three equations, we reach

055 ([ ) 5 (o)

k=0

=ay Wlth k>0 =a with k<0
1 7\

R F(w) Y fw) N
= 3 (27“ 2wk:+1d )z —i—k;oo <% Wkt dw)z

k=

for all z € B,, \ B,,. Since e +)1 is analytic on the annulus €2, by using Cauchy closed curve
theorem (Theorem 3.3.11) and the technique sketched by Flgure 5.2.1, one sees that for each
k € Z that

f(w)
_ d
27l Jo whtl v

for all counterclockwise circle C centered at 0, hence each a, is actually independent of rq
and 7r5. Hence we conclude our theorem. O

(5.2.3) ay

We now state and proof the following representation theorem.

THEOREM  5.2.4. If f is analytic in the annulus  Ag, r,(%0) =
{ zE(C‘Rl < |z — 20| < R } with 0 < Ry < Ry < oo, then [ has a unique repre-

sentation
1 f(z)
(5.2.4) f(2) =) ap(z—2)" ap=-— ———dz
k:ezz 211 Jep(z) (2 — 2p) k1

for any counterclockwise circle Cr(zo) centered at zy with radius R provided Ry < R < Rs.

PROOF. It is easy to see that we only need to prove the proposition for zo = 0. Since
f(2) = > ez ax?”™ converges in the annulus Ag, g,, then it converges uniformly along C, and
thus

(5.2.5) +1 Z / F=n=1dz  for any n € Z.
¢ Z"

keZ

By using the Cauchy integral formula (Theorem 4.5.1), one has

/zmdz =0 forall me Zs,.
c
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By using the Cauchy integral formula (Theorem 4.5.1), we have

/zl dz = 271.
c

By using the fundamental theorem of line integral (Theorem 3.1.16), one also see that

/zm dz =0 forall m € Z>,.
c

For future convenience, we record the above three equations as in below:

omi ,m=—1
(5.2.6) /zm dz = oM T
; 0 mezZ\{-1}.

Combining (5.2.5) and (5.2.6), we reach
(2)

c Zn+1

dz =a, / 27 1dz = 2ria, foralln € Z,
c

which conclude our proposition. O

We now consider the case when 2 is an isolated singularity. If R; = 0 and Ry < oo, then
AR, R, = Br,(20) \ {20}, i.e. the punctured ball we consider in the previous section. Let f
be an analytic function on Br(zp) \ {20}. By Theorem 5.2.4, f has a unique Laurent series
representation

(5.2.7) f(z) = Zak(z — z)F for all z € Bgr(z) \ {20}.

kEZ

DEFINITION 5.2.5. We called ;- ax(z — 20)" the analytic part of f, while >, _ ax(z —
20)¥ the principal part of f.

Since the analytic part of f does nothing with the singularity, we are now interested in
the principal part of f. From (5.2.7) we now able to give a full characterization for isolated
singularities in terms of Laurent series:

THEOREM 5.2.6. Let f be an analytic function on a punctured ball centered at zy. By
Theorem 5.2.4, [ has a unique Laurent series representation (5.2.7). Then either one of the
following must holds:

(i) If f has a pole at zy of order 0 (i.e. removable singularity or f is analytic near zy),
then C_y =0 for all k € N.
(i) If f has a pole at zy of order n € N | then C_,, # 0 and C_j, =0 for all k > n. In

1
zZ—20

other words, the principal part of f is simply P ( ) for some polynomial P with

degree n.
(iii) If f has an essential singularity at zo, then C_y # 0 for infinitely many k € N.

REMARK. Let g be an analytic function in an open set 2. Suppose that z; € ) is a zero
of g, then we consider its power series around zy (Theorem 4.6.1):

g(z) = Z Cr(z — 20)F.
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From g(z9) = 0, one has Cy = 0. If g is nontrivial, then there exists kg € N such that Cy, # 0
and C} =0 for all 0 < k < kg, and we write

:ZCk(z—Zo) (2 — 20) <ZCe+koZ_ZO )v

k=ko

which means that the zero zg must have finite order. This also implies that each pole must
have finite order, therefore all isolated singularities are actually classified by Theorem 5.2.6.

PROOF OF (1). By definition, there exists a function A, analytic near zo, such that f(z) =
A(z) in a punctured ball centered at zp. Then by Theorem 5.2.4, the Laurent series of f
must equal to the power series of A. O

PROOF OF (II). By definition, one writes
A(z)
f2) = ——x
(z — z0)
where A is analytic near zy. Using the local power series representation (Theorem 4.6.1), we
write A(z) = > "7 ar(z — 20)* and we see that

o0 o0

F2) =Y ar(z =20 = ) ani;(z — )

k=0 j=-n

in a punctured ball centered at zg,

in a punctured ball centered at zy. Finally, by Theorem 5.2.4, the above equation represen-
tations the unique Laurent series of f, which conclude our theorem. O

PROOF OF (111). Suppose the contrary, there exists n € N such that C_, = 0 for all
k > n. Riemann’s principle of removable singularities (Remark 5.1.6) shows that zy is pole,
which is a contradiction. 0

Finally, we closed this section by exhibit an application of the representation formula of
Laurent series — together with Liouville theorem and fundamental theorem of algebra — in
abstract algebra (field theory).

THEOREM 5.2.7 (Partial fraction decomposition of rational functions). Any proper ratio-
nal function g(z , where P and Q) are polynomials with deg P < deg @), can be expanded as a

sum of polynomials in ﬁ, where {21, 22, , 2, } are the set of distinct zeros of Q.

SKETCH OF PROOF. By using fundamental theorem of algebra (Theorem 4.3.6), we can
write Q(z) = A(z — z1)" (2 — z)k2 - -+ (2 — 2,,)" for some n < deg Q. This shows that 58
has a pole of order at most k; at z;.

(1) Using Theorem 5.2.6, the principal part of Ag(z) := 22 near z takes the form

Q(z)
P1 (Zfz ) polynomial P1. Clearly, P, (ﬁ) is analytic in C\ {z1}. We now define
A1 (Z) =

P (=)

(2) Using Theorem 5.2.6, the principal part of A;(z) near zy, takes the form Py (z 22)
polynomial P,. Clearly, P, (Z—_l,@) is analytic in C \ {z2}. We now define Ay(2) :=

a3 - P () -7 ().
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By repeting the above steps (can be rigorously written down using mathematical induction),

one sees that P) . X
z
ar-m () ()

is an entire function. Since deg P < deg @, by taking |z| — oo, we see that actually above
entire function is bounded. Therefore the Liouville theorem (Theorem 4.3.1) implies that
there exists a constant C' € C such that

P(Z)—Pl( 1 )_..._Pn( 1 )EC for all z € C,

Q(2) zZ—2 Z— zn

which conclude our theorem®. O

5.3. Winding numbers and the Cauchy residue theorem

Let f be an analytic function on a punctured ball centered at z;. By using Theorem 5.2.4,
one can write

(5.3.1) f(z)= Zak(z — 2k, a= L dz

~ C2mi Jo (2 — z)kt!

for any counterclockwise circle C centered at zo (within the analyticity region of f). From

(5.2.6), we reach
/f = 2mia_;.
c

This suggests the coefficient a_; is of special significance in this context.

DEFINITION 5.3.1. The coefficient a_; is called the residue of f at zy, and we denote
Res (f;20) == a_;.

PROPOSITION 5.3.2 (Evaluation of residues via complex differentiation). If f has a pole
of order k € N at 2y, then

Res (f: 20) = 7w 957 (2 = 20) ()],

(k—1)!

REMARK. Intuitively, we want to remove the pole of f by multiplying (z — 29)¥. The
“price” of doing so is some complex differentiations.

PROOF. By Theorem 5.2.6, one can write
f(2)=ap(z—2) "+ +ai(z—2)"  +a+a(z—z2)+ .
Then we see that
(z—20)f(2) =a_p+-+a1(z— 2" +ap(z —20)" +ai(z — 2)" +---,

and hence
A ((z—20)"f(2)) = (k — Dla_y + agk!(z — 20) + - - .
Evaluate z = 2y in the above equation, we conclude our proposition. O

REMARK 5.3.3. In most cases of higher-order poles, as with essential singularities, the
most convenient way to determine the residue is directly from the Laurent expansion.

'n fact, since deg P < deg @, by taking |z| — co, we see that indeed C' = 0.
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To evaluate f7 f when ~ is a general closed curve (and when f may have isolated singu-
larities), we introduce the following concept.

DEFINITION 5.3.4. Suppose that v is a parametrizable continuous piecewise-C' closed
curve and that a ¢ . Then the number

. 1 1
wind (vy,a) = pyr / P dz
2!

is called the winding number of v around a.

If v = C be the counterclockwise circle C, then by Cauchy closed curve theorem (Theo-
rem 3.3.11) we see that

wind (v, a) = {

1 if a is inside the circle,
0 if a is outside the circle.

If ~ circles the point a k-times via the parametrization v = [zo +rel? 0<0< 2k;7r}, then
1 2
wind (v, a) = —/ idd =k,
2mi J,

which suggests the terminology “winding number”. We now need to prove this idea make
senses for general closed curve.

For each fixed parametrizable continuous piecewise-C! closed curve =, it is important to
observe that

the mapping a — wind (v, a), also can be denoted by wind (v, -),
is continuous as long as a ¢ 7.
PROPOSITION 5.3.5. For any parametrizable continuous piecewise-C' closed curve v and

a ¢ v, the winding number wind (v, a) is an integer. In addition, the mapping wind (v, -) is
locally constant (i.e. it is constant in the connected open components of C\ 7).

PrOOF. Write v = [ 2(t) ‘ 0<t<1 }, and set
S 2 t
F(s):/ Ldt for 0 <s <1,
o 2(t)—a
where Z denotes the differentiation of z with respect to ¢ (see Definition 3.1.2). By funda-
mental theorem of calculus on R, one sees that

F(s):ﬂ for all 0 < s < 1,
z2(s) —a
and thus (by the technique of integral factor, should be taughted in ODE course)
d
ds
Since the open interval (0, 1) is connected, then
(2(s) —a)e T =C forall 0<s< 1

for some constant C' € C. Note: the equation also holds for endpoints s = 0 and s = 1,
because F' and z are continuous on [0, 1]. Therefore, we have

(2(s) —a)e P =2(0)—a forall 0<s<1.

((2(s) — a)e_F(S)) =0 forall0<s<1.
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Since a ¢ vy, then z(0) — a # 0, and then we have
eF(S):'Z((S)—_a forall0 <s<1.

Since 7 is a closed curve, then z(1) = 2(0), and then

This implies that

F(1) = 2rik  for some integer k € Z,

and hence we conclude that wind (y,a) = ;= F(1) = k.

2mi

Here we exhibit some graphical examples from Wikipedia:

CIOX®

(A) wind = — ) wind = — (¢) wind =0
) wind =1 (E) wind =2 (F) wind =3

FIGURE 5.3.1. Winding numbers (By Jim.belk - Own work, Public Domain)
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FIGURE 5.3.2. wind (v, a) = 2 (By Jim.belk - Own work, Public Domain)

We finally able to prove the following theorem.

THEOREM 5.3.6 (Cauchy residue theorem). Suppose f is analytic in a simply connected
open set S} except for isolated singularities at z1, 2o, -+ , zm € ). Let v be a parametrizable
continuous piecewise-Cl closed curve in Q, which not intersecting any of the singularities.
Then

/f = QWiZWind (7, z&) Res (f; zx)-
v k=1

REMARK (Cauchy closed curve theorem). For those f which is analytic in a simply
connected open set €2, one has Res(f;z) = 0 for all z € Q, which can be easily see from
Definition 5.3.1. Therefore one has f,y f = 0. Therefore the Cauchy closed curve theorem

(Theorem 3.3.11) is a special case of Cauchy residue theorem above.

REMARK (Cauchy integral formula). By considering f(z) = % with analytic function
g and a € €, one has Res(f;a) = g(a), which can be easily see from Definition 5.3.1.
If we choose C be a parametrizable continuous piecewise-C! closed curve in 2, which not
intersecting a and is simple (i.e. wind (,a) = 1), one sees that

/c 9(2) dz =27miRes(f;a) = g(a).

zZ—aQ

Therefore the Cauchy integral formula (Theorem 4.5.1) is a special case of Cauchy residue
theorem above.

PROOF OF THEOREM 5.3.6. Similar to Theorem 5.2.7, if we subtract the principal parts

1 1
7)1 < ) 7'.. 7Pm( )
z—2 Z— Zm

from f, one sees that the difference
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is analytic on D. Hence the Cauchy closed curve theorem (Theorem 3.3.11) implies that

532 o< o [ 15 (1)

By the definition of principal part (Definition 5.2.5) and the definition of residual (Defini-
tion 5.3.1), one sees that

P, (;) _ Res(f,z) P TS S

z — 2 z — z (z—2zk)? (22— z)?

and the above sequence converges uniformly on . By using the fundamental theorem of line
integral (Theorem 3.1.16), it is easy to see that

1
/—kdz—o for all k =2,3,4,---,
7<Z—Zk>

because 7 is a closed curve. Hence we see that

/Pk( 1 ):Res(f72k)/ 1 dz = 2miwind (7, z;) Res (f; k).
g Z T %k 2= 2

Plugging the above equation into (5.3.2), we conclude our theorem. O

5.4. Some applications in combinatorics : Egorychev method

The connection between binomial coefficients and contour integration is an immediate
corollary of the Residue theorem (Theorem 5.3.6). These techniques sometimes also referred
as the FEgorychev method, which is a collection of techniques introduced by Georgy Ego-
rychev for finding identities among sums of binomial coefficients, Stirling numbers, Bernoulli
numbers, Harmonic numbers, Catalan numbers and other combinatorial numbers [Ego84].

THEOREM 5.4.1 (First binomial coefficient integral). For eachn € N and k =0,1,--- ,n,
one has

n 1 (14 2)"
for all simple closed (parametrizable continuous piecewise-Ct) curve C surrounding the origin.
PROOF. For each £k =0,1,--- ,n, by choosng

j=0

in the Residue theorem (Theorem 5.3.6), one sees that

1 n
/ﬂ dz =27miRes(f;0) (Theorem 5.3.6)
c

Skt
= i (Z) (Definition 5.3.1)

where we interpret n(n —1)---(n —k + 1) = 1 when k& = 0, which conclude the following
theorem. O
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EXAMPLE 5.4.2. Let C be any simple closed (parametrizable continuous piecewise-C'!)
curve surrounding the origin. By using (5.4.1), it is easy to see that

n—1 n n—1
kE—1 k
1 1 n—1 n—1
R
27 Je 2k 21 Jo 2k
1 (1+2)"1z+ (14 2)"!

= — dz
27 Je Zk+1

1 (14 2)" n
" 2m CWdZ_<k)=

which is the well-known Pascal triangle.

EXAMPLE 5.4.3 (A special case of Chu-Vandermonde identity). Let C be any simple closed
(parametrizable continuous piecewise-C') curve surrounding the origin. By using binomial
theorem, one sees that

e =£ (02 £0) 550 0)

k=0 =0 k=0 (=0

(14+2)"(A4z"hH"

/ (1+2)"(1+ 271y

z

By choosing f(z) = , one sees that

dz = 27miRes (f;0) (Theorem 5.3.6)

n

2
=2my (Z) (Definition 5.3.1).

k=0

On the other hand, we compute that

z”: (Z)Z _ % C (1+2)"(1+ 271" "

2
1 1 n n
__/( +2)"(z + 1) ds
27 Jo Zntl

1 1 2n
1 (1+2) dz:(Qn),
n

N 271 I Zn+1
where the last equality is given by (5.4.1).

EXAMPLE 5.4.4. We now want to prove the binomial identity:

S () (1) () () (1)

By using the first binomial coefficient integral (Theorem 5.4.1), one has

n+k _L/ (1+z)"+’fdz k _L/ (1+w)kdw
ko) omif, 2Rt o\J/)  omi), wit!
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for some r > 0 and s > 0, where C, is the circle with radius p centered at 0, which is
counterclockwise oriented. This yields

s (1) (19 ()

B 1/ (I+2)" 1
27 27T1

1 / (1+2)" 1 / 1
C2miJe 2 2mi o, wit!
i

binomial theorem
7\

Z ()(1+z)§1+w)>kdwdz
(-

B 1+z)(1+w)>n dudx
2

. W

J
1 (I+2)" 1 1
ori Contl c. witt

(z— (14 2)(14+w))" dwdz

2mi Jo, 2L 2mi

binomial theorem

:(_1?n/ (Hz)ni,/c ! (1+w(A1+z))”dwdz

27i 2t 27 Jo witd
=" [ d+2)" 1
=5 perrsa — w!(1+ 2)!dwdz
(=)™ [ (1+2)" 1 ~(n\ i
(5.4.2) =5 o oni ). ¢ w71+ 2)?dwdz.
T s q:0

We now define

Flw) = (0)wrtae

q

By Definition 5.3.1, it is easy to see that Res(f;0) = (7;’) (1 + 2)7, and thus by using the

Residue theorem (Theorem 5.3.6), one sees that

I 14 2)dw = () (1 + 2)
27”/2()11) (14 2)?dw = (j)( + 2)
Plugging the above equation into (5.4.2), we reach
e () () (j)
k=0
(—1)”/ (1+2)" j
= d
27Ti Cr Zn+1 j ( +Z) :
J) 2mi Jo, o 2t

er ().

where the last identity follows from the first binomial coefficient integral (Theorem 5.4.1).
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THEOREM 5.4.5 (Second binomial coefficient integral). For each n € N and k =
0,1,---,n, one has

n 1 1
4. = —
(5.4.3) (k) 27?1/6 (1 — z)ktlpn—h+l dz
P

for all 0 < p < 1, where C, is the circle with radius p centered at 0, which is counterclockwise
oriented.

REMARK. The reason we restrict 0 < p < 1 is to make sure that W is well-defined
as a uniformly converge geometric sequence).
y ge g

PROOF. For each £k =0,1,--- ,n, and let

1
f(z) = (1 — 2)ftipnkil’

Since f has pole of order n — k + 1 at zg = 0, by using Proposition 5.3.2, one has

Res (f;0) = (n —1 k)! ag—k (Zn_kﬂf(z)) ‘z~>0
~ (n _1 0! o (=2,
BT
e _1 k)! (k+1)(k+2) 0272 (L= 2)""7) ],
1

Therefore, by using the Residue theorem (Theorem 5.3.6), we immediately conclude (5.4.3).
]

EXERCISE 5.4.6. Prove Theorem 5.4.1 by using Residue theorem (Theorem 5.3.6) and
evaluation the residues via complex differentiation (Proposition 5.3.2).
THEOREM 5.4.7 (Exponential integral). For eachn € N and k =0,1,--- ,n, one has
k! nz
nk = — ¢
27 Jo 2R

for all simple closed (parametrizable continuous piecewise-C") curve C surrounding the origin.

EXERCISE 5.4.8. Prove Theorem 5.4.7 by using the Residue theorem (Theorem 5.3.6)
[Hint: Consider the function S+] .

THEOREM 5.4.9. For each k € Z and n € Z, one has
X{(nk)ezxz:n>k} (0, k) = _/ - 4

2mi Jo, 2n AL — 2
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for all 0 < p <1, where C, is the circle with radius p centered at 0, which is counterclockwise
oriented. Here x4 is the indicator function defined by

(2) = 1 ,z €A,
XA =0 ,x ¢ A.

REMARK. The reason we restrict 0 < p < 1 is to make sure that é is well-defined (as
a uniformly converge geometric sequence).

REMARK (Iverson bracket). In many cases, we simplyfied the notations by simply writing
{n >k} ={(n,k) € ZXZ : n>k}. The Iverson bracket [-], given by [z € A] := xa(x).
One note that the Kronecker delta can be expressed as d,; = [{i = j}] = [¢ = j]. By slightly
abusing notations, sometimes we write Theorem 5.4.9 as
1 1 1
>k = xinsiy = — | ————dz.
[n = k] = X(n>ky 27 Jo, on—k+1] _ o
PROOF OF THEOREM 5.4.9. We consider the function

11
&)= omy—

When n+ 1 < k (iff n < k), then f(z) is analytic in By, so Res(f;0) = 0. Otherwise when
n+1>k (iff n > k), then f(2) has a pole of order n — k + 1 at zp = 0, and hence by
Proposition 5.3.2 we see that
1 n—k n—k+1

Res (f, 0) = m 82, (Z + f(Z)) |z%0
_ 1 n—=k —1
- (n _ k)! 8z (<1 - Z) )|z~>0

1

= (1 =27

- ! B2 (=)

1 n—k—3 —4
:m2'35z (1=2))]

z—0

z—0

z2—0

Therefore, by using the Residue theorem (Theorem 5.3.6), we immediately conclude our
theorem. ]

k

number of ways of partitioning a set of n elements into k£ nonempty sets, which is given by
(https://dlmf.nist.gov/26.8)

{1} =i ()

The Stirling set number (also known as the Stirling number of second kind) {n} is the


https://dlmf.nist.gov/26.8
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THEOREM 5.4.10. For eachn € N and k=1,--- ,n, one has

n n! 1 (e —1)*
=—— [ ———d
{k’} k! 27ri/c ot

for all simple closed (parametrizable continuous piecewise-C*) curve C surrounding the origin.

PROOF. It is easy to see that the function

j=0

has a pole of order at most n + 1 at zy = 0, and hence by Proposition 5.3.2 we see that

Res (£:0) = = 07 (=" (2) |,
1 i i (k n 2
= —‘Z(_l)k ! (]) az (6] )lz—)O
n: =0
Iy (B
"~ onl = J ’

K [n
-

Therefore, by using the Residue theorem (Theorem 5.3.6), we immediately conclude our
theorem. ]



CHAPTER 6

Some special analytic functions

6.1. The analytic function log 2

In real analysis, the (natural) logarithmic function log x for x > 0 is defined by the inverse
function of the exponential function e*. The main difficulty to extend this to complex number
is the function e? is not injective.

DEFINITION 6.1.1. We say that f is an analytic branch of logz in a domain D if f is
analytic in D and e/*) = 2.

REMARK 6.1.2. If f is an analytic branch of log z, then all other branches are g(z) =
f(z) + 27ki for k € Z.

For each x > 0, it is well-known that

le _1
dx gx—x.

If we fix any xg > 0, then the fundamental theorem of calculus implies

1
log x :/ — dy + log xy.

o

This suggests us to define the complex logarithmic as in the following:

THEOREM 6.1.3. Suppose that D is simply connected and that 0 ¢ D (this condition is
quite natural since log0 is not well-defined). Choose zy € D, fix a value of log zg € C such
that €80 = 2y and set
1
fe)= [ =

0 6

Then f is an analytic branch of log z in D, satisfying f'(z) = L for all z € D.

Tz

dC + IOg z20-

REMARK 6.1.4. Here f; %d{ means the integral along any paths from zy to z. Since % is

analytic in D, by using the Cauchy residual theorem (Theorem 5.3.6), one sees that fzzo %dC
is indeed independent of the chosen path.

PROOF OF THEOREM 6.1.3. It is easy to see that f is analytic in D with f’'(z) = % The
remaining task is to show e/*) = 2. We define

g(z) = ze T,

Since ¢'(z) = e 1) — 2f(2)e7/® = 0 in D and D is simply connected, by using the
fundamental theorem of line integral (Theorem 3.1.16) one sees that g is a constant function
and

9(2) = g(z0) = z0e™ ¥ =1,
hence we conclude e/®) = 2. O
66
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In a typical situation (unless stated), we choose D = C\ {z € C: Rez < 0} and 2y = 1:

DEFINITION 6.1.5. The function Log z := [ % d¢ forall z € C\{z € C: ez < 0}, which
defined in the sense of Remark 6.1.4, is called the (standard) principal branch of log z.

It is easy to see that
1
(Logz) =—- and —m <Jm(Logz) <.
z
One can use Remark 6.1.2 to construct all other branches

(6.1.1) Log z + 2mki for all k € Z,

which also corresponding to D = C\ {z € C: ez <0} and 2z = 1 as well. We also can
define the logarithms to other bases by

Log z

L = .
8w # Logw

Recall that exp(Log z) = z for all z € C\ {z € C: e z < 0}, that is, Log is the right-inverse

of exp (with respect to the composition operator of functions).

QUESTION 6.1.6. How about Log(expw) for w € C satisfies expw € C '\
{z€C:Rez<0}?

The above question can be easily answered by the following theorem gives an equivalent
definition of Log z:

THEOREM 6.1.7 (Equivalent definition of principal branch of logz). For each z € C\
{2 € C:Rez <0}, one can write z = Re'? for some R >0 and —7 < < w. Then

Logz =log R+ 16 = log |z| + 6.

REMARK 6.1.8 (Left inverse of exponential). For each w € C, one sees that

Re w+iJmw Rew _iTmw i)%w(

expw = e =e e =e"*"(cos(Imw) + isin(IJmw)).

If —2 < Jmw < %, then Re(expw) = €™ cos(IJmw) > 0. Therefore, at least when

2
< Jmw < 7, one can choose z = expw in Theorem 6.1.7 to see that

Log (expw) = log(e™") + iJmw = Rew + iTmw = w.

This shows that the principal branch of complex logarithmic is the left inverse of complex
exponential in suitable domain, it is valid when —7 < Jmw < 7, but not all w € C. It is
clearly that this is not true for other branch (6.1.1). ThlS also explalns why we only consider
right inverse in Definition 6.1.1, and we usually consider the principal branch of complex
logarithmic (in many literature, we always consider this principal branch unless stated).

PrROOF OF THEOREM 6.1.7. We see that

Log: = [ Lac= /' Ly [ tac=isns /j”%dg.

We now choose the curve C = [ Relt ‘ 0<t<o }, and by the definition of line integral we

see that
Re‘9 0
/ —dC /gdC / —Rleltdt—l/ 1dt =id,
0

which conclude the theorem. O
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EXERCISE 6.1.9. Show that Log(z120) = Logz; + Logzy for all 21,29 € C\
{z € C:Rez < 0}.

ExXAMPLE 6.1.10. We now can define the roots of complex number by using Log z. For
example,

1
the principal branch of /2 := exp (ELog z) forall z€ C\ {z € C:Rez <0}.

Note that different branches of log z may yield different branches of /2. Unlike log z, there

are only two different branches of y/z. This follows from the fact that the equation w? = z

has exactly two different solutions for any z # 0, which is a consequence of fundamental
theorem of algebra (Theorem 4.3.6).

EXERCISE 6.1.11. Find all the two branches of V/i.

EXAMPLE 6.1.12. The same technique may be used to define arbitrary powers of any
nonzero complex number. For example, the principal branch of i! is defined by exp(iLogi).
By using Theorem 6.1.7, one sees that

Logizlogl—i—ig:—

then i = exp(ilF) = exp(—2). It is interesting to note that i’ is a real number.
EXERCISE 6.1.13. Determine all the other branches of il.
EXERCISE 6.1.14. Compute Log (1 + ).

EXERCISE 6.1.15. Show that

Log(1+42) = — Z(—l)”% for all z € B;.

n=1

We end this section by giving an example which has interesting branches which are dif-
ferent to the principal branch.

ExXAMPLE (Lambert W-function). The Lambert W-function W (z) is the complex-valued
solution of the equation

weV = 2.

On the z-interval [0, 00) there is one real solution, and it is nonnegative and increasing. On
the z-interval (—e™!,0), there are two real solutions, one increasing and the other decreasing.
We call the increasing solution for which W(x) > W(—e™!) = —1 the principal branch
and denote it by Wy(x), and the decreasing solution can be identified as Wi, (x F i0), see
Figure 6.1.1. Here z Fi0 means the (formal) limit x F iy as y — 0,. Rather than elaborate
all details here, we refer to DLMF:4. 13 for more details about this function.
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-2
i Wo(x)
_e_l
| | 1 | 1 | L. x
-1 0 1 2 3 4 5
—2
L4

FIGURE 6.1.1. Branches Wy(x), Wi(x F i0) of the Lambert W-function
(Credit: https://dlmf.nist.gov/4.13.F1.mag)

6.2. Infinite products and Weierstrass product theorem

Similar to the infinite sum (power series), we also can consider the infinite product by
using a similar manner:

DEFINITION 6.2.1. Let {uy}72, be a sequence of nonzero complex numbers. The infinite

product Iyenuy = 152 uy is said to converge to a nonzero limit if the sequence of partial
products

Py = Hévzluk = UiUg - - UN
converges to a nonzero limit (in C, in the sense of Definition 1.2.4) as N — oo.

REMARK 6.2.2. In this case, it is easy to see that Py = uyPy_1. The infinite product
converges means Py — P for some P € C\ {0}, and thus

Py limpy o0 Py

. . P
lim uy = lim :F:L

N—oco N—o00 PN—I limN_wo PN_1

Obviously, II;2 ; uy converges to a nonzero limit if and only if TI32 y uy converges to a nonzero
limit for any fixed Ny € N.

DEFINITION 6.2.3. If Py — 0, we say the infinite product diverges to zero. If there are
finitely many terms uy are equal to zero and Iljey ., 2our converges (in C), then se say the

product Iienuy, = 1172 ui, converges to zero.

We now give an example to explain why we introduce the term “diverges to zero”.
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EXAMPLE 6.2.4. Fix any Ny € N, we see that the partial sum of the series [~y (1—1/k)
is given by

N N
1 k—1
=11 (- 3) = 15
k=Np k=Noy
_No—1 My NetT  N—T
Ny Ne+T Ne+2 N
N -1
N

According to Definition 6.2.1, one has

(6.2.1) ﬁ N i T )
N ]{; .—Nl—{nook_N k‘ = U.

k=N
However, we see that 1 — % — 1 as k — oo. Fix a large Ny, and we formally see that

~1 ~1
7\ 7\

1(1)=() ()
H 1— = 1—— ) (1- R 140,

Due to this inconsistency, therefore we call (6.2.1) that the series [[;~y (1 —1/k) is diverges
to zero.

EXERCISE 6.2.5. Prove that [];2, (1 — %) converges to a nonzero limit.

EXERCISE 6.2.6. Let {a;}2, be a sequence of positive real numbers. Show that

N
ay +as + - +ay < H(l +ap) < emtettay forall N € N.
k=1

By using this, show that [[;~ (1 + a;) converges to a nonzero limit if and only if > ;7 ay
converges.

However, the following exercise demonstrates the necessity of the positivity of such

{an}isy:

EXERCISE 6.2.7. Let a; := (‘%k
but [;2,(1 4 ax) diverges to zero.

2,3,4,---. Show that > /7, a) converges,

For general (complex) case, we still have the following result.

THEOREM 6.2.8. Let 1 4+ 2z, € C\ {z € C: Rez <0} for all k € N.

(a) If > po  Log (1 + z) converges, then [[r— (1 + z;) converges to a nonzero limit

exp (3 -, Log (14 2)).
(b) If Tz (1 + z) converges to a nonzero limit, then Y ;- Log (1 4 zx) converges.

REMARK. The tricky part in (b) is when the limit of [[,~,(142) isin {z € C : RRe z < 0},
therefore the limit cannot express in terms of the standard logarithmic branches (6.1.1).
Therefore the limit of )"~ Log (1 + z) is actually log™ ([T,—,(1 + z)), where log* is some
branch of the logarithm given in Theorem 6.1.3 with some suitable domain D, which may
differ with the standard choice C\ {z € C: Rez < 0}.
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REMARK. Both results (a) and (b) can be extended for all z;, # —1 with different branches
logy (corresponding to different domains D)) of complex logarithmic for each k.

PROOF OF (a). Let Sy = S~ | Log (1+2) and Py = [[n_,(1+2,) = €°~. The condition
> e, Log (1+2;) converges (to some S € C) means Sy — S, and hence Py — ¢ # 0, which
conclude (a). O

PROOF OF (b). The condition [, (1+42) converges to some nonzero limit P € C means
Py — P. As explained in the remark, one can find some branch of the complex logarithm
log™ (given in Theorem 6.1.3 with some suitable domain D) such that

log™ Py — log™ Pin C as N — co.
By using Theorem 6.1.3 and (6.1.1), for each k € Z, one can find ny € Z such that

N
Z Log (1 + zx) + 2ming) = log™ Py,
k=1

and thus
N

Z (Log (1 + zx) + 2wing) — log™ P as N — oc.
k=1
It is easy to verify that (this can be showed by, e.g. a contradiction argument)

Log (1 + zx) + 27ming — 0 as k — 0.

By using Remark 6.2.2, we have z;, — 0, and thus the above limit implies n;, — 0 as k — oo.
Since ny, € Z, thus ny = 0 for all £ > Ny for some Ny € N. Then one sees that

No
Z Log (1 + z) Z (Log (1 4 2x) + 2ming) — log™ P + QWiZ ng as N — oo,
k=1 k=1
which proves (b) with the branch log* = log™ +27i S0, ny. O

COROLLARY 6.2.9. If Y7, zx converges absolutely, that is, > .o, |zx| < oo, then
[, (14 2) converges.

PROOF. Since ;7 |2x| < 0o, then one can find Ny € N such that |z < 3 for all & > Np.
Hence by Exercise 6.1.15, one has

2 3 1 1
|Log (1 + 21)| = zk—z——i-———i— ‘§|zk| (1+—+—+---> < 2|z for all k> Ny.

2 3 2 4
Hence . -
> Log(l+2) <2 || < o0
k=No k=No
and our result follows from Theorem 6.2.8(a). O

DEFINITION 6.2.10. We say that the product II3° (1 + z;) is absolutly convergent if
1120 (1 + | 2k]) < o0.

LEMMA 6.2.11. If II3° (1 + z;,) is absolutly convergent, then [, (1 + z) converges.

PROOF. Since 132, (1 + |z|) < 0o, by Exercise 6.2.6, we have "7 |z;| < oo,. Hence we
conclude our lemma by Corollary 6.2.9. OJ
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We wish to consider analytic functions defined by infinite products, i.e. functions of the
form

(6.2.2) =[]+ u(z
k=1

By using Morera’s uniform convergence theorem (Theorem 4.7.5), if each wy, are analytic on
an open set D and the partial products converges to their limit function uniformly on each
compact set K in D, then one sees that f is analytic on D.

EXERCISE 6.2.12. Let K be a compact set in C, and we consider a continuous function
g : K — C. Show that the set g(K) :={g(z) : z € K} is compact in C.

Based on this observation, one can prove the following theorem:.

THEOREM 6.2.13. Suppose that for each k = 1,2,--- that ug is analytic in an open set
D, and that >~ |uk(z)| converges uniformly on all compact set in D. Then the product

(6.2.2) converges uniformly on on all compact set in D, and it defines an analytic function
i D.

REMARK. The uniform convergence of Y~ ux(z) does not imply the uniform conver-
gence of > 77 Jug(2)].
PROOF. Let K be any compact set in D. Since Y .-, |ug(z)| converges uniformly on K,

then there exists Ny € N such that ||ug|zex) < %, hence 1+ uy # 0 for all kK > Ny. Given
any € > 0, one can choose integer N; > N, such that

Z\uk |<6

k=N
Hence by Exercise 6.1.15, one has

upl(z) — () | ()

Log (1+ ug(2))| = . .

1 1
< ug(2)] (1+§+Z+---> < 2lug(z)|  for all & > Ny,

and thus
Z|L0g 1+ ug(z |<22|uk )| <2 forall z € K.
k= N1 k= Nl
Hence we know that > -, Log (1+ uy(z)) converges uniformly on K to a limit function g(z).

Sicne ¢ is continuous, by Exercise 6.2.12 it follows that g(K) := {g(z) : z € K} is bounded.
Finally, since the exponential function is uniformly continuous in any bounded domain, then

Pn(z) :==exp (Z log(1 + uk(z))>

k=1
converges uniformly to its limit function f(z) = e9%*). Hence we conclude our theorem by the
above observation involving Morera’s uniform convergence theorem (Theorem 4.7.5). O

EXERCISE 6.2.14. Show that [];~,(1 + 2*) converges uniformly on any compact subset
of By (therefore it defines an analytic function on By).
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EXERCISE 6.2.15. Show that [];”,(1 4+ ;=) converges uniformly on any compact sub-
set of the half-space {z € C:%e(z) > 1} (therefore it defines an analytic function on
{z € C:Re(z) > 1}).

THEOREM 6.2.16 (Weierstrass product theorem). Suppse {\g}ren C C which |[N\g| — o0
as k — oo. Then there exists an entire function f such that

fAk) =0 for allk e N f(2) #0 for all z ¢ {\}ren-
(see (6.2.4) for the precise formula for such f)

REMARK. According to the uniqueness theorem (Corollary 4.6.7), a nontrivial entire
function cannot have an accumulation point of zeros. This means that, if f(\g) = 0 for
those {A\x}ren C C converges in C, then f = 0 in the whole complex plane C. Therefore
the assumption |\;] — oo as k — oo seems necessary. It would seem natural to write
f(z) = Tli,(z — \y). However, since |\;] — oo, the terms of the product would not
approach 1, even pointwisely, for each z € C. The product would diverge.

REMARK. An entire function may be zero at all the points of a sequence which diverges
to 0o, see Example 4.6.8 for sin z. Weierstrass product theorem (Theorem 6.2.16) shows that
this example is in no way exceptional.

PROOF OF THEOREM 6.2.16. We first consider the case when Ay # O forall k =2,3,---,
and set

z 22 2*
Ey(z) = SR
k(2) == exp (/\k+2>\z+ —i—k)\llz)
Given any M > 0, and let |z| < M. Since [A\y|] — oo, one can find Ny € N such that
|Ak| > 2M for all £ > Ny. By using Exercise 6.1.15, we see that

Log <(1 . Aik) Ek(z)) = Log (1 - A%) + Log (Ey(2))

Log (1= 2 )+ 24 2 pop 2
— le) - — _ _ -
8 ) N 2N 3%
.y l(_i>j

j:k+1j Aj

which is valid since || < 1 for all k > Ny. Hence

z S
Log ((1——) Ek(z)>‘ < Z —
Ak =kt 1 I
k oo i—k k oo ¢
z 2 z 1 z
D e D
by i j)\g€ A £:1€—|—]€ Ak
k oo
z 1 z 1

This shows that the sum
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is uniform converges in all compact set in B);. By taking the exponential in each partial
sum, one also can verify that the product

[e.o]

(6.2.3) 9= =] (1 . Aik) Ey(2)

k=2

is also uniform converges in all compact set in By;. By arbitrariness of M, in fact (6.2.3)
defines an entire function, satisfying

g(Ax) =0forall ke N g(z) #0 for all z ¢ {\p}7s.

Finally, if we seek an entire function with zeros A; = 0 at the origin as well, we only need to
set

(6.2.4) F(z2) = 2Pg(2) = zpi[Q (1 - Aik) Eu(2)

so that A\; = 0 is the zero of f with multiplicity p. O

EXAMPLE 6.2.17. By using (6.2.4), it is easy to see that an entire function with zeros at
all the points A\, = log k for all k£ € N is given by

f(z)22ﬁ<1— )exp<lo;k+2(lozg?k)2+m+k(10’z—;€)k>'

k=2

z
log k
EXERCISE 6.2.18. Show that

f(z) = ﬁ (1 + E) e R
k=1 k

is an entire function with a single zero at every negative integer A\, = —k. In fact, this function
is related to Gamma function (will be introduced later in Section 6.3) by the formula

where 7 is the Euler constant, see (6.3.4). [Hint: Modifying the ideas in the proof of Theo-
rem 6.2.16.]

EXAMPLE 6.2.19. By using Exercise 6.2.18, it is easy to see that
00 . . [e%e) 5 . o] 22
(6.2.5) f(z)zz(ll_[l(l—l—E)e k> <E(1—3>eﬂ):zn(1—ﬁ)

is an entire function with a single zero at every integer, since the partial Hff:l <1 — i) is
the product of the partial sum

M . Mo .
H (1 + E) e % and H (1 — 3) ei
k=1 Jj=1
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with the special case N = M; = Ms. As an exercise, here we give a direct justification
of 2[5, (1 — Z—;) without refering Exercise 6.2.18 but only modifying the proof of Theo-
rem 6.2.16: Given any M > 1, and let |z| < M. By using Exercise 6.1.15, we see that

2

Log (1- 2 EOO ( 1)j(_;_2)j EOO LAY iranks 123 M3
[e) _—— = — — = — — —_ T 2 .
2 L2 A j C 5\ 2 =
Jj=1 7j=1
Hence we see that
22 <120 X1 11 1
~Z )< E 2l < E < = § — = .
Log (1 k2>‘ B J=1 k.2 - 7=1 2]k%] - k% J=1 2J k% for au ‘Z‘ = M

This shows that the sum

is uniform converges in all compact set in Bj;. By taking the exponential in each partial
sum, one also can verify that the product

(6.2.6) 9(2) = ﬁ (1 - Z—Z)

k=1

is also uniform converges in all compact set in Bjy;. By arbitrariness of M, in fact such g
defines an entire function, satisfying

g(k)=0forall k € Z\ {0} g¢g(z)#0 for all z ¢ Z\ {0}.
Finally, we conclude (6.2.5) is our desired analytic function since f(z) = zg(z).
We have the following fact:
THEOREM 6.2.20. For each z € C, we have

= f(2),

sinz

™

where f is the function given in (6.2.5).

We shall skip the proof of the above theorem, since it is too technical. Here we refer to
[BN10, Proposition 17.8| for a proof. As an immediate consequence, we have:

COROLLARY 6.2.21. All zeros of sinz are real (in other words, there is no zeros other
than in Example 4.6.8).

Moreover, we also have the following representation for complex cosine (here we state
without proof, see [BN10, Exercise 9 in Chapter 17]).

THEOREM 6.2.22. For each z € C, we have

= 422
COSTTZ = H 1-— W .

k=0
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6.3. The Gamma function: an extension of factorial function
We begin this section by the following lemma.

LEMMA 6.3.1. Let D be an open set in C. Suppose ¢(z,t) is a continuous function of
t € [a,b] for fized z and an analytic function of z € D for fized t. Then

f(2) = / oz 1) dt

15 analytic in D with complex derivative

b
(6.3.1) f’(z):/ 0.p(z,t)dt

PrROOF. Let I the boundary of topological closed rectangle in D, each segment is either
horizontal (i.e. parallel to real axis) or vertical (i.e. parallel to imaginary axis). By continuity
of ¢, one sees that ¢ € L(T" x (a,b)). Therefore by Fubini’s theorem (for Lebesgue integral),

Since ¢ is analytic in z, by Cauchy’s residual theorem (Theorem 5.3.6) one sees that
Jre(zt)dz = 0, and thus Jo f(2)dz = 0. By arbitrariness of I' C D, we conclude f is
analytlc on D by Morera’s theorem (Theorem 4.7.1). Since f is analytic, then f'(z) = 0, f,
whenever z = x + iy. Therefore (6.3.1) immediately follows from the Leibniz integral rule
(this step only requires the continuity of d,¢), here we omit the details. O

We consider the integral
o0
In:/ e t"dt forn=0,1,2,---,
0
which can be interpret as improper Riemann integral. In this case, this is same as the
Lebesgue integral.

EXERCISE 6.3.2. By interpreting the above as improper Riemann integral, show that
Iy =1and I, = nl,_; for all n € N. From this, one sees that [,, = n! = n(n—1)(n—2)-----2-1.

For any z € C and t > 0, we define t*~! := e(* D18t Ope gees that [t*~ 1| = |e(s~Dlog?| =
y
e(e(z=D)logt — yRe(z=1) for 911 t > 0. Hence one sees that the gamma functwn

F(z):/ e i hdt
0

is uniformly convergent in the right half-plane {z € C : Siez > 0}. Hence by Lemma 6.3.1,
one sees that I' is analytic in the right half-plane {z € C : PRe z > 0} with complex derivatives
or order k:

I (z) = / t*"Y(logt)fe~tdt for all z € C with Rez > 0.
0
Using the same arguments in Exercise 6.3.2, it is easy to show that
['(z4+1) =z2I'(2) forall z € C with Rez > 0.
We can extend I' for —1 < fRe 2 < 0 by the formula

I(z) = @

forall z € Cwith —1 <$Rez < 0.
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It is easy to see that I' is continuous at each z € C\ {0} with Rez > —1, and hence by
using Morera’s continuity theorem (Theorem 4.7.7), T'is also analytic there. Continuing in
the same manner, we can define

r 2
[(z) := [=+2) for all z € C with —2 <Rez < —1,
z2(z+1)
r
[(z) = (2 +3) for all z € C with —3 < Rez < —2,
2(z+1)(z+2)
r 1
(6.3.2) P(s) e —TEHEED s eCowith —k—1 < %Rez < —F,

2(z+1)--- (24 k)
and applying Morera’s continuity theorem (Theorem 4.7.7), we see that:

THEOREM 6.3.3. ' defines an analytic function on C\{0, —1,—=2,--- }, with Res (I'; —k) =

lim, (2 + B)T(z) = S

PROOF. By using Proposition 5.3.2, one can easily compute
. 1) (—1)*F
Res(I'; —k) = 1 E)'(z) = =
es(li—k) = I CHRLG) = 5oy e~ w0

which concludes our result. This also means that {0, —1,—2,-- - } are all poles or order 1. [

From now on, we will only sketch the ideas (since this part is quite technical), see [BN10,
Chapter 18] for more details. By using the fact that lim, (1 — %)” = ¢!, one can show

n t n
[(z) = lim [ ¢! (1 — —) dt
0 n

n—oo
1

= lim —/ t*"'(n —t)"dt whenever Re z > 0,
0

n—oo N

see [BN10, Exercise 7 in Chapter 18|. By using integration by parts, we have

1 n
I'(z) = lim — - 2/ t*(n—t)" 1 dt
0

n—oo Nz
1 1)1 n
L M=) / =1y
n—oon®z(z+1)---(z+n—-1) J,
n* 1 2 n
n—oo z Z4+1 242 z4+n

Thus we reach the Gauss’ product representation for Gamma function:

1 — lim Zn—z<1+z)(1+z>..-(l—l—%>

['(z) n—oo 2
. LT 2
(6.3.3) = nh_)ngo Zn kl_[l (1 + k:> ,

see also [FB09, Proposition IV.1.10].
REMARK. This immediately shows that I' has no zeros.

Here we exhibit a real analysis result in [BN10, Lemma 18.8]:
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LEMMA 6.3.4. Ifs, =1+ % 4+ -+ % —logn, then lim,, ., s, exists. This limit is called
the Euler constant, usually denoted as .

We write (6.3.3) as
]_ 1 1 - z
T(2) B JLI{}O e?Itat+5—logn) (z | | (1 + %) ek) .

k=1

By using Theorem 6.2.20 and Lemma 6.3.4, we have

1 . :
(6.3.4) I(z) e’ <z H (1 + %) ek) whenever Rez > 0,

k=1

see Exercise (6.2.18). By using the extension formula (6.3.2), in fact
1 0 T 22
S 1— =
s 10 5)
k=1

this somehow formaly replace z by —z (but in fact not so obvious). Therefore, we reach

T(:)T(—2) = —— forall € C\Z,

zZsinmz
that is (see also [FB09, Proposition IV.1.11]):

THEOREM 6.3.5 (Completion Formula). I'(2)['(1 — 2) = === for all z € C\ Z.

As an immediate consequence, we have
[(1/2) = /.
Applying the identity ['(z 4+ 1) = 2I'(z), we also have I'(3/2) = 21/, I'(5/2) = 3\/7/4, and

SO on.

EXERCISE 6.3.6. Show that

n—1
1 1
F(n—|—§) :\/E]I[O<k+§> forallm=0,1,2,--- .

We now restrict I'(z) for z > 0. In fact, logoI" is convex on (0,00), see [Rud76, The-
orem 8.18|. It is a rather surprising fact (discovered by Borh and Mollerup) that: If f is a
positive function on (0,00) such that f(z + 1) = 2 f(z), f(1) =1 and logof is convex, then
f =T on (0,00), see [Rud76, Theorem 8.19]. See also [FB09, Proposition IV.1.3] for a
characterization of the complex I'-function. We finally end this section by exhibit a version
of Stirling’s formula, which can be found in [FB09, Proposition TV.1.14].

THEOREM 6.3.7 (General Stirling’s formula). Let H be the function

5 ((son B e (14 2) 1)

n=0

Then for all z € C\ {z € C: Rez <0} one has

1

[(z) = V22" 2 e,



6.3. THE GAMMA FUNCTION: AN EXTENSION OF FACTORIAL FUNCTION 79

In any angular domain Wy = {Z = |z|ei9 T+ o< 0 <7-— 5} with 0 < § < m, we have
H(z) = 0 as z — o0. In addition, we have
1
H — )
0< H(z) < e for all x >0
Therefore we have the ordinary Stirling formula

n! = +v2mn <E) e with 0 < e(n) < 1.
e
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