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Preface
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(NCCU library). The lecture note may updated during the course.
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CHAPTER 1

The complex numbers

1.1. De�nition of complex plane C

We shall introduce the complex plane using a rather simple (and direct) way. Given a
number x ∈ R≥0, it is well-known that the square root

√
x of x is well-de�ned, which satis�es

(1.1.1) (
√
x)2 =

√
x ·

√
x = x for all x ≥ 0.

This arises a natural question: It is possible to extend (1.1.1) for all x ∈ R? Or, we shall
ask: How to de�ne i ≡

√
−1? Clearly, we should expect that

(1.1.2) i2 = −1.

We will answer this question in Section 4.4.
Formally, we expect the linearity

(1.1.3a) (a+ ib) + (c+ id) = (a+ c) + i(b+ d) for all a, b, c, d ∈ R.

By using the formal identity (1.1.2), we also formally computed that

(a+ ib) · (c+ id) = ac+ ibc+ iad+ i2bd

= (ac− bd) + i(ad+ bc) for all a, b, c, d ∈ R.(1.1.3b)

At this point, we not yet de�ne the element i, therefore the identities (1.1.3a)�(1.1.3b) are not
yet well-de�ned. However, we can rephrase (1.1.3a)�(1.1.3b) without involving the formal
element i (which is not yet well-de�ned).

Definition 1.1.1. We de�ne the set C := R × R ≡ {(x, y) : x, y ∈ R}. We de�ne the
binomial operations �+� and �·� on C by

C+ C → C, (a, b) + (c, d) := (a+ c, b+ d),(1.1.4a)

C · C → C, (a, b) · (c, d) := (ac− bd+ ad+ bc).(1.1.4b)

Proposition 1.1.2. (C,+, ·) is a �eld with additive identity (0, 0) and multiplicative
identity (1, 0).

Remark 1.1.3. The main point here is to de�ne what is the meaning of �divide an element
by another element�. Here the multiplication is sometimes called the complex multiplication,
not the inner product of Rn. While reading research articles, remember to make sure the
de�nition of the multiplication (for example, the · in the CGO solution means inner product
[Sal08]).

Proof of Proposition 1.1.2. Verify (C,+) forms a commutative group with additiv-
ity identity (0, 0).
Additive associativity. ((a1, b1) + (a2, b2)) + (a3, b3) = (a1, b1) + ((a2, b2) + (a3, b3))
Additive identity. (a, b) + (0, 0) = (0, 0) + (a, b) = (a, b)

1



1.1. DEFINITION OF COMPLEX PLANE C 2

Additive inverse element. One can easily verify that the additive inverse of (a, b) is
(−a,−b):

(a, b) + (−a,−b) = (−a,−b) + (a, b) = (0, 0).

In other words, −(a, b) = (−a,−b).
Additive commutative. (a, b) + (c, d) = (c, d) + (a, b)

We now verify some properties of the multiplication operator.
Multiplicative associativity. One can directly verify that

((a1, b1) · (a2, b2)) · (a3, b3)
= (a1a2 − b1b2, a1b2 + a2b1) · (a3, b3)

= (
1

a1a2a3 −
2

a3b1b2 −
3

a1b2b3 −
4

a2b1b3 , a1a2b3

5

− b1b2b3

6

+ a1a3b2

7

+ a2a3b1

8

),

and

(a1, b1) · ((a2, b2) · (a3, b3))
= (a1, b1) · (a2a3 − b2b3, a2b3 + a3b2)

= (
1

a1a2a3 −
3

a1b2b3 −
4

a2b1b3 −
2

a3b1b2 , a1a2b3

5

+ a1a3b2

7

+ a2a3b1

8

− b1b2b3

6

),

therefore ((a1, b1) · (a2, b2)) · (a3, b3) = (a1, b1) · ((a2, b2) · (a3, b3)).
Multiplicative identity. (a, b) · (1, 0) = (1, 0) · (a, b) = (a, b)
Multiplicative inverse element. For each (a, b) ̸= (0, 0), we de�ne

(1.1.5) (a, b)−1 :=

(
a

a2 + b2
,

−b

a2 + b2

)
.

We see that

(a, b) · (a, b)−1 =

(
a · a

a2 + b2
− b · −b

a2 + b2
, b · a

a2 + b2
+ a · −b

a2 + b2

)
= (1, 0)

as well as (a, b)−1 · (a, b) = (1, 0).
Multiplicative commutative. (a, b) · (c, d) = (c, d) · (a, b)

The above four axioms imply that (C \ {(0, 0)}, ·) forms a commutative group. We have
one more axiom to verify:
Distributive laws. This properties describe how the additive operator and multiplicative
operator act together. We compute that

(a1, b1) · ((a2, b2) + (a3, b3))

= (a1, b1) · (a2 + a3.b2 + b3)

= (a1a2 + a1a3 − b1b2 − b1b3, a1b2 + a1b3 + b1a2 + b1a3)

= (a1a2 − b1b2, a1b2 + b1a2) + (a1a3 − b1b3, a1b3 + b1a3)

= (a1, b1) · (a2, b2) + (a1, b1) · (a3, b3)
and the multiplicative commutative also gives us that

((a2, b2) + (a3, b3)) · (a1, b1) = (a2, b2) · (a1, b1) + (a3, b3) · (a1, b1).
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We conclude our proposition. □

The additive identity (0, 0) is unique: If (0′, 0′′) is also an additive identity, then

(0, 0) = (0′, 0′′) + (0, 0) = (0, 0) + (0′, 0′′) = (0′, 0′′).

Similar argument also shows that the multiplicative identity (1, 0) is unique. In the context
of abstract algebra, we sometimes called (0, 0) the zero, and called (1, 0) the one. We now
de�ne the �mysterious� element i rigorously.

Definition 1.1.4. We de�ne i := (0, 1) ∈ C, and we call it the imaginary unit.

Obviously,

(1.1.6) (a, 0) · (x, y) = (ax, ay),

and therefore in particular,

(a, 0) · (b, 0) = (ab, 0).

In addition, we have

(a, 0) + (b, 0) = (a+ b, 0).

Therefore, the mapping

ι : R → {(a, 0) : a ∈ R} , a 7→ (a, 0)

is a �eld isomorphism. Therefore, we somehow abuse the notation by simply writing

R ≡ {(a, 0) : a ∈ R} , 1 ≡ (1, 0).

Since

(x, y) = (x, 0) + (0, y) = (x, 0) · (1, 0) + (y, 0) · (0, 1),

then we see that:

Lemma 1.1.5. Each complex number z = (x, y) can be written uniquely in the form
z = x+ iy. The map

R× R → C, (x, y) 7→ x+ yi

is a bijection.

Definition 1.1.6. If z = x+iy, then we writeRe z := x (the real part of z) and Im z := y
(the imaginary part of z). Note that Im z is a real number. We also de�ne the conjugate z
of z by z = x− iy.

It is useful to observe that

z + z = 2x, z − z = 2iy,

therefore,

(1.1.7) Re z =
1

2
(z + z), Im z =

1

2i
(z − z) ≡ i−1

2
(z − z),
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where i−1 is given by (1.1.5). From (1.1.3b), it is also useful to see that

(a+ ib) · (c+ id)

= (ac− bd) + i(ad+ bc)

= (ac− bd)− i(ad+ bc)

= (ac− (−b)(−d)) + i(a(−d) + (−b)c)

= (a− ib) · (c− id)

= (a+ ib) · (c+ id),

that is,

(1.1.8) zw = z · w for all z, w ∈ C.
Therefore, one also can write (1.1.6) as

a(x+ iy) = ax+ iay.

One can directly verify that

(±i)2 = ±i · ±i = (0,±1) · (0,±1) = (−1, 0) ≡ −1.

This somehow suggests (1.1.2). At this moment, we �rst keep this question in mind, we will
come back to answer this later.

1.2. Topological aspects of C

We now discuss the topological aspects of the complex plane, in other words, we want to
discuss how the open sets in C looks like and de�ne the continuous functions on C. Here we
also refer to the monograph [Mun00] for general abstract theory.

1.2.1. Sequences in C. In this section, we shall see that there are many facts in calculus
also holds true for complex numbers.

Definition 1.2.1. The absolute value (or modulus) |z| of z, is de�ned by

|z| :=
√
zz ≡

√
(Re z)2 + (Im z)2 ≡ ∥(Re z,Im z)∥R2 ,

which is just simply the Euclidean norm in R2.

It is not di�cult to see the absolute homogeneity (i.e. |rz| = |r||z| for all r ∈ R) and
positive de�niteness of | · | (i.e. |z| ≥ 0 and the equality holds if and only if z = 0). To verify
that | · | is a norm, we only need to verify the following:

Lemma 1.2.2 (Triangle inequality, subadditivity). |z1± z2| ≤ |z1|+ |z2| for all z1, z2 ∈ C.

Proof. We now de�ne the inner product on R2 ∼= C by

⟨z1, z2⟩ := (Re z1)(Re z2) + (Im z1)(Im z2) for all z1, z2 ∈ C.
One sees that ⟨z, z⟩ = (Re z)2 + (Im z)2 = |z|2. We also see that

|z1 ± z2|2 = ⟨z1 ± z2, z1 ± z2⟩ = |z1|2 ± 2⟨z1, z2⟩+ |z2|2

(|z1|+ |z2|)2 = |z1|2 + 2|z1||z2|+ |z2|2,
therefore it is su�ce to show the following Cauchy Schwartz inequality

±⟨z1, z2⟩ ≤ |z1||z2| equivalently, |⟨z1, z2⟩| ≤ |z1||z2|.
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In fact, we only need to prove the above inequality for the case both z1 ̸= 0 and z2 ̸= 0. In
this case, by writing w1 :=

z1
|z1| and w2 :=

z2
|z2| , we only need to prove

(1.2.1) ±⟨w1, w2⟩ ≤ 1.

Since |w1| = |w2| = 1, then

0 ≤ |w1 ± w2|2 = ⟨w1 ± w2, w1 ± w2⟩ = 2± 2⟨w1, w2⟩,

which concludes (1.2.1). □

Remark 1.2.3. We recall that (C,+, ·) forms a �eld, where · represents the complex
multiplication. As a comparison, (R2,+, ⟨·, ·⟩) forms a ring, but not a �eld. Roughly speak-
ing, we cannot de�ne quotient for inner product, but we can de�ne quotient for complex
multiplication.

Definition 1.2.4. The sequence {zn}n∈N converges to z in C if the sequence of real
numbers |zn − z| converges to 0. Precisely, given any ϵ > 0, there exists N > 0 such that
|z − zn| < ϵ for all n ≥ N .

Exercise 1.2.5. Show that

max{|Re z|, |Im z|} ≤ |z| ≤ |Re z|+ |Im z|.

From this, one can easily see that zn → z if and only if Re zn → Re z and Im zn → Im z.

We also can rephrase the above de�nition in a more geometric terms:

(1.2.2) Given any ϵ > 0, there exists N > 0 such that zn ∈ Bϵ(z) for all n ≥ N,

where Br(z) is the ball in R2 with radius r and centered at z. In the context of complex
analysis, some authors refer Br(z) the disk.

While taking limit, we always need to check whether it exists or not, which is very
inconvenient. For future convenience, here we recall a simple but nice concept, called the
limit supremum and limit in�mum. This should be already taught in calculus course. Here
we follow [Rud76, De�nition 3.16]. Given any sequence {an} ⊂ R, we de�ne

lim sup
n→∞

an := lim
n→∞

sup
m≥n

am ≡ inf
n∈N

sup
m≥n

am,

lim inf
n→∞

an := lim
n→∞

inf
m≥n

am ≡ sup
n∈N

inf
m≥n

am.

Unlike limit, both limit supremum and limit in�mum always exist (because supm≥n am and
infm≥n am are monotone), but may takes �values� ±∞ /∈ R (but only make sense for R). It
is clear that

lim inf
n→∞

an ≤ lim sup
n→∞

an

lim sup
n→∞

an ≤ lim sup
n→∞

bn, lim inf
n→∞

an ≤ lim inf
n→∞

bn if an ≤ bn for all n ≥ N for some N > 0.

In addition, for a real-valued sequence {an} ⊂ R, one has

(1.2.3) lim
n→∞

an = a∞ ∈ R ⇐⇒ lim sup
n→n

an = lim inf
n→n

an = a∞ ∈ R.
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However, one has to be careful that, we only have subadditivity (resp. superaddivity) property
for limit supremum (resp. limit in�mum):

(1.2.4)

{
lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn
for {an}, {bn} ⊂ R,

holds whenever the right hand side is not∞−∞ or −∞+∞. For the case when limn→∞ bn
exists and �nite, by writing an = (an + bn) + (−bn), using (1.2.4) we obtain{

lim sup
n→∞

an ≤ lim sup
n→∞

(an + bn)− lim
n→∞

bn

lim inf
n→∞

an ≥ lim inf
n→∞

(an + bn)− lim
n→∞

bn

which implies {
lim sup
n→∞

an + lim
n→∞

bn ≤ lim sup
n→∞

(an + bn),

lim inf
n→∞

an + lim
n→∞

bn ≥ lim inf
n→∞

(an + bn).

Combining this with (1.2.4), we reach

(1.2.5)

{
lim sup
n→∞

(an + bn) = lim sup
n→∞

an + lim
n→∞

bn

lim inf
n→∞

(an + bn) = lim inf
n→∞

an + lim
n→∞

bn
when lim

n→∞
bn exists and �nite.

If {an} is bounded and limn→∞ bn exists which converges to some b ≥ 0, by writing
anbn = anb+ an(bn − b) and using (1.2.5), one sees that

(1.2.6)


lim sup
n→∞

(anbn) = lim sup
n→∞

(anb)
(∵b≥0)
≡

(
lim sup
n→∞

an

)(
lim
n→∞

bn

)
,

lim inf
n→∞

(anbn) = lim inf
n→∞

(anb)
(∵b≥0)
≡

(
lim inf
n→∞

an

)(
lim
n→∞

bn

)
.

If we choose trivial sequence bn = b ≥ 0 for all n, then we reach

(1.2.7) lim sup
n→∞

(ban) = b lim sup
n→∞

an for b ≥ 0.

However, one should be aware that when b ≥ 0, we have

lim sup
n→∞

(ban) = − lim inf
n→∞

(|b|an) = −|b| lim inf
n→∞

an = b lim inf
n→∞

an for b ≤ 0.

Exercise 1.2.6. Compute lim supn→∞(anbn) and lim infn→∞(anbn) when {an} is bounded
and limn→∞ bn exists which converges to some b ≤ 0.

If both {an} and {bn} are non-negative, one also has

(1.2.8)


lim sup
n→∞

(anbn) ≤
(
lim sup
n→∞

an

)(
lim sup
n→∞

bn

)
lim inf
n→∞

(anbn) ≥
(
lim inf
n→∞

an

)(
lim inf
n→∞

bn

) for non-negative {an}, {bn}

holds whenever the right hand side is not 0 ·∞ or ∞· 0. From (1.2.3) we have the following:

Lemma 1.2.7. zn → z ∈ C if and only if lim supn→∞ |zn − z| = 0.

This simple observation can simplify the proofs. We can always take limit supremum in
the proof, which may simplify the proof in the future. One only need to be careful about
(1.2.4).
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Definition 1.2.8. The sequence {zn}n∈N is called a Cauchy sequence in C if, given any
ϵ > 0, there exists N > 0 such that |zn − zm| < ϵ for all n,m ≥ N .

Lemma 1.2.9. The complex �eld (C, | · |) is complete, that is, the sequence {zn} converges
if and only if {zn} is a Cauchy sequence.

Proof. We �rst assume that the sequence {zn} converges to some limit z. By using the
triangle inequality in Lemma 1.2.2, one has

|zn − zm| ≤ |zn − z|+ |z − zm|,
which immediately shows that {zn} is Cauchy. Conversely, suppose that {zn} is a Cauchy
sequence. From De�nition 1.2.1 it is easy to see that

|Re zn −Re zm| = |Re (zn − zm)| ≤ |zn − zm|,
|Im zn − Im zm| = |Im (zn − zm)| ≤ |zn − zm|,

so that both {Re zn} and {Im zn} form Cauchy sequence in R, therefore there exist a, b ∈ R
such that

lim
n→∞

Re zn = a, lim
n→∞

Im zn = b.

We de�ne z := a+ bi, and from Exercise 1.2.5 and (1.2.4), one sees that

lim sup
n→∞

|zn − z| ≤ lim sup
n→∞

(|Re (zn − z)|+ |Im (zn − z)|)

≤ lim sup
n→∞

|Re (zn − z)|+ lim sup
n→∞

|Im (zn − z)|

= lim sup
n→∞

|Re zn − a|+ lim sup
n→∞

|Im zn − b| = 0,(1.2.9)

which conclude our lemma. □

Definition 1.2.10. We now given a sequence {zk}k∈N ⊂ C, and we de�ne its partial sum

sn :=
n∑

k=1

zk.

An in�nite series
∑∞

k=1 zk is said to converge in C if sn converges in C.

The following basic properties can be proved using same ideas as in calculus:

(1) If
∑∞

k=1 zk and
∑∞

k=1 wk are converge in C, then
∑∞

k=1(zk ± wk) are converge in C.
(2) If

∑∞
k=1 zk is converges in C, then zk → 0 ∈ C.

(3) If
∑∞

k=1 |zk| converges in R, then
∑∞

k=1 zk converges in C (this can be easily proved
using triangle inequality in Lemma 1.2.2).

Definition 1.2.11. If
∑∞

k=1 |zk| converges in R, then we say that
∑∞

k=1 zk converges in
C absolutely. Otherwise, we call the convergence is conditionally.

1.2.2. Open sets in complex plane C.

Definition 1.2.12. Let Ω be a set in C. We say that Ω is open in C if, given any z ∈ Ω,
there exists a ϵ > 0 such that Bϵ(z) ⊂ Ω.

This means that the open sets in C is exactly same as in R2. Therefore we can borrow a
lot of topological terminology from R2:

(1) An open set Ω contained z sometimes called the neighborhood of z.
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(2) A set A is topological closed in C if its complement A∁ := C \ A is open in C. In
this case, A is closed in C if and only any Cauchy sequence {zn} ⊂ A converges to
a limit z ∈ A.

(3) The boundary ∂S of a set S is de�ned as: x ∈ ∂S if and only if Bϵ(x) ∩ S ̸= ∅ and
Bϵ(x) ∩ S∁ ̸= ∅ for all ϵ > 0.

(4) The closure S of a set S is de�ned by S := S ∪ ∂S.
(5) Sometimes we called the boundary ∂BR(z) of a ball BR(z) the circle.
(6) A set S is bounded if S ⊂ BR ≡ BR(0) for some R > 0.

Definition 1.2.13. A set S is called compact in C if the following holds:

S ⊂
⋃
α∈Λ

Oα for some collection of open sets {Oα}α∈Λ

=⇒ S ⊂
⋃
α∈Λ′

Oα for some Λ′ ⊂ Λ which is �nite.

In fact, we have the Heine-Borel theorem: S is compact in C if and only if S is topological
closed and bounded. Using Bolzano-Weierstrass theorem, we also see that S is compact in
C if and only if any sequence in S must have a subsequence which is converges in S.

Definition 1.2.14. Let S be any set in C. A subset S0 ⊂ S is said to be relative open
in S if there exists an open set Ω ⊂ C such that S0 = S ∩ Ω. Similarly, a subset S1 ⊂ S is
said to be relative topological closed in S if there exists a topological closed set F ⊂ C such
that S1 = S ∩ F . A set S is said to be connected if the following holds:

if S0 ⊂ S is both relative open and relative topological closed in S

then either S0 = ∅ or S0 = S.(1.2.10)

Remark 1.2.15 (Relative open sets in open sets). If S is an open set (resp. topological
closed set) in C and S0 ⊂ S, then S0 is open (resp. topological closed) in C if and only if S0

is relative open (resp. relative tolopogical closed) in S. This can be easily see by the trivial
set inclusion S0 = S ∩ S0.

It is make sense to say that a set S is said to be disconnected if (1.2.10) does not hold.
This means that there exists ∅ ≠ S0 ⊊ S

there exists ∅ ≠ S0 ⊊ S such that

S0 is both relative open and relative topological closed in S.

In this case, if we de�ne S1 := S \ S0, it is easy to see that ∅ ≠ S1 ⊊ S0 is also both relative
open and relative topological closed in S. Therefore one see that S0 and S1 are both disjoint
(open) components of S.

Definition 1.2.16. We denote [z1, z2] the line segment with endpoints z1 and z2. A
polygonal line is a �nite union of line segments of the form [z0, z1] ∪ [z1, z2] ∪ · · · ∪ [zn−1, zn].

Lemma 1.2.17. Let Ω be an open set in C. Then Ω is connected if and only if for any
a, b ∈ Ω there exists a polygonal line in Ω connecting a and b.

Remark 1.2.18. Sometimes we also called an open connected set a region or domain.

Proof of Lemma 1.2.17. �⇒� Let a ∈ Ω and let

A :=
{

x ∈ Ω there exists a polygonal line connecting a and x
}
.
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It is clear that a ∈ A, which shows that A ̸= ∅.
Given any x ∈ A ⊂ Ω, since Ω is open, then there exists ϵ = ϵ(x) > 0 such that Bϵ(x) ⊂ Ω.

Clearly any point in Bϵ(x) can be connected to x by using a straight line, then any point in
Bϵ(x) can be connected to a by a polygonal line. In other words, Bϵ(x) ⊂ A. By arbitrariness
of x ∈ A, we conclude that A is open in C, and hence also relative open in Ω.

Similar argument shows that Ω\A is also relative open in Ω. This shows that A is relative
topological closed in Ω. Since A ̸= ∅, then A = Ω.

�⇐� Let ∅ ≠ A ⊂ Ω be a set such that it is both relative open and relative topological
closed in Ω. Suppose the contrary, that A ̸= Ω, i.e. Ω \A ̸= ∅. Choose a ∈ A and b ∈ Ω \A.
By assumption, one can �nd a polygonal line connecting a and b, says [z0, z1]∪ [z1, z2]∪ · · · ∪
[zn−1, zn] with z0 = a and zn = b. We de�ne a continuous function f on [0, n] by

f(t) = zj + (t− j)(zj+1 − zj) when t ∈ [j, j + 1] for j = 0, 1, · · · , n− 1.

We now de�ne the sets (called the preimage, this is just a notation, does not mean f is
invertible)

f−1(A) :=
{

x ∈ Ω f(x) ∈ A
}
, f−1(Ω \ A) :=

{
x ∈ Ω f(x) ∈ Ω \ A

}
.

Since both A and Ω \ A are open (in C if and only if relative to Ω), then both f−1(A) and
f−1(S \A) are relative open in [0, n]. This is a special case of a general topological fact, but
here we give a simple argument to show that both f−1(A) and f−1(S \ A) are relative open
in [0, n]. We only show f−1(A) is relative open in [0, n], since the same thing can be done for
f−1(S \ A). Let x0 ∈ f−1(A), i.e. f(x0) ∈ A.

Case 1: x0 ̸= 0 and x0 ̸= n. Since A is open, there exists ϵ > 0 such that Bϵ(f(x0)) ⊂ A.
By continuity of f at x0, there exists δ > 0 such that

⇐⇒ y∈Bδ(x0)︷ ︸︸ ︷
|y − x0| < δ =⇒

⇐⇒ f(y)∈Bϵ(f(x0))︷ ︸︸ ︷
|f(y)− f(x0)| < ϵ .

Hence we see that
⇐⇒ y∈Bδ(x0)︷ ︸︸ ︷
|y − x0| < δ =⇒

⇐⇒ y∈f−1(A)︷ ︸︸ ︷
f(y) ⊂ A

this meas that Bδ(x0) ⊂ f−1(A).
Case 2: x0 = 0 (similar treatment for x0 = n). In this case, the continuity of f at

x0 = 0 means there exists δ > 0 (without loss of generality, we may choose δ < n) such that

⇐⇒ y∈Bδ(x0)∩[0,n]︷ ︸︸ ︷
0 ≤ y ≡ y − x0 < δ =⇒

⇐⇒ f(y)∈Bϵ(f(x0))︷ ︸︸ ︷
|f(y)− f(x0)| < ϵ .

Hence we see that
⇐⇒ y∈Bδ(x0)∩[0,n]︷ ︸︸ ︷

0 ≤ y ≡ y − x0 < δ =⇒
⇐⇒ y∈f−1(A)︷ ︸︸ ︷
f(y) ⊂ A .

This means that Bδ(x0) ∩ [0, n] ⊂ f−1(A).
Combining these two cases, we now conclude that

given any x ∈ f−1(A), there exists δ = δ(x) > 0 such that Bδ(x) ∩ [0, 1] ⊂ f−1(A).
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This means that f−1(A) is relative open in [0, n], because

f−1(A) = [0, 1] ∩

open in C︷ ︸︸ ︷⋃
x∈f−1(A)

Bδ(x)(x) .

Similar arguments also show that f−1(S \ A) is relative open in [0, n], and hence f−1(A) is
relative topological closed in [0, n]. Since the interval [0, n] is connected and f−1(A) ̸= ∅,
then f−1(A) = [0, n] and hence f−1(S \ A) = ∅, which is a contradiction. This means that
the assumption A ̸= Ω in the contradiction argument does not hold. Hence we conclude that
A = Ω. □

Remark 1.2.19. The above exhibits a standard argument when dealing with open con-
nected set:

(1) First show that the target set A (i.e. the set of the property which we wish to show)
is nonempty.

(2) Show that A is relative open.
(3) Show that Ω \ A is relative open.

To show an open set is connected, one of course can try to construct a continuous path
In my opinion, even though Lemma 1.2.17 gives a quite easy understanding, but Mathe-

matically sometimes this characterization is not convenient to manipulate. Personally I prefer
the de�nition (1.2.10): Even though it is abstract, but this is quite convenient to manipulate
in Mathematical proof.

Lemma 1.2.20. zn → z if and only if: Given any open set Ω ∋ z, there exists N > 0 such
that zn ∈ Ω for all n ≥ N .

Proof. We �rst suppose that zn → z. Given any open set Ω ∋ z, by de�nition there
exists ϵ > 0 such that

Bϵ(z) ⊂ Ω.

By using (1.2.2), there exists N > 0 such that zn ∈ Bϵ(z) ⊂ Ω for all n ≥ N , which complete
our proof. The converse is trivial by choosing Ω = Bϵ(z) for arbitrary ϵ > 0. □

1.2.3. Continuous functions on C.

Definition 1.2.21. Let z ∈ C and let Ω be an open neighborhood of z. We say that
function f : Ω → C is continuous at z if

zn → z ∈ C =⇒ f(zn) → f(z) ∈ C.
Alternatively, given any ϵ > 0, there exists δ > 0, which depends on z, such that

(1.2.11) |f(z)− f(y)| < ϵ for all |z − y| < δ.

In other words, f(y) ∈ Bϵ(f(z)) for all y ∈ Bδ(x). We say that f is continuous on Ω, denoted
by f ∈ C(Ω), if f is continuous at all point z ∈ Ω.

Remark 1.2.22. If one can �nd δ in (1.2.11) which is independent of z ∈ Ω, then one call
such function is uniformly continuous. In this case, it is also convenient to write (1.2.11) as

sup
z,y∈Ω,|z−y|<δ

|f(z)− f(y)| < ϵ.

This notation emphasized that δ is independent of both y and z.
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If we split f into its real and imaginary parts

f(z) = u(x, y) + iv(x, y) for z = x+ iy ∈ Ω

it is clear that f is continuous at z = x+ yi if and only if both u and v continuous at (x, y).

Definition 1.2.23. We say that f ∈ Cm if and only if both u, v ∈ Cm, i.e. have
continuous partial derivatives of the mth order.

Definition 1.2.24. A sequence of functions {fn} is said to be converge to f uniformly
in Ω, if for each ϵ > 0 there is an N > 0, which independent of z ∈ Ω, such that

(1.2.12) n ≥ N =⇒ |fn(z)− f(z)| < ϵ for all z ∈ Ω.

We now de�ne the sup-norm on Ω by

∥g∥L∞(Ω) := sup
z∈Ω

|g(z)| for all g ∈ C(Ω)

By using this notations, we see that is equivalent to

(1.2.13) ∥fn − f∥L∞(Ω) ≡ sup
z∈Ω

|fn(z)− f(z)| < ϵ for all n ≥ N.

Lemma 1.2.25. Let Ω be an open set in C. Then fn converges to f uniformly in Ω if and
only if lim supn→∞ ∥fn − f∥L∞(Ω) = 0.

Therefore, we also can say that fn → f in L∞(Ω)-sense. Sometimes we also refer f the
uniform limit of f . It is well-known (see e.g. [Rud76]) that the uniform limit of real-valued
continuous function is continuous. By using the triangle inequality of ∥ · ∥L∞(Ω), which can
be easily proved using Lemma 1.2.2, one can easily obtain the following lemma.

Lemma 1.2.26. Let Ω be an open set in C and let {fn} ⊂ C(Ω). If fn converges to f
uniformly in Ω, then f ∈ C(Ω).

Corollary 1.2.27 (Weierstrass M-test). Let Ω be an open set in C and let {fn} ⊂ C(Ω).
If ∥fk∥L∞(Ω) ≤ Mk and

∑∞
k=1 Mk converges in R, then

∑∞
k=1 fk(z) converges to a continuous

function uniformly in Ω.

Proof. It is easy to see that f(z) =
∑∞

k=1 fk(z) pointwisely. Moreover, we see that

lim sup
n→∞

∥∥∥∥∥f −
n∑

k=1

fk

∥∥∥∥∥
L∞(Ω)

= lim sup
n→∞

∥∥∥∥∥
∞∑

k=n+1

fk

∥∥∥∥∥
L∞(Ω)

≤ lim sup
n→∞

∞∑
k=n+1

Mk = 0,

which concludes our corollary. □

Remark 1.2.28 (A general trick). Here is a suggested standard procedure of proving
uniform convergence: First prove pointwise convergence to make sure the existence of limit
function (candidate), and then verify the convergence is uniform. This procedure is based on
the fact that the uniform limit is necessarily also a pointwise limit.



CHAPTER 2

Di�erentiation

2.1. Complex derivative and Cauchy-Riemann equation

Inspired by calculus, it is not surprising to introduce the following de�nition.

Definition 2.1.1. A complex-valued function f , de�ned in a neighborhood of z, is said
to be (complex) di�erentiable at z if

lim
C∋h→0

f(z + h)− f(z)

h
exists.

In this case, the limit is denoted by f ′(z) or ∂zf(z) or
∂
∂z
f(z) or d

dz
f(z). Let Ω be an open set

in C. A function f : Ω → C which is di�erentiable at every point Ω is also called (complex)
analytic or holomorphic in Ω. A function f : C → C which is di�erentiable at every point C
is also called entire.

Remark 2.1.2. It is important to note that in the above de�nition, h is not necessarily
real.

Remark 2.1.3. Let Ω be an open set in C. Some authors call a function f : Ω → C is
called analytic at a point a ∈ Ω if there exists an open neighborhood U ⊂ Ω of a such that
f is analytic in U . Personally, I would prefer to say

(2.1.1) such function f is analytic near a ∈ Ω (rather than "at").

Throughout this course, we shall use the terminology (2.1.1) to avoid confusion.

Exercise 2.1.4. Show that the function f(z) = zz is di�erentiable at z = 0, but not
analytic near z = 0.

This exercise reminds us to be carefully while stating the terms �at� and �near�.

Lemma 2.1.5. If f and g are both di�erentiable at z, then so are h1 = f +g and h2 = fg.
If g′(z) ̸= 0, then h3 = f/g also di�erentiable at z. In the respective cases,

h′
1(z) = f ′(z) + g′(z),

h′
2(z) = f ′(z)g(z) + f(z)g′(z),

h′
3(z) =

f ′(z)g(z)− f(z)g′(z)

g2(z)
.

Example 2.1.6. If P (z) = α0+α1z+ · · ·+αNz
N for some complex numbers α0, · · · , αN ,

then P is di�erentiable at all points z and P ′(z) = α1 + 2α2z + · · ·+NαNz
N−1.

Exercise 2.1.7. Prove Lemma 2.1.5 and verify Example 2.1.6.

Lemma 2.1.8. If f = u + iv is di�erentiable at z = x + iy, then the partial derivatives
∂xf and ∂yf of f both exist, and they satisfy the Cauchy-Riemann equation ∂yf = i∂xf .

12
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Proof. The existence of ∂xf and ∂yf can be easily seen from the identities

lim
R∋h→0

f(z + h)− f(z)

h
= lim

R∋h→0

f(x+ h, y)− f(x, y)

h
= ∂xf(x, y),

lim
R∋h→0

f(z + ih)− f(z)

ih
= lim

R∋h→0

f(x, y + h)− f(x, y)

ih
=

1

i
∂yf(x, y).

Since f is di�erentiable at z, then the above identities must be identical, which conclude our
lemma. □

The converse of the above lemma does not hold true: There exist functions which are
not di�erentiable at a point despite the fact that the partial derivatives exist and satisfy the
Cauchy-Riemann equations here.

Example 2.1.9. We consider

f(z) = f(x, y) =

{
xy(x+iy)
x2+y2

, z ̸= 0,

0 , z = 0.

Since f = 0 on both axes x = 0 and y = 0, so that ∂xf(0, 0) = ∂yf(0, 0) = 0 (and hence
satis�es the Cauchy-Riemann equation). However, for each α ∈ R, one sees that

lim
z→0,y=αx

f(z)− f(0)

z
= lim

z=x+iαx→0

x(αx)(x+ iαx)

x2 + (αx)2
=

α

1 + α2
.

This shows that ∂zf(0, 0) does not exist. Suppose the contrary, that ∂zf(0, 0) exists, then

∂zf(0, 0) = lim
C∋z→0

f(z)− f(0)

z
= lim

z→0,y=αx

f(z)− f(0)

z
=

α

1 + α2
for all α ∈ R,

which is a contradiction since ∂zf(0, 0) is independent of α.

However, it is worth to mention and proof that the equivalence holds when f is su�ciently
regular:

Theorem 2.1.10. Suppose that f ∈ C1 in a neighborhood of z = x + iy (sometimes we
simply say f ∈ C1 near z), that is, ∂xf and ∂yf are continuous in a neighborhood of z. We
have the following equivalence:

f satis�es the Cauchy-Riemann equation ∂yf = i∂xf at z ⇐⇒ f is di�erentiable at z.

Remark 2.1.11. If we write f = u+ iv, the Cauchy-Riemann equation can be written as

∂xu = ∂yv, ∂yu = −∂xv.

From this, we see that

∆u := ∂2
xu+ ∂2

yu = ∂x∂yv − ∂y∂xv = 0,

∆v := ∂2
xv + ∂2

yv = −∂x∂yu+ ∂y∂xu = 0,

in other words, both u and v are harmonic.

Proof of Theorem 2.1.10. The implication �⇐� was proved by Lemma 2.1.8. We
only need to prove the implication �⇒�.
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We write h = h1+ih2. By using mean value theorem (for real functions of a real variable),
one sees that

Re f(z + h)−Re f(z)

h
=

Re f(x+ h1, y + h2)−Re f(z)

h1 + ih2

=
Re f(x+ h1, y + h2)−Re f(x+ h1, y)

h1 + ih2

+
Re f(x+ h1, y)−Re f(x, y)

h1 + ih2

=
h2

h1 + ih2

∂yRe f(x+ h1, y + η2) +
h1

h1 + ih2

∂xRe f(x+ η1, y)

=
ih2

h1 + ih2

1

i
∂yRe f(x+ h1, y + η2) +

h1

h1 + ih2

∂xRe f(x+ η1, y)

for some η1 ≤ |h1| and η2 ≤ |h2|. Using the exactly same arguments, one also see that

Im f(z + h)− Im f(z)

h

=
ih2

h1 + ih2

1

i
∂yIm f(x+ h1, y + η4) +

h1

h1 + ih2

∂xIm f(x+ η3, y)

for some η3 ≤ |h1| and η4 ≤ |h2|. Therefore, one has

f(z + h)− f(z)

h
− ∂xf(z)

=
ih2

h1 + ih2

(
1

i
∂y (Ref(x+ h1, y + η2) + iIm f(x+ h1, y + η4))− ∂xf(x, y)

)
+

h1

h1 + ih2

(∂x (Re f(x+ η1, y) + iIm f(x+ η3, y))− ∂xf(x, y)) .
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By using the Cauchy-Riemann equation, we can write the above equation as

f(z + h)− f(z)

h
− ∂xf(z)

=
ih2

h1 + ih2

(
1

i
∂y (Ref(x+ h1, y + η2) + iIm f(x+ h1, y + η4))−

1

i
∂yf(x, y)

)
+

h1

h1 + ih2

(∂x (Re f(x+ η1, y) + iIm f(x+ η3, y))− ∂xf(x, y))

=
h2

h1 + ih2

(∂y (Ref(x+ h1, y + η2) + iIm f(x+ h1, y + η4))− ∂yf(x, y))

+
h1

h1 + ih2

(∂x (Re f(x+ η1, y) + iIm f(x+ η3, y))− ∂xf(x, y))

=
h2

h1 + ih2

(∂yRef(x+ h1, y + η2)− ∂yRe f(x, y))

+
ih2

h1 + ih2

(∂yIm f(x+ h1, y + η4)− ∂yIm f(x, y))

+
h1

h1 + ih2

(∂xRef(x+ η1, y)− ∂xRe f(x, y))

+
ih1

h1 + ih2

(∂xIm f(x+ η3, y)− ∂xIm f(x, y)) .

Hence

lim sup
C∋h→0

∣∣∣∣f(z + h)− f(z)

h
− ∂xf(z)

∣∣∣∣
≤ lim sup

C∋h→0
|∂yRef(x+ h1, y + η2)− ∂yRe f(x, y)|

+ lim sup
C∋h→0

|∂yIm f(x+ h1, y + η4 − ∂yIm f(x, y)|

+ lim sup
C∋h→0

|∂xRef(x+ η1, y)− ∂xRe f(x, y)|

+ lim sup
C∋h→0

|∂xIm f(x+ η3, y)− ∂xIm f(x, y)|

= 0,

which complete our proof with ∂zf = ∂xf . □

Remark 2.1.12. Suppose that all assumptions in Theorem 2.1.10 hold near z ∈ C. Let f
be a complex-valued function which is analytic at z. By using the Cauchy-Riemann equation
and ∂zf = ∂xf , one see that

(2.1.2a) ∂zf =
1

2
(∂xf − i∂yf).

We now de�ne the operator ∂z on C1 function by

(2.1.2b) ∂zf :=
1

2
(∂xf + i∂yf).

By introducing this notation, one sees that Theorem 2.1.10 can be restated as

(2.1.3)
f is di�erentiable at z ⇐⇒ ∂zf = 0 at z

(assuming that all assumptions in Theorem 2.1.10 hold)
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In particular, the operators (2.1.2a) and (2.1.2b) are called the Wirtinger operators.

Remark 2.1.13. Wirtinger operators can be de�ned in terms of weak derivatives (even
distributional derivatives), and it interesting to mention that the quasiconformal mapping is
related to the Beltrami equation:

∂zf = µ∂zf with ∥µ∥L∞ ≤ c < 1.

When µ ≡ 0, this reduces to (2.1.3) (Note: We called a mapping is conformal if it is holo-
morphic and injective, therefore the term �quasiconformal� make sense). For more details
about the quasiconformal mapping and Beltrami equation, one can refer to the monograph
[AIM09].

Warning: If ∂zf ̸= 0 (i.e. does not satisfy Cauchy-Riemann equation), the func-
tion ∂zf in (2.1.2a) is not equivalent to the one we introduced in De�nition 2.1.1.

Warning: Even though (2.1.3) suggests that analytic function must not contained
z, to show a function is analytic or not, we still have to verify the de�nition
carefully, see Exercise 2.1.4.

Warning: Always remember to check the assumptions in Theorem 2.1.10.

Example 2.1.14. Any complex-valued polynomial P takes the form P =
∑N

n=0Qn for
some N ∈ Z≥0 with

Qn(z) = Qn(x, y) =
n∑

k=0

Cn,kx
n−kyk

= Cn,0x
n + Cn,1x

n−1y + Cn,2x
n−2y2 + · · ·+ Cn,ny

n

for some CN,m ∈ C. One computes that

2∂zQn(z) =
n−1∑
k=0

Cn,k(n− k)xn−k−1yk + i
n∑

k=1

Cn,kkx
n−kyk−1

=
n−1∑
k=0

Cn,k(n− k)xn−k−1yk + i
n−1∑
k̃=0

Cn,(k̃+1)(k̃ + 1)xn−k̃−1yk̃

=
n−1∑
k=0

Cn,k(n− k)xn−k−1yk + i
n−1∑
k=0

Cn,(k+1)(k + 1)xn−k−1yk

=
n−1∑
k=0

(
Cn,k(n− k) + iCn,(k+1)(k + 1)

)
xn−k−1yk.

If P satis�es the Cauchy-Riemann equation (that is, P is analytic), then

Cn,k(n− k) + iCn,(k+1)(k + 1) = 0 for all n = 0, 1, · · · , N and k = 0, · · · , n− 1.

By using induction, one also can verify that

(2.1.4) Cn,k = ik
(

n
k

)
Cn,0 for all n = 0, 1, · · · , N and k = 0, · · · , n− 1.
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Substitute (2.1.4) into P , one reaches

(2.1.5) P (z) =
N∑

n=0

Cn,0

n∑
k=0

(
n
k

)
xn−k(iy)k =

N∑
n=0

Cn,0(x+ iy)n =
N∑

n=0

Cn,0z
n.

Combining with Example 2.1.6, we know that a polynomial P enjoys the following property:

(2.1.6) P is analytic ⇐⇒ P takes the form (2.1.5).

Therefore, if a polynomial takes the form (2.1.5) (or in Example 2.1.6), we called it an analytic
polynomial.

An application. In one of my research paper [KLSS22], we use complex polynomial to
construct some explicit examples of domain which is non-scattering with respect to some
acoustic wave (which satis�es time-harmonic wave equation).

2.2. Power series

Example 2.1.14 immediately suggests a wider class of direct functions of z, those given
by �in�nite polynomials� in z:

Definition 2.2.1. A power series in z is an in�nite series (in the sense of De�ni-
tion 1.2.10) of the form

∑∞
k=0 Ckz

k.

We now prove some properties which are similar to the power series on R (see e.g.
[Rud76]).

Theorem 2.2.2. Given a sequence {Ck} ⊂ C.
(a) If lim sup

k→∞
|Ck|

1
k = 0, then

∑
Ckz

k converges absolutely for all z ∈ C. In addition,

for each r > 0,
∑

Ckz
k converges uniformly1 in z ∈ Br.

(b) If lim sup
k→∞

|Ck|
1
k = +∞, then

∑
Ckz

k converges for z = 0 only.

(c) If 0 < lim sup
k→∞

|Ck|
1
k < +∞, then

∑
Ckz

k converges absolutely for |z| < R and

diverges for |z| > R, where

(2.2.1) R =

(
lim sup
k→∞

|Ck|
1
k

)−1

.

In addition, for each 0 < ϵ < R,
∑

Ckz
k converges uniformly2 in z ∈ BR−ϵ.

Remark 2.2.3 (Inconclusive on BR). For (a) and (b), we simply say the radius of con-
vergence R = ∞ and R = 0 respectively. The uniform convergence only holds true for BR−ϵ,
but not for BR. If the uniform convergence is on BR, then the sequence converges on |z| = R,
however this is not true, see Exercises 2.2.6, 2.2.7 and 2.2.8.

1The rate of convergence depends on r. We do not know whether the series converges uniformly on the
whole C or not.

2The rate of convergence depends on ϵ. We do not know whether the series converges uniformly on the
whole BR or not.
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Remark 2.2.4 (Structure of power series). If z ∈ C satis�es |z| > R, then by (1.2.7) we
have

1 < R−1|z| = lim sup
k→∞

|Ck|
1
k |z| = lim sup

k→∞
|Ckz

k|
1
k .

This shows that the sequence {Ckz
k}k∈N does not converge to 0. Otherwise, suppose the

contrary that {Ckz
k}k∈N converge to 0, then it must be bounded, says |Ckz

k| ≤ L for all k.
Hence we see that

lim sup
k→∞

|Ckz
k|

1
k ≤ lim sup

k→∞
L

1
k = 1,

which is a contradiction. Since {Ckz
k}k∈N does not converge to 0, thus

∑
Ckz

k diverges.
In view of Theorem 2.2.2, it is make sense to call such constant R is called the radius of
convergence of the power series

∑
Ckz

k.

Remark 2.2.5. By using previous remark, it is important to notice that, if
∑

Ckz
k

converges at z0, then it also converges in B|z0|, i.e. the ball with radius |z0| (not include the
boundary, which is inconclusive). Similarly, if

∑
Ckz

k diverges at z0, the it is also diverges
in C \B|z0|.

Proof of (a). For each r̃ > 0, there exists N > 0, which depends on r̃, such that

|Ck|
1
k ≤ 1

2r̃
for all k ≥ N =⇒ |Ck|r̃k ≤

1

2k
for all k ≥ N.

• For each z ∈ C, by choosing r̃ = |z|, we see that

lim sup
n→∞

∞∑
k=n

|Ckz
k| = lim sup

n→∞

∑
k≥n

|Ck|rk ≤ lim sup
n→∞

∑
k≥n

1

2k
= 0,

which concludes that the series converges absolutely at each z ∈ C.
• On the other hand, for each r > 0, one can choose r̃ = r to see that

lim sup
n→∞

sup
z∈Br

∣∣∣∣∣
∞∑
k=n

Ckz
k

∣∣∣∣∣ ≤ lim sup
n→∞

∑
k≥n

|Ck|rk ≤ lim sup
n→∞

∑
k≥n

1

2k
= 0,

which concludes that the series converges uniformly in Br.

□

Proof of (b). For any z ̸= 0, there exists a sequence {kn} ⊂ N with kn → +∞ such
that

|Ckn|
1
kn ≥ 1

|z|
for all n =⇒ |Cknz

kn| = |Ckn||z|kn ≥ 1 for all n,

which shows that
∑

Ckz
k does not converges for all z ̸= 0 (Note: If

∑
Ckz

k converges, then
it is necessarily that Ckz

k → 0, which will led a contradiction). □

Proof of (c). We �rst consider the case when |z| > R. There exists δ > 0 such that
|z| = R + δ, and there exists a sequence {kn} ⊂ N with kn → +∞ such that

|Ckn|
1
kn ≥ 1

R + δ
for all n =⇒ |Cknz

kn| = |Ckn||z|kn ≥ 1 for all n,
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so that
∑

Ckz
k does not converges. We now �x any 0 < r̃ < R, and we write 2δ = R− r̃ > 0.

By using the de�nition of (2.2.1), one see that there exists N > 0, which depends on r̃, such
that

|Ck|
1
k ≤ 1

R− δ
for all k ≥ N =⇒ |Ck|r̃k ≤

(
R− 2δ

R− δ

)k

for all k ≥ N.

• For each z ∈ BR, by choosing r̃ = |z|, we see that

lim sup
n→∞

∞∑
k=n

|Ckz
k| = lim sup

n→∞

∞∑
k=n

|Ck|r̃k ≤ lim sup
n→∞

∞∑
k=n

(
R− 2δ

R− δ

)k

= 0,

which concludes that the series converges absolutely at each z ∈ BR.
• On the other hand, for each 0 < ϵ < R, we choose r̃ = R− ϵ to see that

lim sup
n→∞

sup
z∈BR−ϵ

∣∣∣∣∣
∞∑
k=n

Ckz
k

∣∣∣∣∣ ≤ lim sup
n→∞

∞∑
k=n

|Ck|r̃k ≤ lim sup
n→∞

∞∑
k=n

(
R− 2δ

R− δ

)k

= 0,

which concludes that the series converges uniformly in BR−ϵ.

□

When the radius of convergence R ∈ (0,∞), there is no guarantee for the convergence or
divergence at z ∈ ∂BR (however, this is related to Fourier series, see Remark 2.3.7 below).
This demonstrates by the following exercises.

Exercise 2.2.6. Show that the radius of convergence of
∑∞

n=1 nz
n is R = 1, and the

series also diverges for |z| = 1.

Exercise 2.2.7. Show that the radius of convergence of
∑∞

n=1 n
−2zn is R = 1, and the

series also converges for |z| = 1.

Exercise 2.2.8. Show that the radius of convergence of
∑∞

n=1 n
−1zn is R = 1. In addi-

tion, show that the series converges for all z ∈ ∂B1 \ {1} but diverges at z = 1.

We now show that power series, like polynomials, are di�erentiable functions of z (in the
sense of De�nition 2.1.1).

Theorem 2.2.9. Suppose that the series f(z) =
∑∞

n=0Cnz
n has the radius of con-

vergence 0 < R ≤ +∞ given in (2.2.1) (see Theorem (2.2.2)), then f ′(z) exists
(in the sense of De�nition 2.1.1) and equal to

(2.2.2) g(z) :=
∞∑
n=0

nCnz
n−1 ≡

∞∑
n=1

nCnz
n−1 ≡

∞∑
m=0

C̃mz
m with C̃m := (m+ 1)Cm+1

in BR, and g also has the radius of convergence R, which is same as f . As an immediate
consequence, power series are in�nitely di�erentiable (in the sense of De�nition 2.1.1) within
their domain of convergence.

Proof. We divide the proof into several steps.

Step 1: Radius of convergence. By using (1.2.6) one sees that

lim sup
m→∞

|C̃m|
1
m = lim sup

n→∞
|nCn|

1
n−1 = lim

n→∞
(n

1
n )

n
n−1 lim sup

n→∞
|Cn|

1
n−1 = lim sup

n→∞
|Cn|

1
n−1 .
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There exists a subsequence {Cnk
} such that

lim sup
n→∞

|Cn|
1

n−1 = lim
k→∞

|Cnk
|

1
nk−1 = lim

k→∞
|Cnk

|
1
nk

· nk
nk−1 = lim

k→∞
|Cnk

|
1
nk

≤ lim
k→∞

sup
m≥nk

|Cm|
1
m = lim sup

n→∞
|Cn|

1
n .

Conversely, we also can �nd another subsequence {Cnℓ
} such that

lim sup
n→∞

|Cn|
1
n = lim

ℓ→∞
|Cnℓ

|
1
nℓ = lim

ℓ→∞
|Cnℓ

|
1

nℓ−1
·nℓ−1

nℓ = lim
ℓ→∞

|Cnℓ
|

1
nℓ−1

≤ lim
ℓ→∞

sup
m≥nℓ

|Cm|
1

m−1 = lim sup
n→∞

|Cn|
1

n−1 .

Combining the above three equations, we reach

lim sup
m→∞

|C̃m|
1
m = lim sup

n→∞
|Cn|

1
n ,

hence we conclude that g also has the radius of convergence R, which is same as f .

Step 2: Show that f ′ exists and it equal to g. We now further divide our discussions
in subcases.

Step 2a: When R = ∞. Given any h ∈ C \ {0} with |h| < 1. The absolute convergence
allows us to rearrange the sum, hence

f(z + h)− f(z)

h
− g(z) =

∞∑
n=0

Cn
(z + h)n − zn

h
−

∞∑
n=0

nCnz
n−1 =

∞∑
n=0

Cnbn,

where

bn =
(z + h)n − zn

h
− nzn−1 =

1

h

(
n∑

k=0

(
n
k

)
hkzn−k − zn

)
− nzn−1 (binomial theorem)

=
1

h

n∑
k=1

(
n
k

)
hkzn−k − nzn−1 =

n∑
k=1

(
n
k

)
hk−1zn−k − nzn−1 =

n∑
k=2

(
n
k

)
hk−1zn−k.

Then

|bn| ≤
n∑

k=2

(
n
k

)
|h|k−1|z|n−k ≤ |h|

n∑
k=2

(
n
k

)
|z|n−k

≤ |h|
n∑

k=0

(
n
k

)
|z|n−k = |h|(|z|+ 1)n (again binomial theorem),

and hence

∣∣∣∣f(z + h)− f(z)

h
− g(z)

∣∣∣∣ ≤ ∞∑
n=0

|Cn||bn| ≤ |h|

<+∞ because R=∞︷ ︸︸ ︷
∞∑
n=0

|Cn|(|z|+ 1)n .

Taking h → 0 (in the sense of limit supremum), we conclude f ′ exists and f ′(z) = g(z) for
all z ∈ C.
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Step 2b: When 0 < R < ∞. Given any |z| < R, and write |z| = R−2δ for some δ > 0. We
now let h ∈ C \ {0} with |h| < min{δ, 1}. Then |z+h| ≤ |z|+ |h| ≤ R− 2δ+ δ = R− δ < R,
and as in above, we can write

f(z + h)− f(z)

h
− g(z) =

∞∑
n=0

Cnbn, bn =
∞∑
k=2

(
n
k

)
hk−1zn−k.

If z = 0, then bn = hn−1 and the proof follows easily (left as exercise). We now consider the
case when z ̸= 0. For each 2 ≤ k ≤ n we see that(

n
k

)
=

n− k + 1

k

(
n

k − 1

)
=

n− k + 1

k
· n− (k − 1) + 1

k − 1

(
n

k − 2

)
≤ n− 2 + 1

2
· n− (2− 1) + 1

2− 1

(
n

k − 2

)
=

n− 1

2
· n
(

n
k − 2

)
≤ n2

(
n

k − 2

)
since both n−k+1

k
and n−(k−1)+1

k−1
are monotone decreasing on k. We now have

|bn| ≤ n2

n∑
k=2

(
n

k − 2

)
|h|k−1|z|n−k =

n2|h|
|z|2

n∑
k=2

(
n

k − 2

)
|h|k−2|z|n−(k−2)

=
n2|h|
|z|2

n−2∑
j=2

(
n
j

)
|h|j|z|n−j ≤ n2|h|

|z|2
n∑

j=2

(
n
j

)
|h|j|z|n−j

=
n2|h|
|z|2

(|z|+ |h|)n (binomial theorem)

≤ n2|h|
|z|2

(R− δ)n =
|h|
|z|2

(
(R− δ)n

2
n

)n
,

then we now reach

∣∣∣∣f(z + h)− f(z)

h
− g(z)

∣∣∣∣ ≤ ∞∑
n=0

|Cn||bn| ≤
|h|
|z|2

<+∞ since n√n→1 as n→∞︷ ︸︸ ︷
∞∑
n=0

|Cn|
(
(R− δ)n

2
n

)n
.

Taking h → 0 (in the sense of limsup), we conclude f ′ exists in BR and f ′(z) = g(z) for all
z ∈ BR. □

Exercise 2.2.10. Show that if f(z) =
∑∞

n=0Cnz
n has a nonzero radius of convergence,

then

Cn =
f (n)(0)

n!
for all n = 0, 1, 2, · · · ,

where f (n) is the nth derivative of f (in the sense of De�nition 2.1.1). Show that for each
n = 0, 1, 2, · · · that

f (n)(z) = n!Cn + (n+ 1)!Cn+1z +
(n+ 2)!

2!
Cn+2z

2 + · · ·

for all z in the domain of convergence.
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Theorem 2.2.11 (Uniqueness of power series). Suppose that the power series f(z) =∑∞
n=0Cnz

n has a nonzero radius of convergence. If there exists a sequence {zk} in the domain
of convergence such that

zk → 0 ∈ C, zk ̸= 0 and f(zk) = 0 for all k = 1, 2, 3, · · ·
then f ≡ 0.

Remark 2.2.12. If a power series equals to zero at all the points of a set with an accumu-
lation point at the origin, the power series is identically zero in the domain of convergence.
As an immediate consequence, if

∑
anz

n and
∑

bnz
n converge and agree on a set of points

with an accumulation point at the origin, then an = bn for all n.

Proof. We want to show Cn = 0 for all n = 0, 1, 2, · · · by using strong mathematical
induction.

• By continuity of f at the origin, we see that

C0 = f(0) = lim
z→∞

f(z) = lim
k→∞

f(zk) = 0.

• We now assume the induction hypothesis that Cj = 0 for all j = 0, 1, 2, · · · , n − 1.
The induction hypothesis guarantees that the function

g(z) =
f(z)

zn
= Cn + Cn+1z + Cn+2z

2 + · · · ,

is continuous at the origin by de�ning g(0) := Cn. Since

0 =
f(zk)

znk
= g(zk) for all k = 1, 2, 3, · · ·

then we conclude our result by taking k → ∞ (so that zk → 0).

We conclude the theorem by strong mathematical induction. □

2.3. Exponential, sine and cosine functions

We de�ne the exponential function

(2.3.1) ez := ex(cos θ + i sin θ) for all z = x+ iθ ∈ C.
It is easy to see that |ez| = ex and ez ̸= 0 for all z = x+ iy ∈ C.

Exercise 2.3.1. Prove that ez1+z2 = ez1ez2 for all z1, z2 ∈ C.

Euler's formula is just a special case of (2.3.1):

(2.3.2) eiθ = cos θ + i sin θ for all θ ∈ R.

Exercise 2.3.2 (Euler, De Moivre). For each n ∈ N, show that (cos θ + i sin θ)n =
cos(nθ) + i sin(nθ) for all θ ∈ R.

It is useful to see that

(2.3.3) z = |z|eiθ for all z ∈ C
for some θ ∈ [0, 2π), which is just simply the polar coordinate in R2.

Exercise 2.3.3. Show that ez is entire (De�nition 2.1.1) by verifying the Cauchy-
Riemann equation.
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Exercise 2.3.4. Prove that

ez =
∞∑
n=0

zn

n!

with radius of convergence R = +∞.

By using Exercise 2.3.3 and Remark 2.1.12, one can easily see that

∂ze
z = ∂x(e

x(cos y + i sin y)) = ex(cos y + i sin y) = ez for all z = x+ iy ∈ C.
From (2.3.2), we see that

sin θ :=
1

2i
(eiθ − e−iθ) for all θ ∈ R,

cos θ :=
1

2
(eiθ + e−iθ) for all θ ∈ R.

Therefore it is natural to de�ne the entire functions

sin z :=
1

2i
(eiz − e−iz) for all z ∈ C,(2.3.4a)

cos z :=
1

2
(eiz + e−iz) for all z ∈ C.(2.3.4b)

We remind the readers that cos z and sin z are not bounded in modulus by 1, since

sin(iθ) =
1

2i
(e−θ − eθ) for all θ ∈ R,

cos(iθ) =
1

2
(e−θ + eθ) for all θ ∈ R.

Exercise 2.3.5. Show that sin z and cos z are entire (De�nition 2.1.1) by verifying the
Cauchy-Riemann equation. Verify the identities

sin 2z = 2 sin z cos z, sin2 z + cos2 z = 1, (sin z)′ = cos z.

Compute (cos z)′.

Exercise 2.3.6. Show that sin z is entire by proving

sin z = z − z3

3!
+

z5

5!
−+ · · ·

with radius of convergence R = +∞. Show that cos z is entire by �nding its power series
representation and compute its radius of convergence.

Finally, we end this chapter by the following remark.

Remark 2.3.7. Let
∑

n cnz
n be a power series with radius of convergence of 0 < R < ∞,

as described in Theorem 2.2.2. We do not know whether the power series converges on
z ∈ ∂BR or not, see Exercise 2.2.6, Exercise 2.2.7 and Exercise 2.2.8. For each z ∈ ∂BR, we
can write z = Reiθ, and plut this form into the power series to obtain

(2.3.5)
∑
n

c̃ne
inθ with c̃n = cnR

n.

The series (2.3.5) is indeed a special case of Fourier series of period 2π, see e.g. my previous
lecture note [Kow22] for further details.



CHAPTER 3

Integration

In previous chapter, we are focusing in (complex) di�erentiability of complex-valued func-
tions. We now discuss its counterpart: the integral.

3.1. The fundamental theorem of line integral

Before we consider the function with complex domain, we �rst deal with the functions
de�ned on interval in R.

Definition 3.1.1. Let ϕ ≡ Reϕ + iImϕ : [a, b] ⊂ R → C, which is continuous on [a, b],
that is Reϕ, Imϕ ∈ C([a, b]). The integral of ϕ is de�ned by∫ b

a

ϕ(t) dt :=

∫ b

a

Reϕ(t) dt+ i

∫ b

a

Imϕ(t) dt,

where
∫ b

a
Reϕ(t) dt and

∫ b

a
Imϕ(t) dt are just the usual Riemann integral.

Definition 3.1.2. Let C =
[
z(t) = x(t) + iy(t) a ≤ t ≤ b

]
be an (oriented) continuous

curve in C. If x and y are both di�erentiable at some t ∈ (a, b), then we set

ż(t) := x′(t) + iy′(t) for such t.

We call the curve C is piecewise-C1 if both x, y ∈ C([a, b]) and x, y ∈ C1 on each subinterval
int [a, x1], int [x1, x2], ..., int [xn−1, b] of some partition of [a, b]. If in addition that ż(t) ̸= 0
for all but �nitely many t ∈ (a, b) (i.e. there are at most �nitely many t0 such that x′(t0) =
y′(t0) = 0), then we called it a parametrizable continuous piecewise-C1 curve.

Remark 3.1.3. Usually we refer an oriented curve C smooth when both x, y ∈ C∞(a, b).
Therefore here we will not follow the terminology in [BN10].

Finally, we de�ne the important concept of a line integral. This concept also introduced
in the vector calculus, see e.g. [GM12].

Definition 3.1.4 (Line integral). Let C =
[
z(t) a ≤ t ≤ b

]
be a parametrizable con-

tinuous piecewise-C1 curve and suppose the complex-valued function f is continuous on C
(up to endpoints). The (line) integral of f along C is de�ned by∫

C
f ≡

∫
C
f(z) dz :=

∫ b

a

f(z)|z=z(t) ż(t) dt =

∫ b

a

f(z(t))ż(t) dt,

where the integrand (i.e. the quantity being integrated) is the complex multiplication of
f(z(t)) and ż(t).

It is clear that the integral depends on the curve C, more precisely, the integral de-
pends on parametrization z (hence depends on its orientation). Therefore we denote
C =

[
z(t) a ≤ t ≤ b

]
rather than

{
z(t) a ≤ t ≤ b

}
to emphasize the orientation of

24
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the curve. However, it is possible to perturb the integral curve without changing the values
of the line integral

∫
C f .

Lemma 3.1.5. Let C1 =
[
z(t) a ≤ t ≤ b

]
and C2 =

[
w(t) c ≤ t ≤ d

]
be two

parametrizable continuous piecewise-C1 curves in C. If there exists an injective C1 map-
ping λ : [c, d] → [a, b] such that

(3.1.1) λ(c) = a, λ(d) = b, w(t) = z(λ(t)) for all t ∈ [c, d],

then
∫
C1 f =

∫
C2 f .

Exercise 3.1.6. Prove Lemma 3.1.5.

Exercise 3.1.7. Let C1 =
[
z(t) a ≤ t ≤ b

]
and C2 =

[
w(t) c ≤ t ≤ d

]
be two

parametrizable continuous piecewise-C1 curves in C. We de�ne the relation ∼ by

(3.1.2) C1 ∼ C2 ⇐⇒ there exists λ ∈ C1([c, d]) satis�es (3.1.1).

Show that ∼ is an equivalence relation, i.e. show that:

(1) Re�exivity. C ∼ C for any parametrizable continuous piecewise-C1 curve C in C.
(2) Symmetry. C1 ∼ C2 ⇐⇒ C2 ∼ C1 for all parametrizable continuous piecewise-C1

curves C1, C2 in C.
(3) Transitivity. Let C1, C2, C3 be parametrizable continuous piecewise-C1 curves in C.

If C1 ∼ C2 and C2 ∼ C3, then C1 ∼ C3.
Therefore, we can rephrase Lemma 3.1.5 as: If C1 and C2 are parametrizable continuous
piecewise-C1 curves in C which are equivalent in the sense of (3.1.2), then

∫
C1 f =

∫
C2 f .

Lemma 3.1.8. Let C =
[
z(t) a ≤ t ≤ b

]
be a parametrizable continuous piecewise-C1

curve in C. If we de�ne

Crev :=
[
z(b+ a− t) a ≤ t ≤ b

]
,

then
∫
Crev f = −

∫
C f .

One should notice that, C and Crev are identical as sets, but reverse oriented.

Exercise 3.1.9. Prove Lemma 3.1.8.

The following lemma exhibit a basic property of line integral.

Lemma 3.1.10. Let C be a parametrizable continuous piecewise-C1 curve, then the map-
ping f 7→

∫
C f is C-linear, that is,

(1)
∫
C(f + g) =

∫
C f +

∫
C g for all f, g ∈ C(C),

(2)
∫
C αf = α

∫
C f for all f ∈ C(C) and α ∈ C.

Here C(C) denotes the collection of continuous functions on C (up to endpoints).

Exercise 3.1.11. Prove Lemma 3.1.10.

Lemma 3.1.12. If the complex-valued function G ∈ C([a, b]), then∣∣∣∣∫ b

a

G(t) dt

∣∣∣∣ ≤ ∫ b

a

|G(t)| dt.

The LHS of the above integral is de�ned in the sense of De�nition 3.1.1, while the RHS is
the usual Riemann integral.
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Proof. We �rst write
∫ b

a
G(t) dt in terms of polar coordinate, that is,∫ b

a

G(t) dt =

∣∣∣∣∫ b

a

G(t) dt

∣∣∣∣ eiθ
for some θ ∈ [0, 2π). By linearity of

∫
C, we reach∣∣∣∣∫ b

a

G(t) dt

∣∣∣∣ = ∫ b

a

e−iθG(t) dt
def≡
∫ b

a

Re
(
e−iθG(t)

)
dt+ i

∫ b

a

Im
(
e−iθG(t)

)
dt.

Taking real part of the above equation, we reach∣∣∣∣∫ b

a

G(t) dt

∣∣∣∣ = ∫ b

a

Re
(
e−iθG(t)

)
dt.

Since |Re
(
e−iθG(t)

)
| ≤ |e−iθG(t)| = |G(t)|, by the monotonicity of the usual Riemann

integral, we reach ∣∣∣∣∫ b

a

G(t) dt

∣∣∣∣ = ∫ b

a

Re
(
e−iθG(t)

)
dt ≤

∫ b

a

|G(t)| dt,

which is our desired result. □

Lemma 3.1.13. Let C be a parametrizable continuous piecewise-C1 curve with length
H 1(C), then ∣∣∣∣∫

C
f

∣∣∣∣ ≤ ∥f∥L∞(C)H
1(C) for all f ∈ C(C).

Remark 3.1.14. This implies that, although
∫
C f depends on the parametrization of C,

it is possible to �nd an upper bound which is independent of parametrization. In particular,
the length of the parametrizable continuous piecewise-C1 curve is exactly identical to its
1-dimensional Hausdor� measure [BBI01, Theorem 2.6.2].

Proof of Lemma 3.1.13. Write C =
[
z(t) a ≤ t ≤ b

]
, and recall that

H 1(C) =
∫ b

a

√
(x′(t))2 + (y′(t))2 dt =

∫ b

a

|ż(t)| dt.

By Lemma 3.1.12 we see that∣∣∣∣∫
C
f

∣∣∣∣ = ∣∣∣∣∫ b

a

f(z(t))ż(t) dt

∣∣∣∣ ≤ ∫ b

a

|f(z(t))||ż(t)| dt ≤ ∥f∥L∞(C)

∫ b

a

|ż(t)| dt.

We combine the above two equations and conclude the lemma. □

Lemma 3.1.15. Suppose {fn} is a sequence of continuous functions and fn → f uniformly
on the parametrizable continuous piecewise-C1 curve C. Then∫

C
f = lim

n→∞

∫
C
fn.

Proof. By (1.2.7), linearity of
∫
C and Lemma 3.1.13, one easily sees that

lim sup
n→∞

∣∣∣∣∫
C
f(z) dz −

∫
C
fn(z) dz

∣∣∣∣ = lim sup
n→∞

∣∣∣∣∫
C
(f(z)− fn(z)) dz

∣∣∣∣
≤ H 1(C) lim sup

n→∞
∥f − fn∥L∞(C) = 0,
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which conclude our lemma. □

We now prove one of the main result of this section, which also can be regard as a
generalization of fundamental theorem of calculus (integral operator as an inverse operator
of di�erentiation operator).

Theorem 3.1.16 (Fundamental theorem of line integral). Let C =
[
z(t) a ≤ t ≤ b

]
be

a parametrizable continuous piecewise-C1 curve. If f ∈ C1(C) is (complex) di�erentiable on
C, then ∫

C
f ′ = f(z(b))− f(z(a)).

Remark 3.1.17. The C1 assumption on f is to ensure that f ′ ∈ C(C) so that
∫
C f

′ is
well-de�ned according to De�nition 3.1.4.

Proof of Theorem 3.1.16. By assumptions, we have ż(t) ̸= 0 for all but �nitely many
a < t < b. For such t, we can �nd δt > 0 so that z(t+ h)− z(t) ̸= 0 and a < t+ h < b for all
|h| < δt. We see that see that

f(z(t+ h))− f(z(t))

h
=

f(z(t+ h))− f(z(t))

z(t+ h)− z(t)
· z(t+ h)− z(t)

h
for all 0 < |h| < δt,

which gives

d

dt
(f(z(t))) = lim

R∋h→0

f(z(t+ h))− f(z(t))

h

= lim
R∋h→0

f(z(t+ h))− f(z(t))

z(t+ h)− z(t)
· lim
R∋h→0

z(t+ h)− z(t)

h

= lim
C∋w→z(t)

f(w)− f(z(t))

w − z(t)
· lim
R∋h→0

z(t+ h)− z(t)

h

= f ′(z)|z=z(t) ż(t) (complex multiplication).

Hence by the de�nition of line integral, one sees that∫
C
f ′(z) dz

def≡
∫ b

a

f ′(z)|z=z(t) ż(t) dt =

∫ b

a

d

dt
(f(z(t))) dt = f(z(b))− f(z(a)),

where the last equality is just simply the fundamental theorem of calculus [Rud76, Theo-
rem 6.21]. □

3.2. Cauchy closed curve theorem in rectangle

We begin our discussions by the following de�nition.

Definition 3.2.1. A parametrizable continuous piecewise-C1 curve C =[
z(t) a ≤ t ≤ b

]
is closed if z(a) = z(b). If, in addition, z(t1) ̸= z(t2) for all t1 < t2 with

(t1, t2) ̸= (a, b), then we call such closed curve simple.

Remark 3.2.2. The curve with shape �∞� is closed but not simple.

Here not to be confused with the terminology �topological closed�. For example, a straight
line with �nite length is topological closed, but not closed in the sense of De�nition 3.2.1.
For later convenience, we again clarify the following notion (despite we already introduced
before):
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Definition 3.2.3. Let K be a topological closed set in C. We say that f is analytic near
K if there exists an open neighborhood Ω of K (i.e. an open set Ω such that K ⊂ Ω) such
that f is analytic in Ω. If K = {z} is a one point set, then we say that f is analytic near z.
In particular, one sees that f is analytic near z if and only if there exists ϵ > 0 such that f
is analytic in the ball Bϵ(z).

The main theme of this section is to prove the following result, which somehow can be
view as a generalization of Exercise 3.1.7, see also [GM12, Theorems 6.6.2 and 6.6.3] for
analogous result on vector �elds on Rn.

Theorem 3.2.4 (Cauchy closed curve theorem in rectangle). Let C be a parametrizable
continuous piecewise-C1 closed curve. If f is analytic near a topological closed rectangle R
such that C ⊂ R, then

∫
C f = 0.

Remark 3.2.5. The above theorem holds true for any parametrization of the curve C.
The main point here is f has no singularity in the area enclosed by the curve C. If f has
some singularity inside it, then the above theorem does not hold. We will discuss such cases
later in Chapter 5. We also also prove a fairly general version of the Cauchy closed curve
theorem later in Section 3.3.

Lemma 3.2.6. Let C be a parametrizable continuous piecewise-C1 closed curve. If f(z) =
α + βz for some α, β ∈ C (that is, a linear function), then

∫
C f = 0.

Proof. If we de�ne F (z) := αz + 1
2
βz2, by using Exercise 2.1.6, one has F ′ = f . By

writing C =
[
z(t) a ≤ t ≤ b

]
and using the fundamental theorem of line integral (Theo-

rem 3.1.16), one sees that ∫
C
f =

∫
C
F ′ = F (z(b))− F (z(a)) = 0,

which immediately conclude our lemma. □

Exercise 3.2.7. Let {K(k)} be a sequence of compact sets in C ∼= R2 such that K(1) ⊃
K(2) ⊃ K(3) ⊃ · · · . Show that

⋂
k∈N K(k) ̸= ∅. [Hint: consider the complement of K(k).]

We now prove the following technical lemma.

Lemma 3.2.8 (Rectangle lemma). Let Γ be the boundary of a topological closed rectangle
R. If f is analytic near R, then

∫
Γ
f = 0.

Proof. Without loss of generality, we may choose a parametrization of Γ in counter-
clockwise orientation, since the reverse orientation will gives a minus sign (Lemma 3.1.8),
which does not a�ect our lemma at all.

We split the topological closed rectangle R into 4 congruent subrectangles, by bisecting
each of the sides. We let Γ1,Γ2,Γ3,Γ4 denote the boundaries (counterclockwise orientation) of
the four topological closed subrectangles (also in counterclockwise order) as in the following
�gure:
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Figure 3.2.1. Splitting a rectangle into 4 congruent subrectangles

Since the integrals along the interior lines appear in the opposite directions and thus
cancel (Lemma 3.1.8), hence we see that∫

Γ

f =
4∑

i=1

∫
Γi

f.

From this, one sees that ∣∣∣∣∫
Γi

f

∣∣∣∣ ≥ 1

4

∣∣∣∣∫
Γ

f

∣∣∣∣ for some i = 1, 2, 3, 4.

We denote Γ(0) = Γ and Γ(1) = Γi for i which satis�es the above inequality. Let R(1)

the topological closed rectangle enclosed by the closed curve Γ(1). We now show (by using
mathematical induction) that one can obtain a sequence of topological closed rectangles

(3.2.1) R(1) ⊃ R(2) ⊃ R(3) ⊃ · · · with

∣∣∣∣∫
Γ(k)

f

∣∣∣∣ ≥ 1

4k

∣∣∣∣∫
Γ

f

∣∣∣∣ ,
where Γ(k) is the boundary of the R(k).

We already show (3.2.1) when k = 1. We now assume the induction hypothesis
that (3.2.1) holds for k = ℓ. We now splitting the topological closed rectangle R(ℓ) into

R(ℓ)
1 ,R(ℓ)

2 ,R(ℓ)
3 ,R(ℓ)

4 as in Figure 3.2.1, where Γ
(ℓ)
i are boundary of R(ℓ)

i . We again see that∫
Γ(ℓ)

f =
4∑

i=1

∫
Γ
(ℓ)
i

f.

From this, one sees that∣∣∣∣∣
∫
Γ
(ℓ)
i

f

∣∣∣∣∣ ≥ 1

4

∣∣∣∣∫
Γ(ℓ)

f

∣∣∣∣ ≥ 1

4ℓ+1

∣∣∣∣∫
Γ

f

∣∣∣∣ for some i = 1, 2, 3, 4.

We now denote choose Γ(ℓ+1) := Γ
(k)
i for i satis�es the above inequality and R(ℓ+1) be the

topological closed rectangle enclosed by the closed curve Γ(ℓ+1). We now complete the proof
of (3.2.1) by induction.

By using Exercise 3.2.7, we know that
⋂

k∈N R(k) ̸= ∅. We now �x one z0 ∈
⋂

k∈N R(k).
One sees that

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0) ⇐⇒ lim

z→z0

f(z)− f(z0)− f ′(z0)(z − z0)

z − z0
= 0.
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For later convenience, we denote

oz :=
f(z)− f(z0)− f ′(z0)(z − z0)

z − z0

so that

f(z) = f(z0) + f ′(z0)(z − z0) + oz · (z − z0), lim
z→z0

oz = 0.

By using Lemma 3.2.6, we see that∫
Γ(n)

f =

∫
Γ(n)

oz · (z − z0) dz.

Let s be the largest side of the original boundary Γ (so that H 1(Γ) ≤ 4s and |z−z0| ≤
√
2s),

then

H 1(Γ(n)) =
1

2n
H 1(Γ) ≤ 4s

2n
, sup

z∈Γ(n)

|z − z0| ≤
√
2s

2n
.

By the de�nition of oz, given any ϵ > 0, there exists N such that

|oz| ≤ ϵ for all |z − z0| ≤
√
2s

2N
,

which shows that

sup
z∈Γ(n)

|oz| ≤ ϵ for all n ≥ N.

By using Lemma 3.1.13 and (3.2.1), by �xing any n ≥ N , we see that∣∣∣∣∫
Γ

f

∣∣∣∣ ≤ 4n
∣∣∣∣∫

Γ(n)

f

∣∣∣∣ = 4n
∣∣∣∣∫

Γ(n)

oz · (z − z0) dz

∣∣∣∣ ≤ ϵ4
√
2s2.

We see that the �rst and last terms of the above are independent of N . By arbitrariness of
ϵ, we conclude our lemma. □

We now prove an important theorem, which is analogue to the fundamental theorem of
calculus (antiderivative).

Theorem 3.2.9 (Fundamental theorem of antiderivative in rectangle). If f is analytic
near a topological closed rectangle R, then there exists a function F which is analytic and F ′ =
f near R. Such analytic function F is called the (complex) antiderivative of f . Combining
this with the fundamental theorem of line integral (Theorem 3.1.16), we have

(3.2.2)

∫
C
f =

∫
C
F ′ = F (z(b))− F (z(a))

for any parametrizable continuous piecewise-C1 curve C =
[
z(t) a ≤ t ≤ b

]
⊂ R.

Remark 3.2.10. We will later show a fairly general version of the above theorem in
Theorem 3.3.10 later.

Proof of Theorem 3.2.9. Without loss of generality, we may assume 0 ∈ R. We
de�ne

(3.2.3) F (z) :=

∫ z

0

f(ζ) dζ ≡
∫
C1
f(ζ) dζ,
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where C1 denotes the oriented curve consists of the straight lines from 0 to Re z and then
from Re z to z. For each h ∈ C, we also denote∫ z+h

z

f(ζ) dζ ≡
∫
C2
f(ζ) dζ,

where C2 denotes the oriented curve consists of the straight lines from z to z+Reh and then
from z +Reh to z + h. By the de�nition (3.2.3), we have

F (z + h) =

∫ z+h

0

f(ζ) dζ =

∫
C3
f(ζ) dζ,

where C3 denotes the oriented curve consists of the straight lines from 0 to Re (z + h) and
then from Re (z + h) to z + h. In particular, one sees that

F (z) +

∫ z+h

z

f(ζ) dζ = F (z + h),

see the following �gure:

Figure 3.2.2. The sketch of the curves C1, C2 and C3

Since

F (z + h)− F (z) =

∫ z+h

z

f(ζ) dζ

and

1

h

∫ z+h

z

1 dz =
1

h

from z to z+Reh︷ ︸︸ ︷
((z +Reh)− z)+

1

h

from z+Reh to z+h︷ ︸︸ ︷
((z + h)− (z +Reh)) = 1,

then
F (z + h)− F (z)

h
− f(z) =

1

h

∫ z+h

z

(f(ζ)− f(z)) dζ.

Since H 1(C2) = |Reh|+ |Imh| ≤ 2|h|, �nally by Lemma 3.1.13 and the (uniform) continuity
of f , we have

lim sup
C∋h→0

∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ lim sup
C∋h→0

1

|h|
∥f − f(z)∥L∞(C2)H

1(C2)

≤ 2 lim sup
C∋h→0

∥f − f(z)∥L∞(C2) = 0
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which conclude our theorem. □

With this fundamental theorem at hand, we �nally now ready to prove the main result
of this section, that is, the Cauchy closed curve theorem in rectangle.

Proof of Theorem 3.2.4. Write C =
[
z(t) a ≤ t ≤ b

]
⊂ R with z(a) = z(b). Since

f is analytic near R, by the fundamental theorem of antiderivative in rectangle (Theo-
rem 3.2.9), there exists a function F which is analytic and F ′ = f near R such that∫

C
f =

∫
C
F ′ = F (z(b))− F (z(a)) = 0,

which immediately conclude the theorem. □

3.3. Cauchy closed curve theorem in simply connected open sets

In this section will prove a version of Cauchy closed curve theorem, which generalized
Theorem 3.2.4. The main theme of this section is to remove the analyticity assumption on
rectangles. Let A and B are sets, then we denote the distance between them by

dist (A,B) = inf
a∈A,b∈B

|a− b|.

If A is a one point set {z0}, we simply denote dist (z0, B).

Definition 3.3.1. Let Ω be an open set. If Ω is connected and its complement is �con-
nected to ∞ by a continuous curve within ϵ-neighborhood of C \ Ω� in the following sense:
if for any z0 /∈ Ω and ϵ > 0, there is a continuous curve γ = [γ(t) : 0 ≤ t < ∞] such that

dist (γ(t),C \ Ω) < ϵ for all t ≥ 0, γ(0) = z0, lim
t→∞

|γ(t)| = ∞,

then we call such set Ω is simply connected open set in C.

Example 3.3.2. The annulus
{
z ∈ C 1 < |z| < 3

}
is not simply connected, because

its complement cannot be �connected to ∞ by a continuous curve within ϵ-neighborhood of
C \ Ω�.

Example 3.3.3. The in�nite strip S =
{
z ∈ C −1 < Im z < 1

}
is connected. Note

that in this case, C \ S is not connected.

Exercise 3.3.4. A set S is called star-like if there exists a point α ∈ S such that the line
segment connecting α and z is contained in S for all z ∈ S. Show that a star-like region is
simply connected.

We now exhibit an example to demonstrate the generality of De�nition 3.3.1.

Example 3.3.5. The complement of the connected domain{
x+ iy ∈ C 0 < x ≤ 1, y = sin 1

x

}
∪
{
iy ∈ C −1 < y < ∞

}
is simply connected.

Definition 3.3.6. Let Γ be a polygonal path (De�nition 1.2.16) consists of horizontal
lines and vertical lines, i.e. either parallel to real axis or parallel to v the imaginary axis.
The y0-level is the set

Γy0 :=
{
x+ iy0 x ∈ R

}
∩ Γ.
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If {Γy1 , · · · ,Γyn}, for some y1 > y2 > · · · > yn, are all levels of Γ, then we say that n ∈ N is
the number of levels. We also say Γy1 the top level of Γ. We also say that Γyj+1

is the next
level of Γyj .

Exercise 3.3.7. Let K be a compact set in C and let F be a topological closed set in
C. If K ∩F = ∅, show that dist (K,F ) > 0. On the other hand, construct topological closed
sets F1, F2 in C such that F1 ∩ F2 = ∅ but dist (F1, F2) = 0.

Lemma 3.3.8. Let Γ be a simple closed polygonal path (De�nition 3.2.1) consists of hor-
izontal lines and vertical lines, such that it contained in a simply connected open set Ω. Let
{Γy1 , · · · ,Γyn}, for some y1 > y2 > · · · > yn, be all levels of Γ. Let X1 be the topological
closed set in R such that

Γy0 =
{

x+ iy1 x ∈ X1

}
.

Then the set R :=
{

z = x+ iy x ∈ X1, y2 ≤ y ≤ y1
}
is contained in Ω.

Sketch of proof. Note that R is a �nite union of disjoint topological closed rectan-
gles. In addition, by using Exercise 3.3.7, we also see that δ := dist (Γ,C \ Ω) > 0. Let
z0 ∈ R and let γ be any continuous curve which �connecting z0 to ∞� in the sense of
γ = [γ(t) : 0 ≤ t < ∞] with

γ(0) = z0, lim
t→∞

|γ(t)| = ∞.

In fact, we have γ ∩ Γ ̸= ∅, this is just simply the fact that, a connected line from R (inside
the region bound by Γ) to outside the region bound by Γ, must pass through the boundary.
One can refer to [BN10, Chapter 8] for those technical details.

We now want to show z0 ∈ Ω. Suppose the contrary, that z0 /∈ Ω. Since Ω is simply
connected, there exists a continuous curve γ0 �connected to ∞ by a continuous curve within
δ
2
-neighborhood of C \ Ω�, that is,

dist (γ0(t),C \ Ω) < δ

2
for all t ≥ 0, γ0(0) = z0, lim

t→∞
|γ0(t)| = ∞.

The previous paragraph says that γ0 ∩ Γ ̸= ∅, then there exists t0 ≥ 0 such that γ0(t0) ∈ Γ.
From this, we have

dist (γ0(t0),C \ Ω) ≥ dist (Γ,C \ Ω) = δ,

which is a contradiction. □

We now generalize the rectangle lemma (Lemma 3.2.8).

Lemma 3.3.9. Let f be an analytic function on a simply connected open set Ω, and let Γ be
a simple closed polygonal path consists of horizontal lines and vertical lines, which contained
in Ω. Then

∫
Γ
f = 0.

Sketch of proof. We will prove the result by induction on the number of levels. If Γ
has only two levels, then Γ is simply the boundary of a closed rectangle, and this case can
be concluded by the rectangle lemma (Lemma 3.2.8). The induction step can be done as in
the following diagram:
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Figure 3.3.1. Induction hypothesis for Γ with j-levels (red), and induction
step (blue)

Each induction step are done by the rectangle lemma (Lemma 3.2.8). □

From this, we can obtain Fundamental theorem of antiderivative in simply connected
domain.

Theorem 3.3.10 (Fundamental theorem of antiderivative in simply connected domain).
If f is an analytic function on a simply connected open set Ω, then there exists a function
F which is analytic and F ′ = f in Ω. Similarly, such analytic function F is called the
(complex) antiderivative of f . Combining this with the fundamental theorem of line integral
(Theorem 3.1.16), we have

(3.3.1)

∫
C
f =

∫
C
F ′ = F (z(b))− F (z(a))

for any parametrizable continuous piecewise-C1 curve C =
[
z(t) a ≤ t ≤ b

]
⊂ R.

Sketch of proof. Choose z0 ∈ Ω and de�ne

F (z) =

∫ z

z0

f(ζ) dζ,

where the path of integration is the simple polygonal path consists of horizontal lines and ver-
tical lines, which contained in Ω. This is well-de�ned by the rectangle lemma (Lemma 3.3.9).
Then the rest of proof can be done as in Theorem 3.2.9, which we leave it as an exercise. □

Finally, we state (without proof) the Cauchy closed curve theorem which we needed,
which can be proved using Theorem 3.3.10 following the arguments in Theorem 3.2.4. We
leave the proof as an exercise.

Theorem 3.3.11 (Cauchy closed curve theorem in simply connected open set). Let f be
an analytic function on a simply connected open set Ω. For each parametrizable continuous
piecewise-C1 closed curve C which contained in Ω, then

∫
C f = 0.



CHAPTER 4

Properties of Analytic functions

Now we have obtained some fundamental tools connecting the di�erentiation and inte-
gration. We now ready to further study the analytic functions. We �rst consider the simplest
case: the entire functions, which is analytic in the whole C.

4.1. Cauchy integral formula for entire functions

We now try to study the situation stated in Remark 3.2.5. In order to deal with this case,
for each point a ∈ C and an entire function f , we de�ne the auxiliary function

(4.1.1) g(z) =

{
f(z)−f(a)

z−a
, z ̸= a,

f ′(a) , z = a.

It is clear that g is continuous. One of the main theme of this section is to prove that g
is entire. We �rst prove the following technical lemma, which sometimes also referred as
�rectangle theorem�.

Lemma 4.1.1. Let f be an entire function and let g be the auxiliary function given in
(4.1.1). If Γ is the boundary of a topological closed rectangle R, then

∫
Γ
g = 0.

Proof. If a /∈ R, then clearly g is analytic near R, and the lemma immediately follows
from Cauchy closed curve theorem (Theorem 3.3.11).

For the case when a ∈ Γ = ∂R, by using Cauchy closed curve theorem (Theorem 3.3.11)
one sees that ∫

Γ

g =

∫
Γ1

g,

where Γ1 ∋ a is the boundary of the square with side length ϵ, as showed in the following
�gure):

Figure 4.1.1. The sketch of the curves Γ1 and Γ

By using Lemma 3.1.13, it is easy to see that∣∣∣∣∫
Γ

g

∣∣∣∣ = ∣∣∣∣∫
Γ1

g

∣∣∣∣ ≤ 4∥g∥L∞(Γ1)ϵ ≤ 4∥g∥L∞(R)ϵ.

By arbitrariness of ϵ > 0, we conclude that
∫
Γ
g = 0.

35
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For the case when a ∈ int (R), by using Cauchy closed curve theorem (Theorem 3.3.11),
one sees that ∫

Γ

g =

∫
Γ2

g,

where Γ2 is the boundary of the square (which containing a in its interior) with side length
ϵ, as showed in the following �gure:

Figure 4.1.2. The sketch of the curves Γ2 and Γ

As in previous case, by using Lemma 3.1.13, it is easy to see that∣∣∣∣∫
Γ

g

∣∣∣∣ = ∣∣∣∣∫
Γ2

g

∣∣∣∣ ≤ 4∥g∥L∞(Γ2)ϵ ≤ 4∥g∥L∞(R)ϵ.

By arbitrariness of ϵ > 0, we conclude that
∫
Γ
g = 0. □

The following exercise can be done using similar arguments as in the Fundamental theorem
of antiderivative in rectangle (Theorem 3.2.9) and the Cauchy closed theorem in rectangle
(Theorem 3.2.4):

Exercise 4.1.2. Let a ∈ C and let f be an entire function. Show that there exists an
entire function G such that G′ = g, where g is the auxiliary function given in (4.1.1). In
addition, one also has

∫
C g = 0 for all parametrizable continuous piecewise-C1 closed curve

C. [Hint: g is continuous.]

Remark 4.1.3. Even though we have Lemma 4.1.2, we still don't know whether g is
entire or not. At this point, we do not know yet whether the (complex) derivative of entire
function is also entire or not.

We now prove the following lemma, which is related to Remark 3.2.5.

Lemma 4.1.4. If Cρ(z0) is the boundary of Bρ(z0) in counterclockwise orientation, that is,
Cρ(z0) =

[
Reiθ + z0 0 ≤ θ ≤ 2π

]
, then∫

Cρ(z0)

1

z − a
dz = 2πi for all a ∈ Bρ(z0).
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Proof. We �rst consider the case when a = z0. In this case, from the de�nition of line
integral (De�nition 3.1.4), we see that∫

Cρ(z0)

1

z − z0
dz =

∫ 2π

0

iReiθ

Reiθ
dθ = 2πi.

By using the fundamental theorem of line integral (Theorem 3.1.16)∫
Cρ(z0)

1

(z − z0)2
dz = −

∫
Cρ(z0)

∂z

(
1

z − z0

)
dz = 0.

Inductively, we also see that

(4.1.2)

∫
Cρ(z0)

1

(z − z0)k+1
dz = −1

k

∫
Cρ(z0)

∂z

(
1

(z − z0)k

)
dz = 0 for all k = 1, 2, · · · .

We now prove Lemma 4.1.4 for a ∈ Bρ(z0). We write

1

z − a
=

1

(z − z0)− (a− z0)
=

1

z − z0
· 1

1− a−z0
z−z0

for all z ∈ Cρ(z0).

Since

(4.1.3)

∣∣∣∣a− z0
z − z0

∣∣∣∣ = |a− z0|
ρ

< 1 for all z ∈ Cρ(z0),

then the fact that 1
1−w

= 1+w+w2+ · · · for w ∈ C with |w| < 1 (geometric sequence), then
(4.1.4)

1

z − a
=

1

z − z0
·

(
1 +

a− z0
z − z0

+

(
a− z0
z − z0

)2

+ · · ·

)
=

∞∑
k=0

(a− z0)
k

(z − z0)k+1
for all z ∈ Cρ(z0).

Again by (4.1.3), we have

lim sup
n→∞

∥∥∥∥∥
n∑

k=0

(a− z0)
k

(z − z0)k+1
− 1

z − a

∥∥∥∥∥
L∞(Cρ(z0))

= lim sup
n→∞

∥∥∥∥∥
∞∑

k=n+1

(a− z0)
k

(z − z0)k+1

∥∥∥∥∥
L∞(Cρ(z0))

≤ lim sup
n→∞

∞∑
k=n+1

∥∥∥∥ (a− z0)
k

(z − z0)k+1

∥∥∥∥
L∞(Cρ(z0))

=
1

ρ
lim sup
n→∞

∞∑
k=n+1

(
|a− z0|

ρ

)k

= 0,

that is, the convergence in (4.1.4) is uniform. Therefore, from (4.1.2) we obtain∫
Cρ(z0)

1

z − a
dz =

∫
Cρ(z0)

1

z − z0
dz +

∞∑
k=1

(a− z0)
k

∫
Cρ(z0)

1

(z − z0)k+1
dz = 2πi,

which conclude our lemma. □

Warning: In general the in�nite sum and integral are not commute. The
uniform convergence is a su�cient condition that guarantees that this idea work.

Exercise 4.1.5. Prove (4.1.2) by direct evaluation in the de�nition of line integral (Def-
inition 3.1.4).

We now ready to state and proof the main theorem of this section.
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Theorem 4.1.6 (Cauchy integral formula for entire functions). Let f be an entire func-
tion, let a ∈ C and let C =

[
Reiθ 0 ≤ θ ≤ 2π

]
with R > |a|. Then

f(a) =
1

2πi

∫
C

f(z)

z − a
dz.

Proof. By Exercise 4.1.2 and Lemma 4.1.4, one has

0 =

∫
C

f(z)− f(a)

z − a
dz =

∫
C

f(z)

z − a
dz − f(a)

∫
C

f(z)

z − a
dz =

∫
C

f(z)

z − a
dz − 2πif(a),

which conclude our theorem. □

4.2. Power series (with R = ∞) and entire function

In Chapter 2 we have showed that each power series represents an analytic function inside
its domain of convergence. In real analysis, it is known that there exists a C∞ function such
that its Taylor expansion does not converges to it. For example, we consider the function

f(x) =

{
e−

1
x2 , x > 0,

0 , x ≤ 0,

which is in C∞(R) but f (n)(0) = 0 for all n ∈ N (so that its Taylor expansion at 0 vanishes
identically, therefore does not converge to f). In other words, the di�erentiability (existence
of partial derivatives) does not guarantee the convergence of Taylor sequence. However, the
complex di�erentiation has the following surprising properties, which is the main result of
this section:

Theorem 4.2.1. f is entire if and only if it has a power series representation
(centered at some a ∈ C with radius of convergence = ∞). In this case, for each a ∈ C,
the complex derivatives {f (k)(a)}∞k=1 exist and satis�es

(4.2.1) f(z) =
∞∑
k=0

f (k)(a)

k!
(z − a)k for all z ∈ C.

Remark 4.2.2. The above theorem means that {f (k)(a)}∞k=1 exist for all a ∈ C, that is,
f is in�nitely complex di�erentiable.

Theorem 4.2.1. If f has a power series representation at a ∈ C with radius of conver-
gence = ∞, i.e. there exist Ck ∈ C such that f(z) =

∑∞
k=0Ck(z − a)k for all z ∈ C. By

applying Theorem 2.2.9 g(z) = f(z + a) =
∑∞

k=0 Ckz
k, we know that g is entire, and so is f .

Conversely, we now suppose that f is entire. Given any a ∈ C, we de�ne the entire
function g(z) := f(z + a) for all z ∈ C. If we can show that

(4.2.2) g(z) =
∞∑
k=0

g(k)(0)

k!
zk for all z ∈ C,

then f(z) = g(z − a) =
∑∞

k=0
g(k)(0)

k!
(z − a)k =

∑∞
k=0

f (k)(a)
k!

(z − a)k, which conclude (4.2.1).
It is remain to prove (4.2.2). Given any z ∈ C, one can choose R > 0 such that |z| < R.

By using the Cauchy integral formula for entire function, one has

g(y) =
1

2πi

∫
∂BR

g(w)

w − y
dw for all y ∈ BR.
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By using the geometric sequence (which used in the proof of Lemma 4.1.4), one sees that

1

w − y
=

1

w(1− y
w
)
=

1

w
+

y

w2
+

y2

w3
+ · · · =

∞∑
k=0

yk

wk+1

which is uniformly converge, so that

g(y) =
∞∑
k=0

1

2πi

(∫
∂BR

g(w)

wk+1
dw

)
yk for all y ∈ BR.

Then by Exercise 2.2.10, one reach

1

2πi

(∫
∂BR

g(w)

wk+1
dw

)
=

g(k)(0)

k!
for all k = 0, 1, 2, · · ·

and hence

g(y) =
∞∑
k=0

g(k)(0)

k!
yk for all y ∈ BR.

Since z ∈ BR, then

g(z) =
∞∑
k=0

g(k)(0)

k!
zk.

Since the above procedure holds true for all z ∈ C, hence we conclude (4.2.2). □

Exercise 4.2.3 (Higher order Cauchy integral formula for entire functions). Let f be an
entire function, let a ∈ C and let C =

[
Reiθ 0 ≤ θ ≤ 2π

]
with R > |a|. Show that

f (k)(a) =
k!

2πi

∫
C

f(z)

(z − a)k+1
dz for all k = 0, 1, 2, · · ·

Proposition 4.2.4. If f is entire, then the auxiliary function g given in (4.1.1) is also
entire.

Proof. We can write (4.2.1) as

f(z)− f(a) =
∞∑
k=1

f (k)(a)

k!
(z − a)k for all z ∈ C,

where we choose a ∈ C be the number as in (4.1.1). Dividing the above equation by (z − a),
we reach

g(z) ≡ f(z)− f(a)

z − a
=

∞∑
k=1

f (k)(a)

k!
(z − a)k−1 =

∞∑
m=0

f (m+1)(a)

(m+ 1)!
(z − a)m for all z ̸= a.

Since g is continuous on C, and the right hand side of the above inequality is entire (hence
continuous), thus the above identity also holds for all z ∈ C, which completes the proof. □

Exercise 4.2.5. Suppose that f is entire with zeros a1, a2, · · · aN , that is, f(ak) = 0 for
k = 1, 2, · · · , N , and we de�ne

g(z) :=
f(z)

(z − a1)(z − a2) · · · (z − aN)
for all z ∈ C \ {a1, a2, · · · , aN}.



4.3. LIOUVILLE THEOREM AND THE FUNDAMENTAL THEOREM OF ALGEBRA 40

Show that if limz→ak g(z) exists for all k = 1, 2, · · · , N , then the extension g̃ of g de�ned by

g̃(z) :=

{
g(z) , z ∈ C \ {a1, a2, · · · , aN},
lim
z→ak

g(z) , z = ak for k = 1, 2, · · · , N,

is also entire.

4.3. Liouville theorem and the fundamental theorem of algebra

By using the Cauchy integral formula for entire functions, we also can obtain some pow-
erful tools, which are well-known.

Theorem 4.3.1 (Liouville theorem). A bounded entire function is constant.

Proof. Let a and b represent any two complex numbers and let C be any positively ori-
ented (i.e. counter clockwise oriented) circle centered at 0 and with radius R > max{|a|, |b|}.
By using the Cauchy integral formula for entire functions (Theorem 4.1.6), we see that

f(b)− f(a) =
1

2πi

∫
C

f(z)

z − b
dz − 1

2πi

∫
C

f(z)

z − a
dz =

1

2πi

∫
C

f(z)(b− a)

(z − a)(z − b)
dz.

Since the arc length H 1(C) of C is 2πR, then

|f(b)− f(a)| ≤ 1

2π

∥f∥L∞(C)|b− a|
(R− |a|)(R− |b|)

H 1(C) =
∥f∥L∞(C)|b− a|

(R− |a|)(R− |b|)
R.

Taking R → ∞ (in the sense of limit supremum), we conclude f(a) = f(b). Since a, b are
arbitrary, then we conclude our theorem. □

Theorem 4.3.2 (Extended Liouville theorem). Let A > 0, B > 0 and k ∈ Z≥0. If the
entire function f satis�es

(4.3.1) |f(z)| ≤ A+B|z|k for all z ∈ C,
then f is an analytic polynomial of degree at most k.

Proof. We prove the above result by induction on k. The statement for k = 0 is just
simply Theorem 4.3.1.

It is su�ce to prove the result for k = ℓ + 1 if Theorem 4.3.2 holds true for k = ℓ ≥ 0.
Let g be the auxiliary function given in 4.1.1 and choosing a = 0. From Proposition 4.2.4 we
know that such g is entire. We also see that

|g(z)| = |f(z)− f(0)|
|z|

≤ |f(z)|+ |f(0)|
|z|

≤ 2A+B|z|ℓ+1

|z|
≤ 2A+B|z|ℓ for all |z| ≥ 1,

and thus

|g(z)| ≤ ∥g∥L∞(B1) + 2A+B|z|ℓ.
By using the induction hypothesis that Theorem 4.3.2 holds true for k = ℓ ≥ 0, we know
that g is an analytic polynomial of degree at most ℓ. Since

f(z) = zg(z) + f(0) for all z ̸= 0,

by analyticity of both f and g, in particular the above identity also holds true for all z ∈ C.
Therefore f is analytic polynomial of degree at most ℓ+ 1. This conclude Theorem 4.3.2 by
induction. □
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Exercise 4.3.3. Suppose f is entire and |f(z)| ≤ A + B|z| 32 for all z ∈ C. Show that f
is linear polynomial.

Exercise 4.3.4. Suppose f is entire and |f ′(z)| ≤ |z| for all z ∈ C. Show that f(z) =
a+ bz2 with |b| ≤ 1

2
.

Lemma 4.3.5. Let P (z) be a analytic polynomial which is not identical to a constant
function. Then there exists z0 ∈ C such that P (z0) = 0.

Proof. Suppose the contrary that such z0 ∈ C does not exist, that is, P (z) ̸= 0 for all
z ∈ C. Then by Lemma 2.1.5 one sees that f(z) := 1

P (z)
is an entire function. Since P is

non-constant, then we can write

P (z) =
N∑
j=0

cjz
j

for some N ∈ N with cN ̸= 0 and cn = 0 for all n > N . Then we see that

lim inf
z→∞

|P (z)| ≥ lim inf
z→∞

(
|cN ||z|N −

N−1∑
j=0

|cj||z|j
)

= ∞,

which shows that

lim
z→∞

|f(z)| = 0.

Therefore f is a bounded entire function, which is a constant by Liouville theorem (Theo-
rem 4.3.1), this shows that P must identical to a constant function, which is a contradic-
tion. □

We �nally end this section by proving an important theorem in the �eld theory.

Theorem 4.3.6 (Fundamental theorem of algebra). Let P (z) be a analytic polynomial
which is not identical to a constant function, then there exists A,α1, · · · , αN ∈ C such that
P (z) = A(z−α1) · · · (z−αN) for all z ∈ C. In other words, the complex �eld C is algebraically
complete.

Proof. Write P (z) =
∑N

j=0 cjz
j for some N ∈ N with cN ̸= 0. Similar in the proof of

the extended Liouville theorem (Theorem 4.3.2), we see that the auxiliary function g given
in 4.1.1 and choosing a = α satis�es

|g(z)| ≤ A+B|z|N−1,

and hence by the extended Liouville theorem (Theorem 4.3.2), g must be an analytic poly-
nomial. Again, similar in the proof of the extended Liouville theorem (Theorem 4.3.2), we
have

P (z) = g(z)(z − α) for all z ∈ C,

this shows that g must be a polynomial of degree N − 1. Repeating the above arguments on
g, we conclude our theorem. □
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4.4. The roots of ±1

We now include some materials from [FB09]. In the very beginning of this course, we
asked a question regarding how to de�ne

√
−1. By using the fundamental theorem of algebra

(Theorem 4.3.6), we now know that the equation z2 + 1 = 0 has exactly two solutions in C,
and they are ±i. As a corollary, we note that

the equation z2 + 1 = 0 has no roots in R.

Therefore, the polynomial P (z) = z2 + 1 is irreducible in R[z]. For convenience, we usually
write

√
−1 := i, but one should be aware that

√
−1 is not well-de�ned as a function in

general. In complex analysis, we call −i is another branch of
√
−1.

It is well-known that the n-root of 1 is well-de�ned in R, which is given by n
√
1 = 1.

However, in complex �eld, we have the following interesting observation (one also asks similar
questions in �nite �eld):

Theorem 4.4.1. For each n ∈ N, there are exactly n di�erent solutions {ζj}nj=1 (or roots)
of zn − 1 = 0, and they have the formula

(4.4.1) ζj = cos
2πj

n
+ i sin

2πj

n
for j = 0, 1, 2, · · · , n− 1.

We called (4.4.1) the nth roots of unity. We also called zn− 1 the cyclotomic equation, since
(4.4.1) is exactly the vertex of regular n-gon in C

Proof. By using Exercise 2.3.2, one can directly verify that (4.4.1) are n di�erent roots
of zn−1 = 0. By using the fundamental theorem of algebra (Theorem 4.3.6), they are exactly
all the n di�erent solutions. □

Exercise 4.4.2 (n-roots of −1). For each integer n ≥ 2, determine all roots of the
equation zn + 1 = 0.

4.5. Cauchy integral formula in a ball

We have proved the Cauchy integral formula for entire functions in Section 4.1. By
carefully inspecting the arguments, in fact we can obtain a local version. Here we will exhibit
the details.

Let f be an analytic function in a ball Br(z0). By using the fundamental theorem of
antiderivative in rectangle (see Theorem 3.2.9 and (3.2.3)), one sees that the function

F (z) =

∫ z

z0

f(ζ) dζ ≡
∫
C
f(ζ) dζ is analytic and satis�es F ′ = f on Br(z0),

where C denotes the oriented curve consists of the straight lines from z0 to z0 +Re (z − z0)
and then from z0 +Re (z− z0) to z. It is important to notice that one can �nd a topological
closed rectangle consists of z0 and z which is contained in Br(z0).

We consider the auxiliary function g similar to (4.1.1): If f is analytic in Br(z0) and
a ∈ Br(z0), then we de�ne the function

(4.5.1) g(z) =

{
f(z)−f(a)

z−a
, z ∈ Br(z0) \ {a},

f ′(a) , z = a,
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which is continuous on Br(z0). At this moment, we don't know whether g is analytic in D
yet. However, by continuity of g and following the same arguments as in Exercise 4.1.2, one
can show that

(4.5.2) there exists an analytic function G with G′ = g on Br(z0).

In addition, one also has

(4.5.3)

∫
C
g = 0 for all parametrizable continuous piecewise-C1 closed curve C ⊂ Br(z0).

We now can easily proof the local version of Cauchy integral formula.

Theorem 4.5.1 (Cauchy integral formula in a ball). Suppose that f is analytic in Br(z0)
and let a ∈ Br(z0). For each 0 < ρ < r with a ∈ Bρ(z0), one has

f(a) =
1

2πi

∫
Cρ(z0)

f(ω)

ω − a
dω,

where Cρ(z0) is the closed curve Cρ(z0) =
[
z0 + ρeiθ 0 ≤ θ ≤ 2π

]
, that is, Cρ(z0) = ∂Bρ(z0)

with counterclockwise oriented.

Proof. Let g be the auxiliary function given in (4.5.1). By using (4.5.3) and
Lemma 4.1.4, one has

0 =

∫
Cρ(z0)

f(ω)− f(a)

ω − a
dω =

∫
Cρ(z0)

f(ω)

ω − a
dω−

∫
Cρ(z0)

f(a)

ω − a
dω =

∫
Cρ(z0)

f(ω)

ω − a
dω−2πif(a),

which conclude our theorem. □

Exercise 4.5.2. Let Ω be an open set, let f be an analytic function on Ω and let a ∈ Ω.
Show that f(a) is equal to the mean value of f takes around the boundary of any disc centered
at a contained in D, that is,

f(a) =
1

2π

∫ 2π

0

f(a+ reiθ) dθ

whenever ∂Br(a) ⊂ D.

Remark 4.5.3. As we see in Remark 2.1.11, an analytic function always a harmonic
function. In fact, the mean value theorem also holds true for harmonic function, see [GT01].
This even holds true for Helmholtz operator ∆+ k2, see e.g. my work [KLSS22, Appendix].

4.6. Power series (with R < ∞) and analytic function

In Chapter 2 we have showed that each power series represents an analytic function inside
its domain of convergence. We denote R be its radius of convergence. In Section 4.2 we have
showed the converve of this theorem for the case when R = ∞. We now turn to the question
about the case when R < ∞.

Theorem 4.6.1. If f is analytic in BR(z0), there exist constants Ck such that

f(z) =
∞∑
k=0

Ck(z − z0)
k for all z ∈ BR(z0).
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Proof. For each 0 < ρ < R, by using the Cauchy integral formula in a ball (Theo-
rem 4.5.1) with a = z, we have (Theorem 4.5.1)

f(z) =
1

2πi

∫
Cρ(z0)

f(ω)

ω − z
dω for all z ∈ Bρ(z0).

Recall (4.1.4) and changing the notation z → ω and a → z:

1

ω − z
=

1

ω − z0
·

(
1 +

z − z0
ω − z0

+

(
z − z0
ω − z0

)2

+ · · ·

)
=

∞∑
k=0

(z − z0)
k

(ω − z0)k+1
for all ω ∈ Cρ(z0),

which converges uniformly on Cρ(z0). Combining the above two equations, we reach

f(z) =
1

2πi

∞∑
k=0

(∫
Cρ(z0)

f(ω)

(ω − z0)k+1
dω

)
(z − z0)

k.

Arguing as in Theorem 4.2.1 (which involving Exercise 2.2.10), we again have

1

2πi

∫
Cρ(z0)

f(ω)

(ω − z0)k+1
dω =

f (k)(z0)

k!
,

and thus

f(z) =
f (k)(z0)

k!
(z − z0)

k for all z ∈ Bρ(z0).

Since 0 < ρ < R is arbitrary, then we conclude our theorem. □

From Theorem 4.6.1, we immediately conclude the following corollary.

Corollary 4.6.2 (Local power series representation). Let Ω be an open set in C. Then
f is analytic in Ω if and only if it has a local power series near each point in Ω, i.e. for each
z0 ∈ Ω we can write f as

f(z) =
∞∑
k=0

Ck(z − z0)
k

for all z ∈ BR(z0), where R = sup
Br(z0)⊂Ω

r. In this case, the complex derivatives {f (k)(z0)}∞k=1

exist and satis�es

(4.6.1) f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)

k

for all z ∈ BR(z0), where R = sup
Br(z0)⊂Ω

r.

Remark 4.6.3. One sees that Theorem 4.2.1 is just a special case Ω = C of Corol-
lary 4.6.2. One should aware that the power series (4.6.1) in general not holds for all z ∈ D,
i.e. not global! See Remark 2.2.5. This is the reason why we called (4.6.1) the local power
series.

Proposition 4.6.4. If f is analytic near a, then so is the auxiliary function g given in
(4.5.1).
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Proof. By using Corollary 4.6.2, we see that

f(z)− f(a) =
∞∑
k=1

f (k)(a)

k!
(z − a)k for all z near a.

and thus

g(z) =
f(z)− f(a)

z − a
=

∞∑
k=1

f (k)(a)

k!
(z − a)k−1 =

∞∑
ℓ=0

f (ℓ+1)(a)

(ℓ+ 1)!
(z − a)ℓ for all z ̸= a near a.

By continuity of g, we see that the above identity also holds true for z = a, which conclude
our proposition. □

Theorem 4.6.5 (Uniqueness continuation property). Let f be an analytic function on an
open connected set Ω. If there exists a nonempty open set D ⊂ Ω such that f |D = 0, then
f ≡ 0 in Ω.

Remark 4.6.6. By using the Carleman estimate, this property can be extended to large
class of solution of elliptic equations and systems (recall that analytic function also harmonic,
see also Remark 2.1.11). A related problem is called the Landis conjecture, which can be
referred as the unique continuation property from in�nity.

Proof of Theorem 4.6.5. We will prove this using a standard argument for open con-
nected set in Remark 1.2.19. We de�ne

A :=

{
z0 ∈ Ω

there exists a sequence {zn} ⊂ Ω such that
zn → z0 and f(zn) = 0 for all n ∈ N

}
.

Since f is contiuous, one sees that

(4.6.2) f(z) = 0 if and only if z ∈ A.

We �rst show that A is open (in C i� relative to Ω, since Ω is open, see Remark 1.2.15).
Let z0 ∈ A. By Corollary 4.6.2, one can represent f using a local power series near z0, that
is, there exists ϵ > 0 such that f(z) =

∑
k Ck(z − z0)

k for all z ∈ Bϵ(z0). Then by the
uniqueness theorem of power series (Theorem 2.2.11) we see that f = 0 in Bϵ(z0), and hence
Bϵ(z0) ⊂ A. By arbitrariness of z0 ∈ A, we conclude that A is open.

On the other hand, we want to show that Ω \A is open as well. We �rst see that (4.6.2)
is equivalent to

f(z) ̸= 0 ⇐⇒ z ∈ Ω \ A.
Given any z0 ∈ Ω \A, we have f(z0) ̸= 0. We now choose ϵ = 1

2
|f(z0)| > 0. By continuity of

f at z0, there exists δ > 0 such that

w ∈ Bδ(z0) =⇒ |f(w)− f(z0)| ≤ ϵ =
1

2
|f(z0)|.

This gives

w ∈ Bδ(z0)

=⇒ |f(z0)| − |f(w)| ≤ |f(w)− f(z0)| ≤
1

2
|f(z0)|

=⇒ 1

2
|f(z0)| ≤ |f(w)|

=⇒ f(w) ̸= 0 =⇒ w ∈ Ω \ A.
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Hence we see that Bδ(z0) ⊂ Ω \ A. By arbitrariness of z0 ∈ Ω \ A, this shows that Ω \ A is
open.

Since both A and Ω\A are open, by connectness of Ω, we see that either Ω = ∅ or Ω = A.
Since Ω ⊃ D ̸= ∅, we �nally conclude that Ω = A, which conclude our theorem. □

Corollary 4.6.7 (Uniqueness theorem). Let f be an analytic function on an open con-
nected set Ω. If there exists a sequence {zn} ⊂ Ω such that zn → z0 ∈ Ω and f(zn) = 0 for
all n ∈ N, then f ≡ 0 in Ω.

Proof. By using Corollary 4.6.2, one can represent f using a local power series near
z0. By using the uniqueness theorem of power series (Theorem 2.2.11), one sees that there
exists r > 0 such that f |Br(z0) = 0. Hence our result immediately follows from the unique
continuation property of analytic function (Theorem 4.6.5). □

Example 4.6.8. We consider f(z) = sin z, which is entire (i.e. analytic in Ω = C). One
sees that f has at least in�nitely many zeros: f(nπ) = 0 for all n ∈ Z. These zeros does not
converge in C. In fact, by using Corollary 4.6.7, the set of zeros of f does not have a limit
point. Therefore, given any bounded set, it contains at most �nitely many zeros of f .

Example 4.6.9. We consider f(z) = sin(1
z
), which is analytic in Ω = C \ {0}. One sees

that f has in�nitely many zeros: f( 1
nπ
) = 0 for all n ∈ Z, and these zeros converge at 0. This

illustrate the analyticity assumption in Corollary 4.6.7 is essential.

Theorem 4.6.10. If f is entire and if |f(z)| → ∞ as z → ∞, then f is a polynomial.

Proof. By hypothesis, there exists R > 0 such that |f(z)| > 1 for all |z| > R. This shows
that f cannot have any zeros outside BR(0), and hence there at most �nitely many zeros in

BR(0). If not, by using Bolzano-Weierstrass theorem, there exists a sequence {zn} ⊂ BR(0)

converges to z ∈ BR(0) with f(zn) = 0. Hence the uniqueness theorem in Corollary 4.6.7
(with Ω = C) implies that f ≡ 0 throughout C, which is a contradiction.

We now denote α1, · · · , αN ∈ BR(0) be the zeros of f (it is possible that αi = αj for some
i ̸= j). By using Exercise 4.2.5, we see that the function

g(z) :=
f(z)

(z − α1)(z − α2) · · · (z − αN)

is entire and also g(z) ̸= 0 for all z ∈ C. Hence we see that

h(z) :=
1

g(z)
=

(z − α1)(z − α2) · · · (z − αN)

f(z)

is also entire. Since |f(z)| → ∞ as z → ∞, then |h(z)| ≤ A + |z|N . By using the extended
Liouville theorem (Theorem 4.3.2), we see that h is a polynomial. But however h(z) = 1

g(z)
̸=

0 for all z ∈ C, then by fundamental theorem of algebra (Theorem 4.3.6), we conclude that
h is a constant function, says h(z) = k for some constant k ̸= 0. By the de�nition of h, we
see that

f(z) =
1

k
(z − α1)(z − α2) · · · (z − αN),

which conclude our theorem. □
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4.7. Morera Theorems

The key result in our discussion of analytic functions so far has been the Cauchy closed
curve theorem (Theorem 3.3.11). In fact, the partial converse holds true as below (for future
convenience, we will refer all theorems in this section the �Morera theorems�):

Theorem 4.7.1 (Morera). Let f be a continuous function in an open set Ω. If∫
Γ

f(z) dz = 0

for all Γ the boundary of topological closed rectangle in Ω, each segment is either horizontal
(i.e. parallel to real axis) or vertical (i.e. parallel to imaginary axis), then f is analytic in
Ω.

Remark 4.7.2. In view of the Cauchy integral formula (Theorem 4.5.1), one sees that
the continuity of f is a necessary hypothesis.

Exercise 4.7.3. Prove Theorem 4.7.1 by modifying the arguments in the fundamental
theorem of antiderivative in rectangle (Theorem 3.2.9).

Morera's theorem is often used to establish the analyticity of functions given in integral
form.

Exercise 4.7.4. Using Morera's theorem and Fubini's theorem (carefully check the su�-

cient conditions for Fubini Theorem!) to show that the function f(z) =
∫∞
0

ezt

t+1
dt is analytic

in the left half plane
{

z ∈ C Re (z) < 0
}
.

Theorem 4.7.5 (Morera's uniform convergence theorem). Suppose {fn} represents a
sequence of analytic functions on an open set Ω satis�es

lim
n→∞

∥fn − f∥L∞(K) = 0 for all compact set K ⊂ Ω,

then f is analytic in Ω.

Proof. Given any z ∈ Ω, there exists r > 0 such that Br(z) ⊂ Ω. We choose the

compact set K = B r
2
(z). Hence we have

lim
n→∞

∥fn − f∥L∞(B r
2
(z)) = 0.

This shows that f is continuous on K. Furthermore, [Morera]for each Γ the boundary of any
topological closed rectangle in K, the uniform convergence of fn to f (on Γ) guarantees that∫

Γ

f = lim
n→∞

∫
Γ

fn = 0,

where the second identity is just simplyby the Cauchy closed curve theorem (Theorem 3.3.11).
By Morera's theorem, we conclude that f is analytic in B r

2
(z). By arbitrariness of z ∈ Ω, we

conclude the theorem. □

Exercise 4.7.6. Show that g(z) = z0 + eiθz with θ = arg(z1 − z0), maps the real axis{
z ∈ C Im z = 0

}
onto the line L through z0 and z1. Here argw is de�ned (modulo 2π)

as that number θ for which

sin θ =
Imw

|w|
, cos θ =

Rew

|w|
.

Clearly, g de�nes an entire function.
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Theorem 4.7.7 (Morera's continuity theorem). Let Ω be an open set and let L be a
straight line in C. If f is continuous in Ω and analytic in Ω \ L, then f is analytic in Ω.

Proof. By using Exercise 4.7.6, it is su�ce to show the theorem when L is the real axis.
Let z0 ∈ L∩Ω, and let r > 0 be such that Br(z0) ⊂ Ω. Let Γ the boundary of any topological
closed rectangle in Br(z0) which are parallel to the real and imaginary axes.

Case 1: L does not meet the topological closed rectangle enclosed by Γ. In this
case, f is analytic near the topological closed rectangle and thus

∫
Γ
f = 0 by Cauchy closed

curve theorem (Theorem 3.3.11).
Case 2: the bottom side of Γ touches L. Let ϵ > 0 su�ciently small and let Γϵ be

the rectangle composed of the sides of Γ with bottom side shifted up by ϵ. By the continuity
of f , we see that ∫

Γ

f = lim
ϵ→0

∫
Γϵ

f = 0,

where the second identity follows by the Cauchy closed curve theorem (Theorem 3.3.11).
Case 3: the top side of Γ coincides with L. We can treat this case similar as previous

case.
Case 4: The line L pass through the interior of the rectangle enclosed by Γ. In

this case, we can divide the rectangle into two rectangle by L. Let Γ1 and Γ2 are boundary
of these two rectangles. By using Case 2 and Case 3, we see that

∫
Γ1
f = 0 and

∫
Γ2
f = 0,

and hence
∫
Γ
f =

∫
Γ1
f +

∫
Γ2
f = 0.

Putting these 4 cases together, we conclude that f is analytic in Br(z0). By arbitrariness
of z0 ∈ L, we conclude our theorem. □



CHAPTER 5

Laurent series and the Cauchy residual theorem

5.1. Riemann's principle of removable singularities

In Remark 3.2.5, we posting the question about what we get if we integral over a simple
closed curve which surrounding some singularity. We have encounter some singularities in
the Cauchy integral formula (Theorem 4.5.1). Before studying the singularities, let us �rst
classify the singularities. Then we can at least partially answer this question for some class
of singularities (so that make this course easier).

Definition 5.1.1. We call the set BR(z0) \ {z0} the punctured ball centered at z0 with
radius R (or called the deleted neighborhood). A function f is said to have an isolated
singularity at z0 if f is analytic in a punctured ball centered at z0 and f is not complex
di�erentiable (in the sense of De�nition 2.1.1) at z0.

Remark 5.1.2. By using Theorem 4.7.7, we see that z0 is an isolated singularity if and
only if f discontinuous at z0.

Definition 5.1.3. Suppose f has an isolated singularity at z0.

(1) If there exists a function g, analytic near z0, such that f(z) = g(z) in a punctured
ball centered at z0, we say that f has a removable singularity at z0.

(2) If there exist functions A and B, both analytic near z0 with A(z0) ̸= 0 and B(z0) = 0,

such that f(z) = A(z)
B(z)

in a punctured ball centered at z0, then we say that f has a

pole at z0.
(3) If f has neither a removable singularity nor a pole at z0, we say f has an essential

singularity at z0.

In next section, we will fully characterize (necessary and su�cient condition) in next
section (Theorem 5.2.6) in terms of Laurent series. In plain words, removable singularity is
the one we can basically ignored, while essential singularity is the one that too di�cult to
handle within this chapter. The pole is the one we want to discuss in this chapter. In this
section, we �rst study some su�cient conditions.

Lemma 5.1.4 (Riemann's principle of removable singularities). If f is analytic in a punc-
tured ball centered at z0 and that limz→z0(z − z0)f(z) = 0, then f has at most a removable
singularity at z0, i.e. there exists a function A, analytic near z0, such that A = f in a
punctured ball centered at z0.

Proof of Lemma 5.1.4. If f is continuous at z0, then by Theorem 4.7.7 we know that
f is analytic near z0, and we have nothing to proof. If f is discontinuous at z0, then z0 is an
isolated singularity of f . It is easy to see that the function

h(z) =

{
(z − z0)f(z) , z ̸= z0,

0 , z = z0,

49
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is continuous at z0. By using Theorem 4.7.7, we see that h is analytic near z0. Since
h(z0) = 0, then the function A(z) = h(z)

z−z0
is analytic near z0 (see Exercise 4.2.5). Since A = f

in a punctured ball centered at z0, then we conclude our lemma. □

Remark 5.1.5. If f is analytic and bounded in a punctured ball centered at z0, then
clearly limz→z0(z − z0)f(z) = 0, and thus the above lemma follows that f has (at most) a
removable singularity at z0.

Remark 5.1.6 (Riemann's principle of removable singularities). If f is analytic in a
punctured ball centered at z0 and there exists k ∈ Z≥0 such that

(5.1.1) lim
z→z0

(z − z0)
k+1f(z) ≡ lim

z→z0
(z − z0)

analytic in a punctured
ball centered at z0︷ ︸︸ ︷(
(z − z0)

kf(z)
)

= 0,

by using the above lemma, we immediately see that there exists an analytic function A,
analytic near z0, such that

(5.1.2) A(z) = (z − z0)
kf(z) in a punctured ball centered at z0.

If k = 0, this implies that z0 is a removable singularity; if k > 0, this implies that z0 is a pole
of f .

Definition 5.1.7. Let f as in (5.1.2). If k = 0, then we called such z0 the pole of order
0 (can be either removable singularity or f is analytic near z0). If k > 0 and A(z0) ̸= 0, then
we say that the pole z0 has order k.

Remark 5.1.8. By using a mathematical induction, one can easily see that (5.1.1) implies
that the pole has order at most k. Therefore one also can refer the removable singularity as
the pole of order 0. This remark generalizes Exercise 4.2.5.

Example 5.1.9. Suppose that f has an isolated singularity at x0 = 0 (says) and there
exists C0 > 0 such that it satis�es |f(z)| ≤ C0

|z|α in a punctured ball centered at 0 for some

α > 0 with α /∈ Z. Let ⌈α⌉ be the smallest integer that ≥ α, and let ⌊α⌋ be the largest
integer that ≤ α. One sees that

lim sup
z→0

|z⌈α⌉f(z)| = lim sup
z→0

|z|⌈α⌉|f(z)| ≤ lim sup
z→0

C0|z|⌈α⌉−α = 0.

Then by Remark 5.1.6, one has

z⌊α⌋f(z) = A(z) in a punctured ball centered at 0

for some analytic function A. Hence it is not possible to �nd C1 > 0 and ⌊α⌋ < β ≤ α
such that |f(z)| ≥ C1

|z|β in a punctured ball centered at 0 (otherwise one can easily obtain a

contradiction).

If f has an essential singularity at z0, then one sees that

if lim
z→z0

(z − z0)
k+1f(z) exists for some k ∈ Z≥0, then lim

z→z0
(z − z0)

k+1f(z) ̸= 0,

otherwise we can immediately obtain a contradiction from Remark 5.1.6. In this case, it is
not di�cult see that limz→z0 |f(z)| = ∞. But, however, we do not know whether limz→z0(z−
z0)

k+1f(z) exists or not. We now closing this section by the following theorem.

Theorem 5.1.10. If f has an essential singularity at z0, then for each R > 0 the set
f(BR(z0) \ {z0}) :=

{
f(z) z ∈ BR(z0) \ {z0}

}
is dense in C.
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Proof. Suppose the contrary, that there exists a ball Bδ(w0) in C such that

Bδ(w0) ∩ f(BR(z0) \ {z0}) = ∅.
This means that |f(z)− w0| ≥ δ for all z ∈ BR(z0) \ {z0}, therefore∣∣∣∣ 1

f(z)− w0

∣∣∣∣ ≤ 1

δ
for all z ∈ BR(z0) \ {z0}.

By using Remark 5.1.5, it follows that there exists a function A, which is analytic near z0,
such that

1

f(z)− w0

= A(z) ⇐⇒ f(z) = w0 +
1

A(z)

in a punctured ball centered at z0. This implies that f has either a pole at z0 (if A(z0) = 0)
or a removable singularity at z0 (if A(z0) ̸= 0), which is a singularity. □

5.2. Laurent expansions

We now introduce a powerful tool to help us to study the isolated singularities.

Definition 5.2.1. Let {µk}k∈Z be a sequence in C. We say that
∑

k∈Z µk = L for some

L ∈ C if both
∑∞

k=0 µk and
∑−1

k=−∞ µk ≡
∑∞

k=1 µ−k converge and satis�es

∞∑
k=0

µk +
−1∑

k=−∞

µk = L.

We �rst show that the Laurent expansion make senses:

Lemma 5.2.2. The Laurent expansion f(z) =
∑

k∈Z akz
k is converge in the domain

(5.2.1) AR1,R2 =
{
z ∈ C R1 < |z| < R2

}
where

(5.2.2) R1 = lim sup
k→+∞

|a−k|
1
k , R2 =

(
lim sup
k→+∞

|ak|
1
k

)−1

.

If 0 ≤ R1 < R2 ≤ +∞, then f is analytic in the annulus Ω.

Proof. By using Theorem 2.2.2, one sees that

f1(z) =
∞∑
k=0

akz
k converges and it is an analytic function on BR2 .

If R2 = +∞, we interpret BR2 as the whole complex plane C. On the other hand, we also
see that

f2(z) :=
∞∑
k=1

a−k

(
1

z

)k

≡
−1∑

k=−∞

akz
k converges for those z ∈ C with

1

|z|
=

∣∣∣∣1z
∣∣∣∣ < 1

R1

.

In particular,
f2 converges and it is an analytic function on C \BR1 .

Hence we conclude the theorem with f = f1 + f2. □

The following theorem shows that the Laurent series will be a very powerful tool to study
the singularities.
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Theorem 5.2.3. If f is analytic in the annulus AR1,R2 (5.2.1) with 0 ≤ R1 < R2 ≤ +∞,
then f has a Laurent expansion f(z) =

∑
k∈Z akz

k in AR1,R2.

Proof. Let C1 and C2 represent circles centered at 0 of radii r1 and r2 respectively, with
R1 < r1 < r2 < R2, with counterclockwise orientation. We �x z ∈ Br2 \Br1 and see that

g(w) =
f(w)− f(z)

w − z

is analytic at w ∈ AR1,R2 , and by Cauchy closed curve theorem (Theorem 3.3.11), we see that∫
C2∪Crev

1

g(w) dw = 0,

where Crev
1 is given by Lemma 3.1.8. One has to be careful that the annulus is not simply

connected (Example 3.3.2). However, this problem can be overcomed by splitting the annulus
as showed in the following diagram:

Figure 5.2.1. Splitting the contour C2 ∪ Crev
1 into two closed curves

Combining the above two equations, we reach∫
C2∪Crev

1

f(w)

w − z
dw = f(z)

∫
C2∪Crev

1

1

w − z
dw

= f(z)


=2πi︷ ︸︸ ︷∫

C2

1

w − z
dw−

=0︷ ︸︸ ︷∫
C1

1

w − z
dw

 = 2πif(z) for all z ∈ Br2 \Br1 ,

where the �rst term is due to Cauchy integral formula (Theorem 4.5.1) and the second term
is simply by the Cauchy closed curve theorem (Theorem 3.3.11). Hence we reach

2πif(z) =

∫
C2

f(w)

w − z
dw −

∫
C1

f(w)

w − z
dw for all z ∈ Br2 \Br1 .
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Since |w| > |z| for all w ∈ C2, then recall the geometric sequence (see e.g. the proof of
Theorem 4.6.1)

1

w − z
=

1

w(1− z
w
)
=

1

w
+

z

w2
+

z2

w3
+ · · · =

∞∑
k=0

zk

wk+1
for all w ∈ C2,

which converges uniformly on C2. Since |w| < |z| for all w ∈ C1, similarly we have the
geometric sequence

1

w − z
=

−1

z − w
= −1

z
− w

z2
− w2

z3
− · · · = −

∞∑
k=0

wk

zk+1
for all w ∈ C1,

which converges uniformly on C1. Combining the above three equations, we reach

f(z) =
∞∑
k=0

(
1

2πi

∫
C2

f(w)

wk+1
dw

)
zk +

∞∑
k=0

(
1

2πi

∫
C1
f(w)wk dw

)
z−k−1

=
∞∑
k=0

= ak with k≥0︷ ︸︸ ︷(
1

2πi

∫
C2

f(w)

wk+1
dw

)
zk +

−1∑
k=−∞

= ak with k<0︷ ︸︸ ︷(
1

2πi

∫
C1

f(w)

wk+1
dw

)
zk

for all z ∈ Br2 \ Br1 . Since
f(w)
wk+1 is analytic on the annulus Ω, by using Cauchy closed curve

theorem (Theorem 3.3.11) and the technique sketched by Figure 5.2.1, one sees that for each
k ∈ Z that

(5.2.3) ak =
1

2πi

∫
C

f(w)

wk+1
dw

for all counterclockwise circle C centered at 0, hence each ak is actually independent of r1
and r2. Hence we conclude our theorem. □

We now state and proof the following representation theorem.

Theorem 5.2.4. If f is analytic in the annulus AR1,R2(z0) ={
z ∈ C R1 < |z − z0| < R2

}
with 0 ≤ R1 < R2 ≤ ∞, then f has a unique repre-

sentation

(5.2.4) f(z) =
∑
k∈Z

ak(z − z0)
k, ak =

1

2πi

∫
CR(z0)

f(z)

(z − z0)k+1
dz

for any counterclockwise circle CR(z0) centered at z0 with radius R provided R1 < R < R2.

Proof. It is easy to see that we only need to prove the proposition for z0 = 0. Since
f(z) =

∑
k∈Z akz

k converges in the annulus AR1,R2 , then it converges uniformly along C, and
thus

(5.2.5)

∫
C

f(z)

zn+1
dz =

∑
k∈Z

ak

∫
C
zk−n−1 dz for any n ∈ Z.

By using the Cauchy integral formula (Theorem 4.5.1), one has∫
C
zm dz = 0 for all m ∈ Z≥0.
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By using the Cauchy integral formula (Theorem 4.5.1), we have∫
C
z−1 dz = 2πi.

By using the fundamental theorem of line integral (Theorem 3.1.16), one also see that∫
C
z−m dz = 0 for all m ∈ Z≥2.

For future convenience, we record the above three equations as in below:

(5.2.6)

∫
C
zm dz =

{
2πi ,m = −1,

0 ,m ∈ Z \ {−1}.

Combining (5.2.5) and (5.2.6), we reach∫
C

f(z)

zn+1
dz = an

∫
C
z−1 dz = 2πian for all n ∈ Z,

which conclude our proposition. □

We now consider the case when z0 is an isolated singularity. If R1 = 0 and R2 < ∞, then
AR1,R2 = BR2(z0) \ {z0}, i.e. the punctured ball we consider in the previous section. Let f
be an analytic function on BR(z0) \ {z0}. By Theorem 5.2.4, f has a unique Laurent series
representation

(5.2.7) f(z) =
∑
k∈Z

ak(z − z0)
k for all z ∈ BR(z0) \ {z0}.

Definition 5.2.5. We called
∑

k≥0 ak(z− z0)
k the analytic part of f , while

∑
k<0 ak(z−

z0)
k the principal part of f .

Since the analytic part of f does nothing with the singularity, we are now interested in
the principal part of f . From (5.2.7) we now able to give a full characterization for isolated
singularities in terms of Laurent series:

Theorem 5.2.6. Let f be an analytic function on a punctured ball centered at z0. By
Theorem 5.2.4, f has a unique Laurent series representation (5.2.7). Then either one of the
following must holds:

(i) If f has a pole at z0 of order 0 (i.e. removable singularity or f is analytic near z0),
then C−k = 0 for all k ∈ N.

(ii) If f has a pole at z0 of order n ∈ N , then C−n ̸= 0 and C−k = 0 for all k > n. In

other words, the principal part of f is simply P
(

1
z−z0

)
for some polynomial P with

degree n.
(iii) If f has an essential singularity at z0, then C−k ̸= 0 for in�nitely many k ∈ N.

Remark. Let g be an analytic function in an open set Ω. Suppose that z0 ∈ Ω is a zero
of g, then we consider its power series around z0 (Theorem 4.6.1):

g(z) =
∞∑
k=0

Ck(z − z0)
k.
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From g(z0) = 0, one has C0 = 0. If g is nontrivial, then there exists k0 ∈ N such that Ck0 ̸= 0
and Ck = 0 for all 0 ≤ k < k0, and we write

g(z) =
∞∑

k=k0

Ck(z − z0)
k = (z − z0)

k0

(
∞∑
ℓ=0

Cℓ+k0(z − z0)
ℓ

)
,

which means that the zero z0 must have �nite order. This also implies that each pole must
have �nite order, therefore all isolated singularities are actually classi�ed by Theorem 5.2.6.

Proof of (i). By de�nition, there exists a function A, analytic near z0, such that f(z) =
A(z) in a punctured ball centered at z0. Then by Theorem 5.2.4, the Laurent series of f
must equal to the power series of A. □

Proof of (ii). By de�nition, one writes

f(z) =
A(z)

(z − z0)n
in a punctured ball centered at z0,

where A is analytic near z0. Using the local power series representation (Theorem 4.6.1), we
write A(z) =

∑∞
k=0 ak(z − z0)

k and we see that

f(z) =
∞∑
k=0

ak(z − z0)
k−n =

∞∑
j=−n

an+j(z − z0)
j

in a punctured ball centered at z0. Finally, by Theorem 5.2.4, the above equation represen-
tations the unique Laurent series of f , which conclude our theorem. □

Proof of (iii). Suppose the contrary, there exists n ∈ N such that C−k = 0 for all
k > n. Riemann's principle of removable singularities (Remark 5.1.6) shows that z0 is pole,
which is a contradiction. □

Finally, we closed this section by exhibit an application of the representation formula of
Laurent series � together with Liouville theorem and fundamental theorem of algebra � in
abstract algebra (�eld theory).

Theorem 5.2.7 (Partial fraction decomposition of rational functions). Any proper ratio-

nal function P (z)
Q(z)

, where P and Q are polynomials with degP < degQ, can be expanded as a

sum of polynomials in 1
z−zk

, where {z1, z2, · · · , zn} are the set of distinct zeros of Q.

Sketch of proof. By using fundamental theorem of algebra (Theorem 4.3.6), we can

write Q(z) = A(z − z1)
k1(z − z2)

k2 · · · (z − zn)
kn for some n ≤ degQ. This shows that P (z)

Q(z)

has a pole of order at most kj at zj.

(1) Using Theorem 5.2.6, the principal part of A0(z) := P (z)
Q(z)

near z1 takes the form

P1

(
1

z−z1

)
polynomial P1. Clearly, P1

(
1

z−z1

)
is analytic in C \ {z1}. We now de�ne

A1(z) :=
P (z)
Q(z)

− P1

(
1

z−z1

)
.

(2) Using Theorem 5.2.6, the principal part of A1(z) near z2, takes the form P2

(
1

z−z2

)
polynomial P2. Clearly, P2

(
1

z−z2

)
is analytic in C \ {z2}. We now de�ne A2(z) :=

P (z)
Q(z)

− P1

(
1

z−z1

)
− P2

(
1

z−z2

)
.
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By repeting the above steps (can be rigorously written down using mathematical induction),
one sees that

P (z)

Q(z)
− P1

(
1

z − z1

)
− · · · − Pn

(
1

z − zn

)
is an entire function. Since degP < degQ, by taking |z| → ∞, we see that actually above
entire function is bounded. Therefore the Liouville theorem (Theorem 4.3.1) implies that
there exists a constant C ∈ C such that

P (z)

Q(z)
− P1

(
1

z − z1

)
− · · · − Pn

(
1

z − zn

)
≡ C for all z ∈ C,

which conclude our theorem1. □

5.3. Winding numbers and the Cauchy residue theorem

Let f be an analytic function on a punctured ball centered at z0. By using Theorem 5.2.4,
one can write

(5.3.1) f(z) =
∑
k∈Z

ak(z − z0)
k, ak =

1

2πi

∫
C

f(z)

(z − z0)k+1
dz

for any counterclockwise circle C centered at z0 (within the analyticity region of f). From
(5.2.6), we reach ∫

C
f = 2πia−1.

This suggests the coe�cient a−1 is of special signi�cance in this context.

Definition 5.3.1. The coe�cient a−1 is called the residue of f at z0, and we denote
Res (f ; z0) := a−1.

Proposition 5.3.2 (Evaluation of residues via complex di�erentiation). If f has a pole
of order k ∈ N at z0, then

Res (f ; z0) =
1

(k − 1)!
∂k−1
z

(
(z − z0)

kf(z)
)∣∣

z→z0
.

Remark. Intuitively, we want to remove the pole of f by multiplying (z − z0)
k. The

�price� of doing so is some complex di�erentiations.

Proof. By Theorem 5.2.6, one can write

f(z) = a−k(z − z0)
−k + · · ·+ a−1(z − z0)

−1 + a0 + a1(z − z0) + · · · .
Then we see that

(z − z0)
kf(z) = a−k + · · ·+ a−1(z − z0)

k−1 + a0(z − z0)
k + a1(z − z0)

k+1 + · · · ,
and hence

∂k−1
z

(
(z − z0)

kf(z)
)
= (k − 1)!a−1 + a0k!(z − z0) + · · · .

Evaluate z = z0 in the above equation, we conclude our proposition. □

Remark 5.3.3. In most cases of higher-order poles, as with essential singularities, the
most convenient way to determine the residue is directly from the Laurent expansion.

1In fact, since degP < degQ, by taking |z| → ∞, we see that indeed C = 0.
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To evaluate
∫
γ
f when γ is a general closed curve (and when f may have isolated singu-

larities), we introduce the following concept.

Definition 5.3.4. Suppose that γ is a parametrizable continuous piecewise-C1 closed
curve and that a /∈ γ. Then the number

wind (γ, a) =
1

2πi

∫
γ

1

z − a
dz

is called the winding number of γ around a.

If γ = C be the counterclockwise circle C, then by Cauchy closed curve theorem (Theo-
rem 3.3.11) we see that

wind (γ, a) =

{
1 if a is inside the circle,

0 if a is outside the circle.

If γ circles the point a k-times via the parametrization γ =
[
z0 + reiθ : 0 ≤ θ ≤ 2kπ

]
, then

wind (γ, a) =
1

2πi

∫ 2π

0

i dθ = k,

which suggests the terminology �winding number�. We now need to prove this idea make
senses for general closed curve.

For each �xed parametrizable continuous piecewise-C1 closed curve γ, it is important to
observe that

the mapping a 7→ wind (γ, a), also can be denoted by wind (γ, ·),
is continuous as long as a /∈ γ.

Proposition 5.3.5. For any parametrizable continuous piecewise-C1 closed curve γ and
a /∈ γ, the winding number wind (γ, a) is an integer. In addition, the mapping wind (γ, ·) is
locally constant (i.e. it is constant in the connected open components of C \ γ).

Proof. Write γ =
[
z(t) 0 ≤ t ≤ 1

]
, and set

F (s) =

∫ s

0

ż(t)

z(t)− a
dt for 0 ≤ s ≤ 1,

where ż denotes the di�erentiation of z with respect to t (see De�nition 3.1.2). By funda-
mental theorem of calculus on R, one sees that

Ḟ (s) =
ż(s)

z(s)− a
for all 0 < s < 1,

and thus (by the technique of integral factor, should be taughted in ODE course)

d

ds

(
(z(s)− a)e−F (s)

)
= 0 for all 0 < s < 1.

Since the open interval (0, 1) is connected, then

(z(s)− a)e−F (s) ≡ C for all 0 ≤ s ≤ 1

for some constant C ∈ C. Note: the equation also holds for endpoints s = 0 and s = 1,
because F and z are continuous on [0, 1]. Therefore, we have

(z(s)− a)e−F (s) = z(0)− a for all 0 ≤ s ≤ 1.
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Since a /∈ γ, then z(0)− a ̸= 0, and then we have

eF (s) =
z(s)− a

z(0)− a
for all 0 ≤ s ≤ 1.

Since γ is a closed curve, then z(1) = z(0), and then

eF (1) =
z(1)− a

z(0)− a
= 1.

This implies that

F (1) = 2πik for some integer k ∈ Z,

and hence we conclude that wind (γ, a) = 1
2πi

F (1) = k. □

Here we exhibit some graphical examples from Wikipedia:

(a) wind = −2 (b) wind = −1 (c) wind = 0

(d) wind = 1 (e) wind = 2 (f) wind = 3

Figure 5.3.1. Winding numbers (By Jim.belk - Own work, Public Domain)
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Figure 5.3.2. wind (γ, a) = 2 (By Jim.belk - Own work, Public Domain)

We �nally able to prove the following theorem.

Theorem 5.3.6 (Cauchy residue theorem). Suppose f is analytic in a simply connected
open set Ω except for isolated singularities at z1, z2, · · · , zm ∈ Ω. Let γ be a parametrizable
continuous piecewise-C1 closed curve in Ω, which not intersecting any of the singularities.
Then ∫

γ

f = 2πi
m∑
k=1

wind (γ, zk) Res (f ; zk).

Remark (Cauchy closed curve theorem). For those f which is analytic in a simply
connected open set Ω, one has Res (f ; z) = 0 for all z ∈ Ω, which can be easily see from
De�nition 5.3.1. Therefore one has

∫
γ
f = 0. Therefore the Cauchy closed curve theorem

(Theorem 3.3.11) is a special case of Cauchy residue theorem above.

Remark (Cauchy integral formula). By considering f(z) = g(z)
z−a

with analytic function
g and a ∈ Ω, one has Res (f ; a) = g(a), which can be easily see from De�nition 5.3.1.
If we choose C be a parametrizable continuous piecewise-C1 closed curve in Ω, which not
intersecting a and is simple (i.e. wind (γ, a) = 1), one sees that∫

C

g(z)

z − a
dz = 2πiRes (f ; a) = g(a).

Therefore the Cauchy integral formula (Theorem 4.5.1) is a special case of Cauchy residue
theorem above.

Proof of Theorem 5.3.6. Similar to Theorem 5.2.7, if we subtract the principal parts

P1

(
1

z − z1

)
, · · · ,Pm

(
1

z − zm

)
from f , one sees that the di�erence

g(z) = f(z)−
m∑
k=1

Pk

(
1

z − zk

)
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is analytic on D. Hence the Cauchy closed curve theorem (Theorem 3.3.11) implies that

(5.3.2) 0 =

∫
γ

g =

∫
γ

f −
m∑
k=1

∫
γ

Pk

(
1

z − zk

)
.

By the de�nition of principal part (De�nition 5.2.5) and the de�nition of residual (De�ni-
tion 5.3.1), one sees that

Pk

(
1

z − zk

)
=

Res (f, zk)

z − zk
+

a−2

(z − zk)2
+

a−3

(z − zk)3
+ · · · ,

and the above sequence converges uniformly on γ. By using the fundamental theorem of line
integral (Theorem 3.1.16), it is easy to see that∫

γ

1

(z − zk)k
dz = 0 for all k = 2, 3, 4, · · · ,

because γ is a closed curve. Hence we see that∫
γ

Pk

(
1

z − zk

)
= Res (f, zk)

∫
γ

1

z − zk
dz = 2πiwind (γ, zk) Res (f ; zk).

Plugging the above equation into (5.3.2), we conclude our theorem. □

5.4. Some applications in combinatorics : Egorychev method

The connection between binomial coe�cients and contour integration is an immediate
corollary of the Residue theorem (Theorem 5.3.6). These techniques sometimes also referred
as the Egorychev method, which is a collection of techniques introduced by Georgy Ego-
rychev for �nding identities among sums of binomial coe�cients, Stirling numbers, Bernoulli
numbers, Harmonic numbers, Catalan numbers and other combinatorial numbers [Ego84].

Theorem 5.4.1 (First binomial coe�cient integral). For each n ∈ N and k = 0, 1, · · · , n,
one has

(5.4.1)

(
n
k

)
=

1

2πi

∫
C

(1 + z)n

zk+1
dz

for all simple closed (parametrizable continuous piecewise-C1) curve C surrounding the origin.

Proof. For each k = 0, 1, · · · , n, by choosng

f(z) =
(1 + z)n

zk+1
=

n∑
j=0

(
n
j

)
zj−k−1

in the Residue theorem (Theorem 5.3.6), one sees that∫
C

(1 + z)n

zk+1
dz = 2πiRes (f ; 0) (Theorem 5.3.6)

= 2πi

(
n
k

)
(De�nition 5.3.1)

where we interpret n(n − 1) · · · (n − k + 1) = 1 when k = 0, which conclude the following
theorem. □
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Example 5.4.2. Let C be any simple closed (parametrizable continuous piecewise-C1)
curve surrounding the origin. By using (5.4.1), it is easy to see that(

n− 1
k − 1

)
+

(
n− 1
k

)
=

1

2πi

∫
C

(1 + z)n−1

zk
dz +

1

2πi

∫
C

(1 + z)n−1

zk+1
dz

=
1

2πi

∫
C

(1 + z)n−1z + (1 + z)n−1

zk+1
dz

=
1

2πi

∫
C

(1 + z)n

zk+1
dz =

(
n
k

)
,

which is the well-known Pascal triangle.

Example 5.4.3 (A special case of Chu-Vandermonde identity). Let C be any simple closed
(parametrizable continuous piecewise-C1) curve surrounding the origin. By using binomial
theorem, one sees that

(1 + z)n(1 + z−1)n =
n∑

k=0

(
n
k

)
zk ·

n∑
ℓ=0

(
n
ℓ

)
z−ℓ =

n∑
k=0

n∑
ℓ=0

(
n
k

)(
n
ℓ

)
zk−ℓ.

By choosing f(z) = (1+z)n(1+z−1)n

z
, one sees that∫

C

(1 + z)n(1 + z−1)n

z
dz = 2πiRes (f ; 0) (Theorem 5.3.6)

= 2πi
n∑

k=0

(
n
k

)2

(De�nition 5.3.1).

On the other hand, we compute that

n∑
k=0

(
n
k

)2

=
1

2πi

∫
C

(1 + z)n(1 + z−1)n

z
dz

=
1

2πi

∫
C

(1 + z)n(z + 1)n

zn+1
dz

=
1

2πi

∫
C

(1 + z)2n

zn+1
dz =

(
2n
n

)
,

where the last equality is given by (5.4.1).

Example 5.4.4. We now want to prove the binomial identity:

n∑
k=0

(−1)k
(
n
k

)(
n+ k
k

)(
k
j

)
= (−1)n

(
n
j

)(
n+ j
n

)
.

By using the �rst binomial coe�cient integral (Theorem 5.4.1), one has(
n+ k
k

)
=

1

2πi

∫
Cr

(1 + z)n+k

zk+1
dz,

(
k
j

)
=

1

2πi

∫
Cs

(1 + w)k

wj+1
dw
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for some r > 0 and s > 0, where Cρ is the circle with radius ρ centered at 0, which is
counterclockwise oriented. This yields

n∑
k=0

(−1)k
(
n
k

)(
n+ k
k

)(
k
j

)

=
1

2πi

∫
Cr

(1 + z)n

z

1

2πi

∫
Cs

1

wj+1

binomial theorem︷ ︸︸ ︷
n∑

k=0

(−1)k
(
n
k

)(
(1 + z)(1 + w)

z

)k

dw dz

=
1

2πi

∫
Cr

(1 + z)n

z

1

2πi

∫
Cs

1

wj+1

(
1− (1 + z)(1 + w)

z

)n

dw dz

=
1

2πi

∫
Cr

(1 + z)n

zn+1

1

2πi

∫
Cs

1

wj+1
(z − (1 + z)(1 + w))n dw dz

=
(−1)n

2πi

∫
Cr

(1 + z)n

zn+1

1

2πi

∫
Cs

1

wj+1

binomial theorem︷ ︸︸ ︷
(1 + w(1 + z))n dw dz

=
(−1)n

2πi

∫
Cr

(1 + z)n

zn+1

1

2πi

∫
Cs

1

wj+1

n∑
q=0

(
n
q

)
wq(1 + z)q dw dz

=
(−1)n

2πi

∫
Cr

(1 + z)n

zn+1

1

2πi

∫
Cs

n∑
q=0

(
n
q

)
wq−j−1(1 + z)q dw dz.(5.4.2)

We now de�ne

f(w) :=
n∑

q=0

(
n
q

)
wq−j−1(1 + z)q.

By De�nition 5.3.1, it is easy to see that Res (f ; 0) =

(
n
j

)
(1 + z)j, and thus by using the

Residue theorem (Theorem 5.3.6), one sees that

1

2πi

∫
Cs

n∑
q=0

(
n
q

)
wq−j−1(1 + z)q dw =

(
n
j

)
(1 + z)j.

Plugging the above equation into (5.4.2), we reach

n∑
k=0

(−1)k
(
n
k

)(
n+ k
k

)(
k
j

)
=

(−1)n

2πi

∫
Cr

(1 + z)n

zn+1

(
n
j

)
(1 + z)j dz

=

(
n
j

)
(−1)n

2πi

∫
Cr

(1 + z)n+j

zn+1
dz

= (−1)n
(
n
j

)(
n+ j
n

)
,

where the last identity follows from the �rst binomial coe�cient integral (Theorem 5.4.1).
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Theorem 5.4.5 (Second binomial coe�cient integral). For each n ∈ N and k =
0, 1, · · · , n, one has

(5.4.3)

(
n
k

)
=

1

2πi

∫
Cρ

1

(1− z)k+1zn−k+1
dz

for all 0 < ρ < 1, where Cρ is the circle with radius ρ centered at 0, which is counterclockwise
oriented.

Remark. The reason we restrict 0 < ρ < 1 is to make sure that 1
(1−z)k+1 is well-de�ned

(as a uniformly converge geometric sequence).

Proof. For each k = 0, 1, · · · , n, and let

f(z) =
1

(1− z)k+1zn−k+1
.

Since f has pole of order n− k + 1 at z0 = 0, by using Proposition 5.3.2, one has

Res (f ; 0) =
1

(n− k)!
∂n−k
z

(
zn−k+1f(z)

)∣∣
z→0

=
1

(n− k)!
∂n−k
z

(
(1− z)−k−1

)∣∣
z→0

=
1

(n− k)!
(k + 1) ∂n−k−1

z

(
(1− z)−k−2

)∣∣
z→0

=
1

(n− k)!
(k + 1)(k + 2) ∂n−k−2

z

(
(1− z)−k−3

)∣∣
z→0

...

=
1

(n− k)!
(k + 1)(k + 2) · · ·n

=

(
n
k

)
.

Therefore, by using the Residue theorem (Theorem 5.3.6), we immediately conclude (5.4.3).
□

Exercise 5.4.6. Prove Theorem 5.4.1 by using Residue theorem (Theorem 5.3.6) and
evaluation the residues via complex di�erentiation (Proposition 5.3.2).

Theorem 5.4.7 (Exponential integral). For each n ∈ N and k = 0, 1, · · · , n, one has

nk =
k!

2πi

∫
C

enz

zk+1
dz

for all simple closed (parametrizable continuous piecewise-C1) curve C surrounding the origin.

Exercise 5.4.8. Prove Theorem 5.4.7 by using the Residue theorem (Theorem 5.3.6)
[Hint: Consider the function enz

zk+1 ] .

Theorem 5.4.9. For each k ∈ Z and n ∈ Z, one has

χ{(n,k)∈Z×Z :n≥k}(n, k) =
1

2πi

∫
Cρ

1

zn−k+1

1

1− z
dz



5.4. SOME APPLICATIONS IN COMBINATORICS : EGORYCHEV METHOD 64

for all 0 < ρ < 1, where Cρ is the circle with radius ρ centered at 0, which is counterclockwise
oriented. Here χA is the indicator function de�ned by

χA(x) =

{
1 , x ∈ A,

0 , x /∈ A.

Remark. The reason we restrict 0 < ρ < 1 is to make sure that 1
1−z

is well-de�ned (as
a uniformly converge geometric sequence).

Remark (Iverson bracket). In many cases, we simply�ed the notations by simply writing
{n ≥ k} = {(n, k) ∈ Z × Z : n ≥ k}. The Iverson bracket J·K, given by Jx ∈ AK := χA(x).
One note that the Kronecker delta can be expressed as δij = J{i = j}K ≡ Ji = jK. By slightly
abusing notations, sometimes we write Theorem 5.4.9 as

Jn ≥ kK ≡ χ{n≥k} =
1

2πi

∫
Cρ

1

zn−k+1

1

1− z
dz.

Proof of Theorem 5.4.9. We consider the function

f(z) =
1

zn−k+1

1

1− z
.

When n + 1 ≤ k (i� n < k), then f(z) is analytic in B1, so Res (f ; 0) = 0. Otherwise when
n + 1 > k (i� n ≥ k), then f(z) has a pole of order n − k + 1 at z0 = 0, and hence by
Proposition 5.3.2 we see that

Res (f ; 0) =
1

(n− k)!
∂n−k
z

(
zn−k+1f(z)

)∣∣
z→0

=
1

(n− k)!
∂n−k
z

(
(1− z)−1

)∣∣
z→0

=
1

(n− k)!
∂n−k−1
z

(
(1− z)−2

)∣∣
z→0

=
1

(n− k)!
2 ∂n−k−2

z

(
(1− z)−3

)∣∣
z→0

=
1

(n− k)!
2 · 3 ∂n−k−3

z

(
(1− z)−4

)∣∣
z→0

...

=
1

(n− k)!
2 · 3 · · · · · (n− k) = 1.

Therefore, by using the Residue theorem (Theorem 5.3.6), we immediately conclude our
theorem. □

The Stirling set number (also known as the Stirling number of second kind)

{
n
k

}
is the

number of ways of partitioning a set of n elements into k nonempty sets, which is given by
(https://dlmf.nist.gov/26.8){

n
k

}
=

1

k!

k∑
j=0

(−1)k−j

(
k
j

)
jn.

https://dlmf.nist.gov/26.8
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Theorem 5.4.10. For each n ∈ N and k = 1, · · · , n, one has{
n
k

}
=

n!

k!

1

2πi

∫
C

(ez − 1)k

zn+1
dz

for all simple closed (parametrizable continuous piecewise-C1) curve C surrounding the origin.

Proof. It is easy to see that the function

f(z) =
(ez − 1)k

zn+1
=

1

zn+1

k∑
j=0

(−1)k−j

(
k
j

)
ejz

has a pole of order at most n+ 1 at z0 = 0, and hence by Proposition 5.3.2 we see that

Res (f ; 0) =
1

n!
∂n
z

(
zn+1f(z)

)∣∣
z→0

=
1

n!

k∑
j=0

(−1)k−j

(
k
j

)
∂n
z

(
ejz
)∣∣

z→0

=
1

n!

k∑
j=0

(−1)k−j

(
k
j

)
jn

=
k!

n!

{
n
k

}
.

Therefore, by using the Residue theorem (Theorem 5.3.6), we immediately conclude our
theorem. □



CHAPTER 6

Some special analytic functions

6.1. The analytic function log z

In real analysis, the (natural) logarithmic function log x for x > 0 is de�ned by the inverse
function of the exponential function ex. The main di�culty to extend this to complex number
is the function ez is not injective.

Definition 6.1.1. We say that f is an analytic branch of log z in a domain D if f is
analytic in D and ef(z) = z.

Remark 6.1.2. If f is an analytic branch of log z, then all other branches are g(z) =
f(z) + 2πki for k ∈ Z.

For each x > 0, it is well-known that

d

dx
log x =

1

x
.

If we �x any x0 > 0, then the fundamental theorem of calculus implies

log x =

∫ x

x0

1

y
dy + log x0.

This suggests us to de�ne the complex logarithmic as in the following:

Theorem 6.1.3. Suppose that D is simply connected and that 0 /∈ D (this condition is
quite natural since log 0 is not well-de�ned). Choose z0 ∈ D, �x a value of log z0 ∈ C such
that elog z0 = z0 and set

f(z) :=

∫ z

z0

1

ζ
dζ + log z0.

Then f is an analytic branch of log z in D, satisfying f ′(z) = 1
z
for all z ∈ D.

Remark 6.1.4. Here
∫ z

z0

1
ζ
dζ means the integral along any paths from z0 to z. Since 1

ζ
is

analytic in D, by using the Cauchy residual theorem (Theorem 5.3.6), one sees that
∫ z

z0

1
ζ
dζ

is indeed independent of the chosen path.

Proof of Theorem 6.1.3. It is easy to see that f is analytic in D with f ′(z) = 1
z
. The

remaining task is to show ef(z) = z. We de�ne

g(z) = ze−f(z).

Since g′(z) = e−f(z) − zf ′(z)e−f(z) = 0 in D and D is simply connected, by using the
fundamental theorem of line integral (Theorem 3.1.16) one sees that g is a constant function
and

g(z) = g(z0) = z0e
− log z0 = 1,

hence we conclude ef(z) = z. □

66
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In a typical situation (unless stated), we choose D = C \ {z ∈ C : Re z ≤ 0} and z0 = 1:

Definition 6.1.5. The function Log z :=
∫ z

1
1
ζ
dζ for all z ∈ C\{z ∈ C : Re z ≤ 0}, which

de�ned in the sense of Remark 6.1.4, is called the (standard) principal branch of log z.

It is easy to see that

(Log z)′ =
1

z
and − π < Im (Log z) < π.

One can use Remark 6.1.2 to construct all other branches

(6.1.1) Log z + 2πki for all k ∈ Z,
which also corresponding to D = C \ {z ∈ C : Re z ≤ 0} and z0 = 1 as well. We also can
de�ne the logarithms to other bases by

Logw z :=
Log z

Logw
.

Recall that exp(Log z) = z for all z ∈ C \ {z ∈ C : Re z ≤ 0}, that is, Log is the right-inverse
of exp (with respect to the composition operator of functions).

Question 6.1.6. How about Log (expw) for w ∈ C satis�es expw ∈ C \
{z ∈ C : Re z ≤ 0}?

The above question can be easily answered by the following theorem gives an equivalent
de�nition of Log z:

Theorem 6.1.7 (Equivalent de�nition of principal branch of log z). For each z ∈ C \
{z ∈ C : Re z ≤ 0}, one can write z = Reiθ for some R > 0 and −π < θ < π. Then

Log z = logR + iθ ≡ log |z|+ iθ.

Remark 6.1.8 (Left inverse of exponential). For each w ∈ C, one sees that
expw = eRew+iImw = eReweiImw = eRew(cos(Imw) + i sin(Imw)).

If −π
2

< Imw < π
2
, then Re (expw) = eRew cos(Imw) > 0. Therefore, at least when

−π
2
< Imw < π

2
, one can choose z = expw in Theorem 6.1.7 to see that

Log (expw) = log(eRew) + iImw = Rew + iImw = w.

This shows that the principal branch of complex logarithmic is the left inverse of complex
exponential in suitable domain, it is valid when −π

2
< Imw < π

2
, but not all w ∈ C. It is

clearly that this is not true for other branch (6.1.1). This also explains why we only consider
right inverse in De�nition 6.1.1, and we usually consider the principal branch of complex
logarithmic (in many literature, we always consider this principal branch unless stated).

Proof of Theorem 6.1.7. We see that

Log z =

∫ z

1

1

ζ
dζ =

∫ |z|

1

1

ζ
dζ +

∫ z

|z|

1

ζ
dζ = logR +

∫ Reiθ

R

1

ζ
dζ.

We now choose the curve C =
[
Reit 0 ≤ t ≤ θ

]
, and by the de�nition of line integral we

see that ∫ Reiθ

R

1

ζ
dζ =

∫
C

1

ζ
dζ =

∫ θ

0

1

Reit
Rieit dt = i

∫ θ

0

1 dt = iθ,

which conclude the theorem. □
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Exercise 6.1.9. Show that Log (z1z2) = Log z1 + Log z2 for all z1, z2 ∈ C \
{z ∈ C : Re z ≤ 0}.

Example 6.1.10. We now can de�ne the roots of complex number by using Log z. For
example,

the principal branch of
√
z := exp

(
1

2
Log z

)
for all z ∈ C \ {z ∈ C : Re z ≤ 0} .

Note that di�erent branches of log z may yield di�erent branches of
√
z. Unlike log z, there

are only two di�erent branches of
√
z. This follows from the fact that the equation w2 = z

has exactly two di�erent solutions for any z ̸= 0, which is a consequence of fundamental
theorem of algebra (Theorem 4.3.6).

Exercise 6.1.11. Find all the two branches of
√
i.

Example 6.1.12. The same technique may be used to de�ne arbitrary powers of any
nonzero complex number. For example, the principal branch of ii is de�ned by exp(iLog i).
By using Theorem 6.1.7, one sees that

Log i = log 1 + i
π

2
=

iπ

2
,

then ii = exp(i iπ
2
) = exp(−π

2
). It is interesting to note that ii is a real number.

Exercise 6.1.13. Determine all the other branches of ii.

Exercise 6.1.14. Compute Log (1 + i).

Exercise 6.1.15. Show that

Log (1 + z) = −
∞∑
n=1

(−1)n
zn

n
for all z ∈ B1.

We end this section by giving an example which has interesting branches which are dif-
ferent to the principal branch.

Example (Lambert W -function). The Lambert W -function W (z) is the complex-valued
solution of the equation

WeW = z.

On the z-interval [0,∞) there is one real solution, and it is nonnegative and increasing. On
the z-interval (−e−1, 0), there are two real solutions, one increasing and the other decreasing.
We call the increasing solution for which W (x) ≥ W (−e−1) = −1 the principal branch
and denote it by W0(x), and the decreasing solution can be identi�ed as W±1(x ∓ i0), see
Figure 6.1.1. Here x∓ i0 means the (formal) limit x∓ iy as y → 0+. Rather than elaborate
all details here, we refer to DLMF:4.13 for more details about this function.

https://dlmf.nist.gov/4.13
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Figure 6.1.1. Branches W0(x), W±(x ∓ i0) of the Lambert W -function
(Credit: https://dlmf.nist.gov/4.13.F1.mag)

6.2. In�nite products and Weierstrass product theorem

Similar to the in�nite sum (power series), we also can consider the in�nite product by
using a similar manner:

Definition 6.2.1. Let {uk}∞k=1 be a sequence of nonzero complex numbers. The in�nite
product Πk∈Nuk ≡ Π∞

k=1uk is said to converge to a nonzero limit if the sequence of partial
products

PN := ΠN
k=1uk = u1u2 · · ·uN

converges to a nonzero limit (in C, in the sense of De�nition 1.2.4) as N → ∞.

Remark 6.2.2. In this case, it is easy to see that PN = uNPN−1. The in�nite product
converges means PN → P for some P ∈ C \ {0}, and thus

lim
N→∞

uN = lim
N→∞

PN

PN−1

=
limN→∞ PN

limN→∞ PN−1

=
P

P
= 1.

Obviously, Π∞
k=1uk converges to a nonzero limit if and only if Π∞

k=N0
uk converges to a nonzero

limit for any �xed N0 ∈ N.

Definition 6.2.3. If PN → 0, we say the in�nite product diverges to zero. If there are
�nitely many terms uk are equal to zero and Πk∈N,uk ̸=0uk converges (in C), then se say the
product Πk∈Nuk ≡ Π∞

k=1uk converges to zero.

We now give an example to explain why we introduce the term �diverges to zero�.

https://dlmf.nist.gov/4.13.F1.mag
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Example 6.2.4. Fix any N0 ∈ N, we see that the partial sum of the series
∏∞

k=N0
(1−1/k)

is given by

PN :=
N∏

k=N0

(
1− 1

k

)
=

N∏
k=N0

k − 1

k

=
N0 − 1

��N0

· ��N0

����N0 + 1
· �

���N0 + 1

����N0 + 2
· · · · · �

���N − 1

N

=
N0 − 1

N
.

According to De�nition 6.2.1, one has

(6.2.1)
∞∏

k=N0

(
1− 1

k

)
:= lim

N→∞

N∏
k=N0

(
1− 1

k

)
= 0.

However, we see that 1− 1
k
→ 1 as k → ∞. Fix a large N0, and we formally see that

∞∏
k=N0

(
1− 1

k

)
=

≈ 1︷ ︸︸ ︷(
1− 1

N0

) ≈ 1︷ ︸︸ ︷(
1− 1

N0 + 1

)
· · ·

(?)
≈ 1 ̸= 0.

Due to this inconsistency, therefore we call (6.2.1) that the series
∏∞

k=N0
(1− 1/k) is diverges

to zero.

Exercise 6.2.5. Prove that
∏∞

k=2

(
1− 1

k2

)
converges to a nonzero limit.

Exercise 6.2.6. Let {ak}∞k=1 be a sequence of positive real numbers. Show that

a1 + a2 + · · ·+ aN ≤
N∏
k=1

(1 + ak) ≤ ea1+a2+···+aN for all N ∈ N.

By using this, show that
∏∞

k=1(1 + ak) converges to a nonzero limit if and only if
∑∞

k=1 ak
converges.

However, the following exercise demonstrates the necessity of the positivity of such
{ak}∞k=1:

Exercise 6.2.7. Let ak := (−1)k√
k

for all k = 2, 3, 4, · · · . Show that
∑∞

k=2 ak converges,

but
∏∞

k=2(1 + ak) diverges to zero.

For general (complex) case, we still have the following result.

Theorem 6.2.8. Let 1 + zk ∈ C \ {z ∈ C : Re z ≤ 0} for all k ∈ N.
(a) If

∑∞
k=1 Log (1 + zk) converges, then

∏∞
k=1(1 + zk) converges to a nonzero limit

exp (
∑∞

k=1 Log (1 + zk)).
(b) If

∏∞
k=1(1 + zk) converges to a nonzero limit, then

∑∞
k=1 Log (1 + zk) converges.

Remark. The tricky part in (b) is when the limit of
∏∞

k=1(1+zk) is in {z ∈ C : Re z ≤ 0},
therefore the limit cannot express in terms of the standard logarithmic branches (6.1.1).
Therefore the limit of

∑∞
k=1 Log (1 + zk) is actually log∗ (

∏∞
k=1(1 + zk)), where log∗ is some

branch of the logarithm given in Theorem 6.1.3 with some suitable domain D, which may
di�er with the standard choice C \ {z ∈ C : Re z ≤ 0}.
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Remark. Both results (a) and (b) can be extended for all zk ̸= −1 with di�erent branches
log(k) (corresponding to di�erent domains D(k)) of complex logarithmic for each k.

Proof of (a). Let SN =
∑N

k=1 Log (1+zk) and PN =
∏N

k=1(1+zk) = eSN . The condition∑∞
k=1 Log (1+zk) converges (to some S ∈ C) means SN → S, and hence PN → eS ̸= 0, which

conclude (a). □

Proof of (b). The condition
∏∞

k=1(1+zk) converges to some nonzero limit P ∈ Cmeans
PN → P . As explained in the remark, one can �nd some branch of the complex logarithm
log∗∗ (given in Theorem 6.1.3 with some suitable domain D) such that

log∗∗ PN → log∗∗ P in C as N → ∞.

By using Theorem 6.1.3 and (6.1.1), for each k ∈ Z, one can �nd nk ∈ Z such that

N∑
k=1

(Log (1 + zk) + 2πink) = log∗∗ PN ,

and thus
N∑
k=1

(Log (1 + zk) + 2πink) → log∗∗ P as N → ∞.

It is easy to verify that (this can be showed by, e.g. a contradiction argument)

Log (1 + zk) + 2πink → 0 as k → ∞.

By using Remark 6.2.2, we have zk → 0, and thus the above limit implies nk → 0 as k → ∞.
Since nk ∈ Z, thus nk = 0 for all k ≥ N0 for some N0 ∈ N. Then one sees that

∞∑
k=1

Log (1 + zk) =
∞∑
k=1

(Log (1 + zk) + 2πink) → log∗∗ P + 2πi

N0∑
k=1

nk as N → ∞,

which proves (b) with the branch log∗ = log∗∗+2πi
∑N0

k=1 nk. □

Corollary 6.2.9. If
∑∞

k=1 zk converges absolutely, that is,
∑∞

k=1 |zk| < ∞, then∏∞
k=1(1 + zk) converges.

Proof. Since
∑∞

k=1 |zk| < ∞, then one can �nd N0 ∈ N such that |zk| < 1
2
for all k ≥ N0.

Hence by Exercise 6.1.15, one has

|Log (1 + zk)| =
∣∣∣∣zk − z2k

2
+

z3k
3

−+ · · ·
∣∣∣∣ ≤ |zk|

(
1 +

1

2
+

1

4
+ · · ·

)
≤ 2|zk| for all k ≥ N0.

Hence
∞∑

k=N0

|Log (1 + zk)| ≤ 2
∞∑

k=N0

|zk| < ∞

and our result follows from Theorem 6.2.8(a). □

Definition 6.2.10. We say that the product Π∞
k=1(1 + zk) is absolutly convergent if

Π∞
k=1(1 + |zk|) < ∞.

Lemma 6.2.11. If Π∞
k=1(1 + zk) is absolutly convergent, then

∏∞
k=1(1 + zk) converges.

Proof. Since Π∞
k=1(1+ |zk|) < ∞, by Exercise 6.2.6, we have

∑∞
k=1 |zk| < ∞,. Hence we

conclude our lemma by Corollary 6.2.9. □
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We wish to consider analytic functions de�ned by in�nite products, i.e. functions of the
form

(6.2.2) f(z) =
∞∏
k=1

(1 + uk(z)).

By using Morera's uniform convergence theorem (Theorem 4.7.5), if each uk are analytic on
an open set D and the partial products converges to their limit function uniformly on each
compact set K in D, then one sees that f is analytic on D.

Exercise 6.2.12. Let K be a compact set in C, and we consider a continuous function
g : K → C. Show that the set g(K) := {g(z) : z ∈ K} is compact in C.

Based on this observation, one can prove the following theorem.

Theorem 6.2.13. Suppose that for each k = 1, 2, · · · that uk is analytic in an open set
D, and that

∑∞
k=1 |uk(z)| converges uniformly on all compact set in D. Then the product

(6.2.2) converges uniformly on on all compact set in D, and it de�nes an analytic function
in D.

Remark. The uniform convergence of
∑∞

k=1 uk(z) does not imply the uniform conver-
gence of

∑∞
k=1 |uk(z)|.

Proof. Let K be any compact set in D. Since
∑∞

k=1 |uk(z)| converges uniformly on K,
then there exists N0 ∈ N such that ∥uk∥L∞(K) ≤ 1

2
, hence 1 + uk ̸= 0 for all k ≥ N0. Given

any ϵ > 0, one can choose integer N1 ≥ N0 such that
∞∑

k=N1

|uk(z)| ≤ ϵ.

Hence by Exercise 6.1.15, one has

|Log (1 + uk(z))| =
∣∣∣∣uk(z)−

(uk(z))
2

2
+

(uk(z))
3

3
−+ · · ·

∣∣∣∣
≤ |uk(z)|

(
1 +

1

2
+

1

4
+ · · ·

)
≤ 2|uk(z)| for all k ≥ N1,

and thus
∞∑

k=N1

|Log (1 + uk(z))| ≤ 2
∞∑

k=N1

|uk(z)| ≤ 2ϵ for all z ∈ K.

Hence we know that
∑∞

k=1 Log (1+uk(z)) converges uniformly on K to a limit function g(z).
Sicne g is continuous, by Exercise 6.2.12 it follows that g(K) := {g(z) : z ∈ K} is bounded.
Finally, since the exponential function is uniformly continuous in any bounded domain, then

PN(z) := exp

(
N∑
k=1

log(1 + uk(z))

)
converges uniformly to its limit function f(z) = eg(z). Hence we conclude our theorem by the
above observation involving Morera's uniform convergence theorem (Theorem 4.7.5). □

Exercise 6.2.14. Show that
∏∞

k=1(1 + zk) converges uniformly on any compact subset
of B1 (therefore it de�nes an analytic function on B1).
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Exercise 6.2.15. Show that
∏∞

k=1(1 + 1
kz
) converges uniformly on any compact sub-

set of the half-space {z ∈ C : Re (z) > 1} (therefore it de�nes an analytic function on
{z ∈ C : Re (z) > 1}).

Theorem 6.2.16 (Weierstrass product theorem). Suppse {λk}k∈N ⊂ C which |λk| → ∞
as k → ∞. Then there exists an entire function f such that

f(λk) = 0 for all k ∈ N f(z) ̸= 0 for all z /∈ {λk}k∈N.
(see (6.2.4) for the precise formula for such f)

Remark. According to the uniqueness theorem (Corollary 4.6.7), a nontrivial entire
function cannot have an accumulation point of zeros. This means that, if f(λk) = 0 for
those {λk}k∈N ⊂ C converges in C, then f ≡ 0 in the whole complex plane C. Therefore
the assumption |λk| → ∞ as k → ∞ seems necessary. It would seem natural to write
f(z) =

∏∞
k=1(z − λk). However, since |λk| → ∞, the terms of the product would not

approach 1, even pointwisely, for each z ∈ C. The product would diverge.

Remark. An entire function may be zero at all the points of a sequence which diverges
to ∞, see Example 4.6.8 for sin z. Weierstrass product theorem (Theorem 6.2.16) shows that
this example is in no way exceptional.

Proof of Theorem 6.2.16. We �rst consider the case when λk ̸= 0 for all k = 2, 3, · · · ,
and set

Ek(z) := exp

(
z

λk

+
z2

2λ2
k

+ · · ·+ zk

kλk
k

)
.

Given any M > 0, and let |z| < M . Since |λk| → ∞, one can �nd N0 ∈ N such that
|λk| ≥ 2M for all k ≥ N0. By using Exercise 6.1.15, we see that

Log

((
1− z

λk

)
Ek(z)

)
= Log

(
1− z

λk

)
+ Log (Ek(z))

= Log

(
1− z

λk

)
+

z

λk

+
z2

2λ2
k

+ · · ·+ zk

kλk
k

= −
∞∑

j=k+1

1

j

(
− z

λj

)j

which is valid since | z
λk
| ≤ 1

2
for all k ≥ N0. Hence∣∣∣∣Log ((1− z

λk

)
Ek(z)

)∣∣∣∣ ≤ ∞∑
j=k+1

∣∣∣∣∣ zjjλj
k

∣∣∣∣∣
=

∣∣∣∣ zλk

∣∣∣∣k ∞∑
j=k+1

∣∣∣∣∣ zj−k

jλj−k
k

∣∣∣∣∣ =
∣∣∣∣ zλk

∣∣∣∣k ∞∑
ℓ=1

1

ℓ+ k

∣∣∣∣ zλk

∣∣∣∣ℓ
≤
∣∣∣∣ zλk

∣∣∣∣k ∞∑
ℓ=1

1

2ℓ
=

∣∣∣∣ zλk

∣∣∣∣k ≤ 1

2k
.

This shows that the sum
∞∑

k=N0

Log

((
1− z

λk

)
Ek(z)

)
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is uniform converges in all compact set in BM . By taking the exponential in each partial
sum, one also can verify that the product

(6.2.3) g(z) :=
∞∏
k=2

(
1− z

λk

)
Ek(z)

is also uniform converges in all compact set in BM . By arbitrariness of M , in fact (6.2.3)
de�nes an entire function, satisfying

g(λk) = 0 for all k ∈ N g(z) ̸= 0 for all z /∈ {λk}∞k=2.

Finally, if we seek an entire function with zeros λ1 = 0 at the origin as well, we only need to
set

(6.2.4) f(z) = zpg(z) = zp
∞∏
k=2

(
1− z

λk

)
Ek(z)

so that λ1 = 0 is the zero of f with multiplicity p. □

Example 6.2.17. By using (6.2.4), it is easy to see that an entire function with zeros at
all the points λk = log k for all k ∈ N is given by

f(z) = z
∞∏
k=2

(
1− z

log k

)
exp

(
z

log k
+

z2

2(log k)2
+ · · ·+ zk

k(log k)k

)
.

Exercise 6.2.18. Show that

f(z) :=
∞∏
k=1

(
1 +

z

k

)
e−

z
k

is an entire function with a single zero at every negative integer λk = −k. In fact, this function
is related to Gamma function (will be introduced later in Section 6.3) by the formula

f(z) =
e−γz

Γ(z)z

where γ is the Euler constant, see (6.3.4). [Hint: Modifying the ideas in the proof of Theo-
rem 6.2.16.]

Example 6.2.19. By using Exercise 6.2.18, it is easy to see that

(6.2.5) f(z) = z

(
∞∏
k=1

(
1 +

z

k

)
e−

z
k

)(
∞∏
j=1

(
1− z

j

)
e

z
j

)
= z

∞∏
k=1

(
1− z2

k2

)

is an entire function with a single zero at every integer, since the partial
∏N

k=1

(
1− z2

k2

)
is

the product of the partial sum

M1∏
k=1

(
1 +

z

k

)
e−

z
k and

M2∏
j=1

(
1− z

j

)
e

z
j
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with the special case N = M1 = M2. As an exercise, here we give a direct justi�cation

of z
∏∞

k=1

(
1− z2

k2

)
without refering Exercise 6.2.18 but only modifying the proof of Theo-

rem 6.2.16: Given any M > 1, and let |z| < M . By using Exercise 6.1.15, we see that

Log

(
1− z2

k2

)
= −

∞∑
j=1

(−1)j
(− z2

k2
)j

j
= −

∞∑
j=1

1

j

(
z2

k2

)j

for all k ≥ ⌈2
3
2M3⌉.

Hence we see that∣∣∣∣Log (1− z2

k2

)∣∣∣∣ ≤ ∞∑
j=1

∣∣∣∣z2k2

∣∣∣∣j ≤ ∞∑
j=1

1

2jk
4
3
j
≤ 1

k
4
3

∞∑
j=1

1

2j
=

1

k
4
3

for all |z| < M.

This shows that the sum
∞∑

k=⌈2
3
2M3⌉

Log

(
1− z2

k2

)
is uniform converges in all compact set in BM . By taking the exponential in each partial
sum, one also can verify that the product

(6.2.6) g(z) :=
∞∏
k=1

(
1− z2

k2

)
is also uniform converges in all compact set in BM . By arbitrariness of M , in fact such g
de�nes an entire function, satisfying

g(k) = 0 for all k ∈ Z \ {0} g(z) ̸= 0 for all z /∈ Z \ {0}.

Finally, we conclude (6.2.5) is our desired analytic function since f(z) = zg(z).

We have the following fact:

Theorem 6.2.20. For each z ∈ C, we have

sin πz

π
= f(z),

where f is the function given in (6.2.5).

We shall skip the proof of the above theorem, since it is too technical. Here we refer to
[BN10, Proposition 17.8] for a proof. As an immediate consequence, we have:

Corollary 6.2.21. All zeros of sin z are real (in other words, there is no zeros other
than in Example 4.6.8).

Moreover, we also have the following representation for complex cosine (here we state
without proof, see [BN10, Exercise 9 in Chapter 17]).

Theorem 6.2.22. For each z ∈ C, we have

cos πz =
∞∏
k=0

(
1− 4z2

(2k + 1)2

)
.
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6.3. The Gamma function: an extension of factorial function

We begin this section by the following lemma.

Lemma 6.3.1. Let D be an open set in C. Suppose φ(z, t) is a continuous function of
t ∈ [a, b] for �xed z and an analytic function of z ∈ D for �xed t. Then

f(z) =

∫ b

a

φ(z, t) dt

is analytic in D with complex derivative

(6.3.1) f ′(z) =

∫ b

a

∂zφ(z, t) dt.

Proof. Let Γ the boundary of topological closed rectangle in D, each segment is either
horizontal (i.e. parallel to real axis) or vertical (i.e. parallel to imaginary axis). By continuity
of φ, one sees that φ ∈ L1(Γ× (a, b)). Therefore by Fubini's theorem (for Lebesgue integral),
one sees that ∫

Γ

f(z) dz =

∫
Γ

∫ b

a

φ(z, t) dt dz =

∫ b

a

(∫
Γ

φ(z, t) dz

)
dt.

Since φ is analytic in z, by Cauchy's residual theorem (Theorem 5.3.6) one sees that∫
Γ
φ(z, t) dz = 0, and thus

∫
Γ
f(z) dz = 0. By arbitrariness of Γ ⊂ D, we conclude f is

analytic on D by Morera's theorem (Theorem 4.7.1). Since f is analytic, then f ′(z) = ∂xf ,
whenever z = x + iy. Therefore (6.3.1) immediately follows from the Leibniz integral rule
(this step only requires the continuity of ∂xφ), here we omit the details. □

We consider the integral

In =

∫ ∞

0

e−ttn dt for n = 0, 1, 2, · · · ,

which can be interpret as improper Riemann integral. In this case, this is same as the
Lebesgue integral.

Exercise 6.3.2. By interpreting the above as improper Riemann integral, show that
I0 = 1 and In = nIn−1 for all n ∈ N. From this, one sees that In = n! = n(n−1)(n−2)·· · ··2·1.

For any z ∈ C and t > 0, we de�ne tz−1 := e(z−1) log t. One sees that |tz−1| = |e(z−1) log t| =
e(Re (z−1)) log t = tRe (z−1) for all t > 0. Hence one sees that the gamma function

Γ(z) =

∫ ∞

0

e−ttz−1 dt

is uniformly convergent in the right half-plane {z ∈ C : Re z > 0}. Hence by Lemma 6.3.1,
one sees that Γ is analytic in the right half-plane {z ∈ C : Re z > 0} with complex derivatives
or order k:

Γ(k)(z) =

∫ ∞

0

tz−1(log t)ke−t dt for all z ∈ C with Re z > 0.

Using the same arguments in Exercise 6.3.2, it is easy to show that

Γ(z + 1) = zΓ(z) for all z ∈ C with Re z > 0.

We can extend Γ for −1 < Re z < 0 by the formula

Γ(z) :=
Γ(z + 1)

z
for all z ∈ C with − 1 < Re z < 0.
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It is easy to see that Γ is continuous at each z ∈ C \ {0} with Re z > −1, and hence by
using Morera's continuity theorem (Theorem 4.7.7), Γis also analytic there. Continuing in
the same manner, we can de�ne

Γ(z) :=
Γ(z + 2)

z(z + 1)
for all z ∈ C with − 2 < Re z < −1,

Γ(z) :=
Γ(z + 3)

z(z + 1)(z + 2)
for all z ∈ C with − 3 < Re z < −2,

Γ(z) :=
Γ(z + k + 1)

z(z + 1) · · · (z + k)
for all z ∈ C with − k − 1 < Re z < −k,(6.3.2)

and applying Morera's continuity theorem (Theorem 4.7.7), we see that:

Theorem 6.3.3. Γ de�nes an analytic function on C\{0,−1,−2, · · · }, with Res (Γ;−k) =

limz→−k(z + k)Γ(z) = (−1)k

k!
.

Proof. By using Proposition 5.3.2, one can easily compute

Res (Γ;−k) = lim
z→−k

(z + k)Γ(z) =
Γ(1)

(−k)(−k + 1) · · · (−1)
=

(−1)k

k!
,

which concludes our result. This also means that {0,−1,−2, · · · } are all poles or order 1. □

From now on, we will only sketch the ideas (since this part is quite technical), see [BN10,
Chapter 18] for more details. By using the fact that limn→∞(1− t

n
)n = e−t, one can show

Γ(z) = lim
n→∞

∫ n

0

tz−1

(
1− t

n

)n

dt

= lim
n→∞

1

nn

∫ n

0

tz−1(n− t)n dt whenever Re z > 0,

see [BN10, Exercise 7 in Chapter 18]. By using integration by parts, we have

Γ(z) = lim
n→∞

1

nn
· n
z

∫ n

0

tz(n− t)n−1 dt

= lim
n→∞

1

nn

n(n− 1) · · · 1
z(z + 1) · · · (z + n− 1)

∫ n

0

tz+n−1 dt

= lim
n→∞

nz

z
· 1

z + 1
· 2

z + 2
· · · · · n

z + n
.

Thus we reach the Gauss' product representation for Gamma function:

1

Γ(z)
= lim

n→∞
zn−z(1 + z)

(
1 +

z

2

)
· · ·
(
1 +

z

n

)
= lim

n→∞
zn−z

n∏
k=1

(
1 +

z

k

)
,(6.3.3)

see also [FB09, Proposition IV.1.10].

Remark. This immediately shows that Γ has no zeros.

Here we exhibit a real analysis result in [BN10, Lemma 18.8]:
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Lemma 6.3.4. If sn = 1 + 1
2
+ · · ·+ 1

n
− log n, then limn→∞ sn exists. This limit is called

the Euler constant, usually denoted as γ.

We write (6.3.3) as

1

Γ(z)
= lim

n→∞
ez(1+

1
2
+···+ 1

n
−logn)

(
z

n∏
k=1

(
1 +

z

k

)
e−

z
k

)
.

By using Theorem 6.2.20 and Lemma 6.3.4, we have

(6.3.4)
1

Γ(z)
= eγz

(
z

∞∏
k=1

(
1 +

z

k

)
e−

z
k

)
whenever Re z > 0,

see Exercise (6.2.18). By using the extension formula (6.3.2), in fact

1

Γ(z)Γ(−z)
= −z2

∞∏
k=1

(
1− z2

k2

)
,

this somehow formaly replace z by −z (but in fact not so obvious). Therefore, we reach

Γ(z)Γ(−z) =
−π

z sin πz
for all z ∈ C \ Z,

that is (see also [FB09, Proposition IV.1.11]):

Theorem 6.3.5 (Completion Formula). Γ(z)Γ(1− z) = π
sinπz

for all z ∈ C \ Z.

As an immediate consequence, we have

Γ(1/2) =
√
π.

Applying the identity Γ(z + 1) = zΓ(z), we also have Γ(3/2) = 1
2

√
π, Γ(5/2) = 3

√
π/4, and

so on.

Exercise 6.3.6. Show that

Γ

(
n+

1

2

)
=

√
π

n−1∏
k=0

(
k +

1

2

)
for all n = 0, 1, 2, · · · .

We now restrict Γ(z) for z > 0. In fact, log ◦Γ is convex on (0,∞), see [Rud76, The-
orem 8.18]. It is a rather surprising fact (discovered by Borh and Mollerup) that: If f is a
positive function on (0,∞) such that f(x+ 1) = xf(x), f(1) = 1 and log ◦f is convex, then
f = Γ on (0,∞), see [Rud76, Theorem 8.19]. See also [FB09, Proposition IV.1.3] for a
characterization of the complex Γ-function. We �nally end this section by exhibit a version
of Stirling's formula, which can be found in [FB09, Proposition IV.1.14].

Theorem 6.3.7 (General Stirling's formula). Let H be the function

H(z) =
∞∑
n=0

((
z + n+

1

2

)
Log

(
1 +

1

z + n

)
− 1

)
.

Then for all z ∈ C \ {z ∈ C : Re z ≤ 0} one has

Γ(z) =
√
2πzz−

1
2 e−zeH(z).
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In any angular domain Wδ =
{
z = |z|eiθ : −π + δ ≤ θ ≤ π − δ

}
with 0 < δ ≤ π, we have

H(z) → 0 as z → ∞. In addition, we have

0 < H(x) <
1

12x
for all x > 0.

Therefore we have the ordinary Stirling formula

n! =
√
2πn

(n
e

)n
e

φ(n)
12n with 0 < φ(n) < 1.
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