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CHAPTER 1

Fourier series

1.1. Weak derivatives

Given any integer n ≥ 1. For each multi-index α = (α1, · · · , αn) with αj ∈ Z≥0, we de�ne
supp (α) :=

{
j ∈ {1, · · · , n} αj ̸= 0

}
,

α! := α1!α2! · · ·αn! ≡
n∏
j=1

αj! and |α| :=
n∑
j=1

αj

∂α :=
∏

j∈supp (α)

∂
αj

j with the partial derivatives ∂j :=
∂

∂xj

xα :=
∏

j∈supp (α)

x
αj

j for all x = (x1, · · · , xn) ∈ Cn

with the convention

∂(0,··· ,0) := Id and x(0,··· ,0) := 1.

Let β = (β1, · · · , βn) be another multi-index such that

β ≤ α (that is, βj ≤ αj for all j),

we de�ne the multi-index

α− β := (α1 − β1, · · · , αn − βn).

We have the following binomial theorem [Mit18]:

(1.1.1) (x+ y)γ =
∑

α+β=γ

γ!

α!β!
xαyβ for all x, y ∈ Cn.

Let Ω be an open set in Rn. For each k ∈ Z≥0 ∪ {∞}, we de�ne the following functional
spaces:

Ck(Ω) :=
{
φ : Ω → C ∂αφ is continuous for all α with |α| ≤ k

}
,

Ck(Ω) :=
{
φ|Ω φ ∈ Ck(U) for some open set U ⊃ Ω

}
,

Ck
c (Ω) :=

{
φ ∈ Ck(Ω) supp (φ) ⊂ Ω is compact

}
≡

{
φ ∈ Ck(Rn) supp (φ) ⊂ Ω is compact

}
.

Given any f ∈ C1(Ω), using (1-dimensional) integration by parts, we can easily compute
that �

Ω

(∂jf)φdx = −
�
Ω

f∂jφdx for all φ ∈ C∞
c (Ω).

1



1.1. WEAK DERIVATIVES 2

Using induction, for each f ∈ C |α|(Ω), we can easily verify that

(1.1.2)

�
Ω

(∂αf)φdx = (−1)|α|
�
Ω

f∂αφdx for all φ ∈ C∞
c (Ω).

We see that the right-hand-side of (1.1.2) is actually well-de�ned for all locally L1 functions
f , i.e.

f ∈ L1
loc(Ω) :=

{
f : Ω → C ∥f∥L1(K) ≡

�
K
|f | dx <∞ for all compact set K ⊂ Ω

}
.

This suggests the following de�nition:

Definition 1.1.1. Let f ∈ L1
loc(Ω). A function g ∈ L1

loc(Ω) is called a weak derivative
(of order α) of f if

(1.1.3)

�
Ω

gφ dx = (−1)|α|
�
Ω

f∂αφdx for all φ ∈ C∞
c (Ω).

Theorem 1.1.2 (Theorem 1.3 in [Mit18]). If g ∈ L1
loc(Ω) satisfying g = 0 in Ω-

distribution sense, i.e.

(1.1.4)

�
Ω

gφ dx = 0 for all φ ∈ C∞
c (Ω),

then g = 0 a.e. in Ω.

Remark 1.1.3. The converse of Theorem 1.1.2 is trivial. Here and after, we shall omit
the notation �a.e.� if there is no any ambiguity.

Remark 1.1.4. In particular, for any multi-index α, each function g ∈ L1
loc(Ω) produced

from f ∈ L1
loc(Ω) must be unique. Therefore, we can just simply write ∂αf := g. However,

Theorem 1.1.2 does not guarantee the existence of such ∂αf .

Proof of Theorem 1.1.2. Consider a function ϕ satisfying

ϕ ∈ C∞
c (Rn), ϕ ≥ 0, supp (ϕ) ⊂ B1 and

�
Rn

ϕ(x) dx = 1.

One concrete example is the function ϕ : Rn → R de�ned by

ϕ(x) =

C exp

(
1

|x|2 − 1

)
for x ∈ B1,

0 otherwise,

with C := (ωn−1

� 1

0
exp( 1

ρ2−1
)ρn−1 dρ)−1, where ωn−1 = n|B1| = 2π

n
2

Γ(n
2
)
is the surface area of

the unit sphere ∂B1. For each ϵ > 0, we de�ne (sometimes we refer it the standard molli�er)

ϕϵ(x) =
1

ϵn
ϕ

(
x

ϵ

)
for each x ∈ Rn.

Then for each ϵ > 0 we have

ϕϵ ∈ C∞
c (Rn), ϕϵ ≥ 0, supp (ϕϵ) ⊂ Bϵ and

�
Rn

ϕϵ(x) dx = 1.

Fix x ∈ Ω and 0 < ϵ < dist (x, ∂Ω), then Bϵ(x) ⊂ Ω and ϕϵ(x− ·) ∈ C∞
c (Ω). Therefore from

(1.1.4) we have

(1.1.5) g ∗ ϕϵ(x) =
�
Ω

g(y)ϕϵ(x− y) dy = 0 for all x ∈ Ω.
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Therefore from Lebesgue's di�erentiation theorem we have

|g(x)| =
∣∣∣∣ �

Ω

g(x)ϕϵ(x− y) dy −

=0 by (1.1.5)︷ ︸︸ ︷�
Ω

g(y)ϕϵ(x− y) dy

∣∣∣∣
≤ 1

ϵn

�
Bϵ(x)

|g(x)− g(y)|ϕ
(
y

ϵ

)
dy

≤ |B1|∥ϕ∥L∞(Rn)
1

|Bϵ(x)|

�
Bϵ(x)

|g(x)− g(y)| dy → 0 as ϵ→ 0

for a.e. x ∈ Ω (in particular, for all Lebesgue point x in Ω), which conclude our lemma. □

When f ∈ C |α|(Ω), then the weak derivative ∂αf is coincide with the usual derivative
∂αf (which is continuous). The (classical) Laplacian is de�ned by

∆f :=
n∑
j=1

∂2j f for all f ∈ C2(Ω).

Using the weak derivatives as in De�nition 1.1.1, we can de�ne the weak Laplacian Lf of f
by �

Ω

(Lf)φdx :=

�
Ω

f∆φdx for all φ ∈ C∞
c (Ω)

provided the weak derivatives of f exist. Similar ideas also can apply to other di�erential
operators.

Example 1.1.5. We now consider the Heaviside function

(1.1.6) H(x) :=

{
1 for all x > 0,

0 for all x ≤ 0.

It is easy to see that H ∈ L1
loc(R). We de�ne

f(x) :=

{
x for all x > 0,

0 for all x ≤ 0.

It is easy to see that

−
�
R
f(x)φ′(x) dx = −

� ∞

0

xφ′(x) dx = −xφ(x)
∣∣∣∣x=∞

x=0

+

� ∞

0

φ(x) dx =

�
R
H(x)φ(x) dx,

which shows that the Heaviside function H given in (1.1.6) is the weak derivative of order
one of f .

However, not all L1
loc(Ω) function admits weak derivative:

Example 1.1.6. We now show that the weak derivative of order 1 of the Heaviside
functionH given in (1.1.6) does not exist. Suppose the contrary, thatH has a weak derivative
of order 1, says g ∈ L1

loc(R). We see that

(1.1.7)

� ∞

−∞
g(x)φ(x) dx = −

� ∞

−∞
H(x)φ′(x) dx = −

� ∞

0

φ′(x) dx = φ(0)
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for all φ ∈ C∞
c (R). Hence we know that� ∞

0

g(x)φ(x) dx = 0 for all φ ∈ C∞
c (R \ {0}).

Using Theorem 1.1.2 with Ω = R \ {0}, we conclude that g = 0 a.e. in R. Therefore from
(1.1.7) we know that φ(0) = 0 for all φ ∈ C∞

c (R), which leading to a contradiction.

Remark 1.1.7 (Theorem 1 in Section 4.3 of [EG15]). The following general integration
by parts formula is well-known: Let Ω be a bounded Lipschitz domain in Rn and given any
1 ≤ p <∞. There exists a bounded linear operator

Tr : W 1,p(Ω) → Lp(∂Ω;Hn−1) such that Tr (f) = f on ∂Ω for all f ∈ W 1,p(Ω) ∩ C(Ω),
which is uniquely de�ned up to sets of Hn−1⌊∂Ω measure zero (It is called the trace of f on
∂Ω). Furthermore, for all φ ∈ (C1(Rn))n and f ∈ W 1,p(Ω), we have�

Ω

f div (φ) dx = −
�
Ω

∇f · φdx+
�
∂Ω

(ν · φ)Tr (f) dHn−1,

where ν is the unit outer normal to ∂Ω.

1.2. 1-dimensional Fourier series in L2

Let Ω ⊂ Rn be an open set and let 1 ≤ p ≤ ∞. For each m ∈ N, the Sobolev space
Wm,p(Ω) is de�ned by

Wm,p(Ω) :=
{
f ∈ Lp(Ω) ∂αf ∈ Lp(Ω) for all |α| ≤ m

}
,

equipped with the norm

∥f∥Wm,p(Ω) =

( ∑
|α|≤m

∥∂αf∥pLp(Ω)

) 1
p

.

where ∂αf are the weak derivatives (De�nition 1.1.1) of f . We set

Hm(Ω) := Wm,2(Ω).

Note that Hm(Ω) is indeed a Hilbert space equipped with the scalar product

(f, g)Hm(Ω) :=
∑
|α|≤m

(∂αf, ∂αg)L2(Ω),

where

(f, g)L2(Ω) =

�
Ω

fg dx for all f, g ∈ L2(Ω).

For 1 ≤ p < ∞, we denote Wm,p
0 (Ω) the closure of C∞

c (Ω) in Wm,p(Ω), and we set H1
0 (Ω) =

W 1,2
0 (Ω). Here we refer to the monograph [Bre11] for properties of these Sobolev spaces,

here we will not going to exhaust all of these details. The following theorem is an important
fact in the Hilbert space theory, which can be found in [Bre11, Theorem 9.31] (see also
[Bre11, Theorem 8.22] for 1-dimensional case).

Theorem 1.2.1 (Spectral decomposition of Dirichlet Laplacian). Let Ω be a bounded
Lipschitz domain. There exist a Hilbert basis {ϕk}k∈N of L2(Ω) and a sequence of real numbers
{λk}k∈N with 0 < λ1 ≤ λ2 ≤ · · · → ∞ such that

ϕk ∈ H1
0 (Ω) ∩ C∞(Ω), −∆ϕk = λkϕk in Ω.
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For each (real-valued) f ∈ L2(Ω) we have

(1.2.1) f =
∞∑
k=1

(f, ϕk)L2(Ω)ϕk converges in L2(Ω).

The precise meaning of (1.2.1) is

lim
m→∞

∥∥∥∥f −
m∑
k=1

(f, ϕk)L2(Ω)ϕk

∥∥∥∥
L2(Ω)

= 0.

If (f, ϕk)L2(Ω) = 0 for all k ∈ N, then (1.2.1) implies that f = 0 a.e. in Ω. Moreover, the
following Parseval-Bessel identity holds:

∥f∥2L2(Ω) =
∞∑
k=1

|(f, ϕk)L2(Ω)|2.

In particular, the following general result on separable Hilbert space can be proved using the
Hahn-Banach theorem [Bre11, Corollary 1.8]:

Proposition 1.2.2. Let
(
H, (·, ·)

)
be a separable Hilbert space, and let {ϕk}k∈N be an

orthonormal subset of H. Then the following are equivalent:

(1) {ϕk}k∈N is an orthonormal (Hilbert) basis.
(2) The following Parseval identity holds:

∥f∥2 =
∑
k∈N

|(f, ϕk)|2.

(3) If f ∈ H and (f, ϕk) = 0 for all k ∈ N, then f ≡ 0.

Choosing n = 1 and Ω = (0, π) in Theorem 1.2.1, we know that the sequence {ϕk}k∈N
de�ned by

ϕk(x) =

√
2

π
sin(kx) for k = 1, 2, · · ·

is an orthonormal basis of L2(0, π). In particular, we compute that

2

π

� π

0

sin(kx) sin(kx) dx =
1

π

� π

0

(
1− cos(2kx)

)
dx

= 1− 1

2k
sin(2kx)

∣∣∣∣π
x=0

= 1

and for each k1 ̸= k2 we have

2

π

� π

0

sin(k1x) sin(k2x) dx

=
1

π

� π

0

(
cos((k1 − k2)x)− cos((k1 + k2)x)

)
dx

=
1

π

(
1

k1 − k2
sin((k1 − k2)x)−

1

k1 + k2
sin((k1 + k2)x)

)∣∣∣∣x=π
x=0

= 0.

Hence given any real-valued f ∈ L2(0, π), we can write

(1.2.2) f(x) =
∞∑
k=1

ak sin(kx) converges in L2(0, π),
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with

ak =
2

π

� π

0

sin(kx)f(x) dx.

The expansion (1.2.2) is called the Fourier sine expansion. In fact, we can do the similar

things for Laplacian with Neumann eigenvalues: The sequence {ϕ̃k}k∈N∪{0} de�ned by

ϕ̃k(x) =

√
2

π
cos(kx) for k = 0, 1, 2, · · ·

is also an orthonormal basis of L2(0, π), and similar idea induces Fourier cosine expansion

(1.2.3) f(x) =
1

2
b0 +

∞∑
k=1

bk cos(kx) converges in L2(0, π),

with

bk =
2

π

� π

0

cos(kx)f(x) dx

see [Bre11, Comments on Chapter 5]. Indeed, we also compute that

2

π

� π

0

cos(kx) cos(kx) dx =
1

π

� π

0

(
1 + cos(2kx)

)
dx

= 1− 1

2k
sin(2kx)

∣∣∣∣x=π
x=0

= 1

and for each k1 ̸= k2 we have

2

π

� π

0

sin(k1x) sin(k2x) dx

=
1

π

� π

0

(
cos((k1 − k2)x) + cos((k1 + k2)x)

)
dx

=
1

π

(
1

k1 − k2
sin((k1 − k2)x) +

1

k1 + k2
sin((k1 + k2)x)

)∣∣∣∣x=π
x=0

= 0.

Example 1.2.3. Let f(x) = 1 in the interval (0, π). The function has a Fourier sine series
with coe�cients

ak =
2

π

� π

0

sin(kx) dx = − 2

πk
cos(kx)

∣∣∣∣x=π
x=0

=
2

πk
(1− cos kπ) =

2

πk
(1− (−1)m),

which in particular gives

ak =

{
4
kπ

if k is odd,

0 if k is even.

Thus

1 =
4

π

∑
m∈N

1

2m− 1
sin

(
(2m− 1)x

)
converges in L2(0, π).
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The same function has a Fourier cosine series with coe�cients

bk =
2

π

� π

0

cos(kx) dx =
2

πk
sin(kx)

∣∣∣∣x=π
x=0

= 0 for all k ̸= 0

b0 =
2

π

� π

0

1 dx = 2.

This shows that the Fourier cosine series of this function is trivial.

Example 1.2.4. Let f(x) = x in (0, π). Its Fourier sine series has the coe�cients

ak =
2

π

� π

0

x sin kx dx =

(
− 2x

kπ
cos kx+

2

k2π
sin kx

)∣∣∣∣x=π
x=0

= −2

k
cos kπ = (−1)k+1 2

k
.

Thus in (0, π) we have

x = 2
∞∑
k=1

(−1)k+1 sin(kx)

k
converges in L2(0, π).

Its Fourier cosine series has the coe�cients b0 =
2
π

� π
0
x dx = π and

bk =
2

π

� π

0

x cos kx dx =

(
2x

kπ
sin kx+

2

k2π
cos kx

)∣∣∣∣x=π
x=0

=
2

k
sin kπ +

2

k2π
(cos kπ − 1) =

2

kπ
((−1)k − 1),

which gives

bk =

{
− 4
k2π

for k odd,

0 for k ̸= 0 even.

Thus in (0, π) we have

x =
π

2
− 4

π

∑
m∈N

1

(2m− 1)2
cos((2m− 1)x) converges in L2(0, π).

Given any function f : R → R, we can decompose it into the sum of even function and
odd function by the following simple observation:

(1.2.4) f(x) =

odd function︷ ︸︸ ︷
f(x)− f(−x)

2
+

even function︷ ︸︸ ︷
f(x) + f(−x)

2
.

Moreover, the decomposition (1.2.4) is unique: If f(x) = fodd(x) + feven(x) for some odd
function fodd and even function feven, then from (1.2.4) we can write

odd function︷ ︸︸ ︷
fodd(x)−

f(x)− f(−x)
2

=

even function︷ ︸︸ ︷
f(x) + f(−x)

2
− feven(x) for all x ∈ R.

This implies

fodd(x) =
f(x)− f(−x)

2
and feven(x) =

f(x) + f(−x)
2

.
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We see that sin(kx) are odd functions, while cos(kx) are even functions. Therefore, it is
natural to represent f : (−π, π) → C by the Fourier series

(1.2.5) f(x) =
1

2
B0 +

∞∑
k=1

(

odd part︷ ︸︸ ︷
Ak sin(kx)+

even part︷ ︸︸ ︷
Bk cos(kx)) for x ∈ (−π, π)

in a suitable sense. In next subsection we will show that the series (1.2.5) as well as (1.2.6) are
converges in L2(−π, π). In addition, if f is su�ciently smooth, in particular the convergence
is point-wise. Using similar computations, the coe�cients are given by

Ak =
1

π

� π

−π
f(x) sin(kx) dx for k = 1, 2, · · ·

Bk =
1

π

� π

−π
f(x) cos(kx) dx for k = 0, 1, 2, · · ·

Since eiθ = cos θ + i sin θ for all θ ∈ R, we may alternatively consider the series

(1.2.6) f(x) =
∞∑

k=−∞

cke
ikx for x ∈ (−π, π)

with ck ∈ C. We can write (1.2.6) as

f(x) =
∞∑

k=−∞

cke
ikx = c0 +

∞∑
k=1

(cke
ikx + c−ke

−ikx)

= c0 +
∞∑
k=1

(ℜck + iℑck)
(
cos(kx) + i sin(kx)

)
+

∞∑
k=1

(ℜc−k + iℑc−k)
(
cos(kx)− i sin(kx))

)
= c0 +

∞∑
k=1

(
ℜck cos(kx)−ℑck sin(kx)

)
+ i

(
ℜck sin(kx) + ℑck cos(kx)

)
+

∞∑
k=1

(
ℜc−k cos(kx) + ℑc−k sin(kx)

)
+ i

(
−ℜc−k sin(kx) + ℑc−k cos(kx)

)
= c0 +

∞∑
k=1

(
−ℑck + ℑc−k + i(ℜck −ℜc−k)

)
sin(kx)

+
∞∑
k=1

(
ℜck + ℜc−k + i(ℑck + ℑc−k)

)
cos(kx)

= c0 +
∞∑
k=1

i(ck − c−k) sin(kx) +
∞∑
k=1

(ck + c−k) cos(kx).

Therefore from (1.2.5) (the coe�cient are unique) we have

c0 =
1

2
B0, ck + c−k = Bk and i(ck − c−k) = Ak for all k ∈ N.



1.3. n-DIMENSIONAL FOURIER SERIES IN L2 9

Equivalently,

(1.2.7) c0 =
1

2
B0, ck =

1

2
(Bk − iAk) and c−k =

1

2
(Bk + iAk) for all k ∈ N.

In particular, (1.2.7) is equivalent to

ck =
1

2π

� π

−π
f(x)e−ikx dx for all k ∈ Z.

Remark 1.2.5. If f is real-valued, then

c−k =
1

2π

� π

−π
f(x)eikx dx =

1

2π

� π

−π
f(x)e−ikx dx = ck for all k ∈ Z.

Conversely, if c−k = ck for all k ∈ Z, then from (1.2.6) we have

f(x) =
∞∑

k=−∞

ckeikx =
∞∑

k=−∞

cke
−ikx =

∞∑
k=−∞

c−ke
ikx =

∞∑
k=−∞

cke
ikx = f(x),

that is, f is real-valued.

Example 1.2.6. Let f(x) = x in the interval (−π, π). Its full Fourier series has the
coe�cients

B0 =
1

π

� π

−π
x dx = 0,

Bk =
1

π

� π

−π
x cos(kx) dx =

(
x

kπ
sin(kx) +

1

k2π
cos(kx)

)∣∣∣∣x=π
x=−π

=
1

k2π
(cos(kπ)− cos(−kπ)) = 0

and

Ak =
1

π

� π

−π
x sin(kx) dx =

(
− x

kπ
cos(kx) +

1

k2π
sin(kx)

)∣∣∣∣x=π
x=−π

= −1

k
cos kπ − 1

k
cos(−kπ) = (−1)k+1 2

k
.

This gives us exactly the same series as in Example 1.2.4, except that it is supposed to be
valid in (−π, π). Since f is a odd function, therefore the even part of (1.2.5) should vanishes.

1.3. n-dimensional Fourier series in L2

The ideas for multi-variable case is also similar: If f : Rn → C is of 2π-periodic in each
variable, we want to represent it by the Fourier series

(1.3.1) f(x) =
∑
k∈Zn

cke
ik·x =

∑
k∈Zn

cke
ik1x1 · · · eik2x2 for all x = (x1, · · · , xn) ∈ Rn

in some suitable sense. We now consider the cube Q = [−π, π]n, and normalize the inner
product on L2(Q) by

(f, g) ≡ (f, g)L2(Q) :=
1

|Q|

�
Q

fg dx ≡
 
Q

fg dx for all f, g ∈ L2(Q).

with |Q| = (2π)n.
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Lemma 1.3.1. The countable set {eik·x}k∈Zn is an orthonormal subset of L2(Q).

Proof. For each k, ℓ ∈ Zn, using Fubini's theorem we see that

(eik·x, eiℓ·x) = (2π)−n
�
Q

ei(k−ℓ)·x dx

= (2π)−n
n∏
j=1

� π

−π
ei(kj−ℓj)xj dxj =

{
1 , k = ℓ,

0 , k ̸= ℓ,

which conclude the lemma. □

We will put much e�ort to prove the following proposition:

Proposition 1.3.2. {eik·x}k∈Zn a complete orthonormal basis of L2(Q).

Remark 1.3.3. Given any f ∈ L2(Q) be such that (f, eik·x) = 0 for all k ∈ Zn. If we
can prove f = 0 a.e. in Q, using Proposition 1.2.2 we conclude Proposition 1.3.2. Since
eik·x = eik1x1 · · · eiknxn , We see that

(1.3.2) 0 =

�
[−π,π]n

fe−ik·x dx =

� π

−π

( �
[−π,π]n−1

f(x)e−ik
′·x′ dx′

)
e−ik1x1 dx1 for all k ∈ Zn,

with k′ = (k2, · · · , kn) and x′ = (x2, · · · , xn). If we can show Proposition 1.3.2 for the case
when n = 1, using Proposition 1.2.2 we know that

(1.3.3) 0 =

�
[−π,π]n−1

f(x)e−ik
′·x′ dx′ for all k′ ∈ Zn−1.

Repeating the arguments that proving from (1.3.2) to (1.3.3), we conclude that f = 0 a.e. in
Q.

Proof of Proposition 1.3.2 using spectral theory. We decompose

f(x) = fodd(x) + feven(x)

for some odd function fodd and even function feven as in (1.2.4). Then Proposition 1.3.2
immediately follows by approximate fodd using the Fourier sine series, while approximate
feven using the Fourier cosine series, as stated in Section 1.2. □

We will exhibit the classical proof of Proposition 1.3.2, which involving Dirichlet kernel,
later. We are now ready to prove the main result of this section.

Theorem 1.3.4 (Fourier series of L2 functions). If f ∈ L2(Q), then one has the Fourier
series

(1.3.4) f(x) =
∑
k∈Zn

f̂(k)eik·x converges in L2(Q),

with the Fourier coe�cients

(1.3.5) f̂(k) = (f, eik·x) =

 
Q

f(x)e−ik·x dx.

One has the Parseval identity

∥f∥2L2(Q) =
∑
k∈Zn

|f̂(k)|2.
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Conversely, if c = (ck) ∈ ℓ2(Zn), then the series
∑

k∈Zn cke
ik·x converges in L2(Q) to some

f ∈ L2(Q) and it is necessarily ck = f̂(k).

Remark 1.3.5. Here we denote by ℓ2(Zn) the space of the complex sequences c = (ck)k∈Zn

with norm

∥c∥ℓ2(Zn) =

( ∑
k∈Zn

|ck|2
) 1

2

.

Theorem 1.3.4 says that there is a 1-1 corresponding between the elements in L2(Q) with the
elements in ℓ2(Zn). In other words, (1.3.5) can be viewed as the discrete Fourier transform,
and the inverse discrete Fourier transform is given by the formula (1.3.4).

Proof of Theorem 1.3.4. The �rst part of Theorem 1.3.4 is an immediate consequence
of Proposition 1.3.2. For the converse, if (ck) ∈ ℓ2(Zn), then we see that the partial sum

SN :=
∑
|k|≤N

cke
ik·x

is a Cauchy sequence in L2(Q). Since L2(Q) is complete, then we know that the series∑
k∈Zn cke

ik·x converges in L2(Q) to some f ∈ L2(Q). For each N ≥ k, we also see that

|ck − f̂(k)| = |(SN − f, eikx)| ≤ Cn∥eikx∥L2(Q)∥SN − f∥L2(Q) → 0 as N → ∞,

which conclude ck = f̂(k). □

We now give a direct proof to Proposition 1.3.2 (for the case when n = 1). We wish to
construction a special kernel as follows:

Definition 1.3.6. A sequence {QN(x)}N∈N of 2π-period continuous functions on the real
line is called an approximate identity if

(1) QN ≥ 0 for all N ∈ N,
(2)

� π
−πQN(x) dx ≡ (2π)−1

� π
−πQN(x) dx = 1 for all N ∈ N, and

(3) for each 0 < ϵ < π one has lim
N→∞

sup
ϵ≤|x|≤π

QN(x) = 0.

We now prove the existence of such function satis�es De�nition 1.3.6.

Lemma 1.3.7. The sequence

QN(x) := cN

(
1 + cos x

2

)N

with cN = 2π

( � π

−π

(
1 + cos x

2

)N

dx

)−1

is an approximate identity.

Proof. It is easy to see that QN ≥ 0 and (2π)−1
� π
−πQN(x) dx = 1 for all N ∈ N. We

estimate the constant cN as followings:

1 =
cN
2π

� π

−π

(
1 + cos x

2

)N

dx =
cN
π

� π

0

(
1 + cos x

2

)N

dx

≥ cN
π

� π

0

(
1 + cos x

2

)N

sinx dx

=
cN
π

� 1

−1

(
1 + t

2

)N

dt =
2cN
π

� 1

0

sN ds =
2cN

π(N + 1)
.
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Thus for each 0 < ϵ < π we have

0 ≤ sup
ϵ≤|x|≤π

QN(x) ≤ QN(ϵ) = cN

(
1 + cos ϵ

2

)N

≤ π(N + 1)

2

(
1 + cos ϵ

2

)N

→ 0 as N → ∞,

because 0 < 1+cos ϵ
2

< 1. □

Let f and g be two 2π-period functions. Then we formally de�ne the convolution f ∗ g
by

(1.3.6) (f ∗ g)(x) := 1

2π

� π

−π
f(y)g(x− y) dy ≡ 1

2π

� π

−π
g(y)f(x− y) dy,

which is also a 2π-periodic function (the second identity holds only for 2π-period functions).
The following lemma explains the naming of De�nition 1.3.6.

Lemma 1.3.8. Let QN be an approximate identity as in De�nition 1.3.6 and let f be a
2π-periodic function. If f is continuous, then

lim
N→∞

QN ∗ f = f converges in L∞(−π, π).

If f ∈ Lp(−π, π) for some 1 ≤ p <∞, then

lim
N→∞

QN ∗ f = f converges in Lp(−π, π).

Proof of Lemma 1.3.8. We �rst observe that

(QN ∗ f − f)(x) =
1

2π

� π

−π
QN(y)

(
f(x− y)− f(x)

)
dy.

Case 1: f is a continuous 2π-periodic function. Given any ϵ > 0, there exists δ(ϵ) > 0
such that

sup
|y|≤δ(ϵ)

∣∣f(x− y)− f(x)
∣∣ ≤ ϵ for all x ∈ R

and

(1.3.7) sup
δ(ϵ)≤|x|≤π

QN(x) ≤ ϵ for all su�ciently large N.

Then for all su�ciently large N we estimate

|(QN ∗ f − f)(x)| ≤ 1

2π

( �
|y|≤δ(ϵ)

+

�
δ(ϵ)≤|y|≤π

)
QN(y)

∣∣f(x− y)− f(x)
∣∣ dy

≤ ϵ

2π

( ≤2π︷ ︸︸ ︷�
|y|≤δ(ϵ)

QN(y) dy+

≤4π∥f∥L∞(R)︷ ︸︸ ︷�
δ(ϵ)≤|y|≤π

∣∣f(x− y)− f(x)
∣∣ dy)

≤ ϵ(1 + 2∥f∥L∞(R)),

which gives

lim sup
N→∞

|(QN ∗ f − f)(x)| ≤ ϵ(1 + 2∥f∥L∞(R)).

By arbitrariness of ϵ > 0, we conclude the �rst part of the lemma.
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Case 2: f ∈ Lp(−π, π) for some 1 ≤ p <∞. Using the Mikowski's inequality, we estimate

∥QN ∗ f − f∥Lp(−π,π) ≤
1

2π

(� π

−π

∣∣∣∣ � π

−π
QN(y)

(
f(x− y)− f(x)

)
dy

∣∣∣∣p dx) 1
p

≤ 1

2π

� π

−π

( � π

−π

∣∣QN(y)
(
f(x− y)− f(x)

)∣∣p dx) 1
p

dy

=
1

2π

� π

−π
QN(y)∥f(· − y)− f∥Lp(−π,π) dy.

Since f ∈ Lp(−π, π), by approximate it by C∞
c (−π, π) functions, given any ϵ > 0, there

exists δ(ϵ) > 0 such that

sup
|y|≤δ(ϵ)

∥f(· − y)− f∥Lp(−π,π) ≤ ϵ.

Again using (1.3.7), then for all su�ciently large N we estimate

∥QN ∗ f − f∥Lp(−π,π) ≤
1

2π

( �
|y|≤δ(ϵ)

+

�
δ(ϵ)≤|y|≤π

)
QN(y)∥f(· − y)− f∥Lp(−π,π) dy

≤ ϵ

2π

( ≤2π︷ ︸︸ ︷�
|y|≤δ(ϵ)

QN(y) dy+

≤4π∥f∥Lp(−π,π)︷ ︸︸ ︷�
δ(ϵ)≤|y|≤π

∥f(· − y)− f∥Lp(−π,π) dy

)
≤ ϵ(1 + 2∥f∥Lp(R)),

and we prove the second part of the lemma similar as in �rst part. □

We are now ready to give a direct proof to Proposition 1.3.2.

Proof of Proposition 1.3.2 using Definition 1.3.6. As mentioned in Re-
mark 1.3.3, it is su�ce to prove the case when n = 1. Let f ∈ L2(−π, π) be such
that

(1.3.8) (f, eikx) = 0 for all k ∈ Z.

Using Proposition 1.2.2, it is su�ce to show f ≡ 0 a.e. Using Lemma 1.3.7, in particular
from (1.3.8) we have QN ∗ f = 0 for all N ∈ N. Since QN ∗ f → f as N → ∞ in L2(−π, π),
we conclude our result. □

1.4. Pointwise convergence and Gibbs-Wilbraham phnomenon

Although the convergence of Fourier series in other sense is not the main topic of this
course, it may be of interest to mention a few classcial results. In order to simplify the
analysis, here we only consider the case when n = 1. We �rst prove the result for piecewise
C1 functions:

Theorem 1.4.1 (Theorem 5.4.4∞ of [Str08]). Let f be a 2π-periodic function which is
piecewise C1 (i.e. f and f ′ are piecewise continuous) in R. The Fourier coe�cients are given
by

f̂(k) = (f, eikx) =
1

2π

� π

−π
f(x)e−ikx dx =

 π

−π
f(x)e−ikx dx.
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Then the (1-dimensional) Fourier series
∑

k∈Z f̂(k)e
ikx of f converges to

1

2

(
f(x+) + f(x−)

)
pointwsely,

where f(x±) := limθ→0+ f(x± θ).

Proof. The partial sum of the Fourier series of a function f ∈ L1(−π, π) extended as a
2π-periodic function into R, are given by

(1.4.1) Smf(x) :=
m∑

k=−m

f̂(k)eikx =
1

2π

� π

−π
f(y)

=:Dm(x−y)︷ ︸︸ ︷( m∑
k=−m

eik(x−y)
)
dy = (Dm ∗ f)(x),

where the convolution is given in (1.3.6). The Dirichlet kernel Dm(z) can be represented by

Dm(z) =
m∑

k=−m

eikz = e−imz
2m∑
k=0

eikz = e−imz
ei(2m+1)z − 1

eiz − 1

=
ei(m+ 1

2
)z − e−i(m+ 1

2
)z

e
i
2
z − e−

i
2
z

=
sin((m+ 1

2
)z)

sin(1
2
z)

.

Since
� π
−π e

ikz dz = 0 for all k ̸= 0, then it is easy to verify that

 π

−π
Dm(z) dz = 1 for all m ∈ N.

Then we have

Smf(x)−
1

2

(
f(x+) + f(x−)

)
=

1

2π

� π

0

Dm(θ)
(
f(x+ θ)− f(x+)

)
dθ +

1

2π

� 0

−π
Dm(θ)

(
f(x+ θ)− f(x−)

)
dθ

=
1

2π

� π

0

g+(θ)hm(θ) dθ +
1

2π

� 0

−π
g−(θ)hm(θ) dθ(1.4.2)

with

g±(θ) =
f(x+ θ)− f(x±)

sin(1
2
θ)

and hm(θ) = sin

((
m+

1

2

)
θ

)
.

Using the mean value theorem, the fact limθ→0

1
2
θ

sin( 1
2
θ)

= 1 and the piecewise C1 assumption

on f , we see that

lim sup
θ→0+

|g+(θ)| = 2 lim sup
θ→0+

∣∣∣∣f(x+ θ)− f(x+)

θ

∣∣∣∣ <∞,

lim sup
θ→0−

|g−(θ)| = 2 lim sup
θ→0−

∣∣∣∣f(x+ θ)− f(x−)

θ

∣∣∣∣ <∞,
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then we see that g± is bounded in (0, π) and (−π, 0) respectively. Since {hm}m∈N form an
orthogonal set in the interval (0, π) and (−π, 0), then we have the Bessel's inequality

1

π

∞∑
m=1

∣∣∣∣ � π

0

g+(θ)hm(θ) dθ

∣∣∣∣2 = ∞∑
m=1

|
� π
0
g+(θ)hm(θ) dθ|2� π
0
|hm(θ)|2 dθ

≤
� π

0

|g+(θ)|2 dθ <∞,

1

π

∞∑
m=1

∣∣∣∣� 0

−π
g−(θ)hm(θ) dθ

∣∣∣∣2 = ∞∑
m=1

|
� 0

−π g−(θ)hm(θ) dθ|
2

� 0

−π |hm(θ)|2 dθ
≤
� 0

−π
|g−(θ)|2 dθ <∞.

This implies ∣∣∣∣Smf(x)− 1

2

(
f(x+) + f(x−)

)∣∣∣∣
≤ 1

2π

∣∣∣∣� π

0

g+(θ)hm(θ) dθ

∣∣∣∣+ 1

2π

∣∣∣∣� 0

−π
g−(θ)hm(θ) dθ

∣∣∣∣
→ 0 as m→ ∞,

which complete the proof of Theorem 1.4.1. □

Despite the partial sum Smf converges pointwisely to the piecewise C1 function f , the
partial sum Smf produces large peaks around the jump of f , which overshoot and undershoot
the function's actual values. This approximation error approaches a limit of about 9%. This
phenomenon is called the Gibbs-Wilbraham phenomenon, and we refer the details to the
survey paper [HH79]. We now state without proof the following theorem:

Theorem 1.4.2 (Gibbs-Wilbraham, Theorem F of [HH79]). Let f be the function given
in Theorem 1.4.1. Let D be the set of discontinuities of f . For each x ∈ D , let ℓx be the
vertical line segment with

length
2

π
Si (π)|f(x+)− f(x−)| centered at

1

2

(
f(x+)− f(x−)

)
.

Let G(g) be the graph of g. Then we have

lim
m→∞

G(Smf) = G(f) ∪
⋃
x∈D

ℓx (limit as a set).

Remark 1.4.3. Note that

2

π

� π

0

sin θ

θ
dθ =

2

π
Si (π) = 1 + 2

( about 9%
overshoot︷ ︸︸ ︷

0.0894 · · ·
)
.

Sometimes Si (π) is known as the Gibbs-Wilbraham constant. In general, there are many
jumps in signal, therefore this 9% overshoot actually causing signi�cant noise in computation.

Example 1.4.4 ([Str08]). The Fourier series∑
n≥1 odd

2

nπ
sinnπ

converges pointwisely to

f(x) =


1
2

for 0 < x < π,

0 when x = 0,

−1
2

for − π < x < 0.
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Using (1.4.1), we know that the partial sum is given by

(Smf)(x) =
1

4π

( � π

0

−
� 0

−π

)
sin(M(x− y))

sin(1
2
(x− y))

dy,

where M = m + 1
2
. We consider the change of variable θ = M(x − y) in the �rst integral,

while θ =M(y − x) in the second integral, we have

(Smf)

(
π

M

)
=

1

2π

( � π

π−Mπ

−
� −π

−π−Mπ

)
sin θ

2M sin( θ
2M

)
dθ

=
1

2π

( � π

−π
−
� −Mπ+π

−Mπ−π

)
sin θ

2M sin( θ
2M

)
dθ

=
1

2π

( � π

−π
−
� Mπ+π

Mπ−π

)
sin θ

2M sin( θ
2M

)
dθ,(1.4.3)

where we have changed the variable θ 7→ −θ in the last equality. When M > 2, we see that

π

4
<

(
1− 1

M

)
π

2
≤ θ

2M
≤

(
1 +

1

M

)
π

2
<

3π

4
for all θ ∈ (Mπ − π,Mπ + π),

which implies

sin

(
θ

2M

)
>

1√
2

for all θ ∈ (Mπ − π,Mπ + π).

Therefore, we see that

lim sup
M→∞

1

2π

� Mπ+π

Mπ−π

∣∣∣∣ sin θ

2M sin( θ
2M

)

∣∣∣∣ dθ
≤ lim sup

M→∞

1

2
√
2πM

� Mπ+π

Mπ−π
dθ = lim sup

M→∞

1√
2M

= 0.(1.4.4)

On the other hand, we see that

(1.4.5) lim
M→∞

2M sin
θ

2M
= θ uniformly in − π ≤ θ ≤ π.

Combining (1.4.3), (1.4.4) and (1.4.5), we know that

lim
m→∞

(Smf)

(
π

m+ 1
2

)
=

1

2π

� π

−π

sin θ

θ
dθ =

1

π

� π

0

sin θ

θ
dθ =

1

π
Si (π),

which veri�es Theorem 1.4.2.

1.5. Absolute convergence and uniform convergence

From Theorem 1.4.1, we know that if f has a jump, then the Fourier series of f never
converges to f uniformly due to the Gibbs-Wilbraham phenomenon (Theorem 1.4.2). The
following theorem shows that if f is su�ciently smooth, then the convergence can be uniform.

Theorem 1.5.1 (Theorem 5.4.2 of [Str08]). Let f ∈ C1(R) be a 2π-periodic function.
The Fourier coe�cients are given by

f̂(k) = (f, eikx) =
1

2π

� π

−π
f(x)e−ikx dx =

 π

−π
f(x)e−ikx dx.
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Then the (1-dimensional) Fourier series
∑

k∈Z f̂(k)e
ikx of f converges to f absolutely and

uniformly in R.

Exercise 1.5.2. Prove Theorem 1.5.1. (Hint: Compute the Fourier coe�cients of f ′.)

1.6. Pointwise convergence: Dini's criterion

We now want to prove a pointwise convergence result as in Mikko Salo's lecture note. We
begin our discussions from the following fundamental result due to Riemann and Lebesgue:

Lemma 1.6.1 (Riemann-Lebesgue). If f ∈ L1(−π, π), then f̂(k) → 0 as k → ±∞.

Proof. Since both f and e−ikx are periodic, we have

2πf̂(k) =

(1)︷ ︸︸ ︷� π

−π
f(x)e−ikx dx =

� π

−π
f

(
x− π

k

)
e−ik(x−

π
k
) dx = −

(2)︷ ︸︸ ︷� π

−π
f

(
x− π

k

)
e−ikx dx .

Then

2πf̂(k) =
1

2

( using (1)︷ ︸︸ ︷� π

−π
f(x)e−ikx dx−

using (2)︷ ︸︸ ︷� π

−π
f

(
x− π

k

)
e−ikx dx

)
=

1

2

� π

−π

[
f(x)− f

(
x− π

k

)]
e−ikx dx.

Since f ∈ L1(−π, π), given any ϵ > 0, we choose a continuous periodic function g with
∥f − g∥L1(−π,π) ≤ ϵ. Then we see that

|f̂(k)| ≤ |(f − g)∧(k)|+ |ĝ(k)| ≤ ϵ+ |ĝ(k)|.

By (uniform) continuity of g, we see that

lim
k→∞

2πĝ(k) =
1

2
lim
k→∞

� π

−π

[
g(x)− g

(
x− π

k

)]
e−ikx dx = 0,

therefore by arbitrariness of ϵ > 0, we conclude the lemma. □

Lemma 1.6.2 (Riemann localization principle). For each δ > 0 we have

lim
m→∞

�
δ<|y|<π

Dm(θ)
(
f(x+ θ)− f(x)

)
dθ = 0.

In particular, if f ∈ L1(−π, π) satis�es f = 0 near x (i.e. f = 0 a.e. in (x − δ, x + δ) for
some δ > 0), then limm→∞ Smf(x) = limm→∞

1
2π

�
δ<|y|<πDm(θ)

(
f(x+ θ)− f(x)

)
dθ = 0.

Proof. Using (1.4.2) we have�
δ<|y|<π

Dm(θ)
(
f(x+ θ)− f(x)

)
dθ =

� π

−π
g(y)hm(y) dy

with

g(θ) =
f(x− y)

sin(1
2
y)

χ{δ<|y|<π} and hm(θ) = sin

((
m+

1

2

)
θ

)
.

http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf
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Since g ∈ L1(−π, π) and sin t = eit−e−it

2i
, we have

1

2π

�
δ<|y|<π

Dm(θ)
(
f(x+ θ)− f(x)

)
dθ = −

(
e−i

y
2 g

2i

)∧

(m) +

(
ei

y
2 g

2i

)∧

(m).

Hence the Riemann-Lebesgue lemma (Lemma 1.6.1) concludes Lemma 1.6.2. □

By assuming something slightly stronger than continuity, pointwise convergence holds:

Theorem 1.6.3 (Dini's criterion). If f ∈ L1(−π, π) and let x be a point such that

(1.6.1)

�
|y|<δ

∣∣∣∣f(x+ y)− f(x)

y

∣∣∣∣ dy <∞ for some δ > 0,

then limm→∞ Smf(x) = f(x).

Remark 1.6.4. If f is α-Hölder continuous near x for some α > 0, i.e.

|f(x)− f(y)| ≤ C|x− y|α for all y near x,

then f satis�es (1.6.1). It is interesting to compare Theorem 1.6.3 (lower regularity assump-
tions, but need continuity) with Theorem 1.4.1 (allowing �nitely many jumps).

Proof of Theorem 1.6.3. Similar to (1.4.2), we have

Smf(x)− f(x) =
1

2π

� π

−π
Dm(θ)

(
f(x+ θ)− f(x)

)
dθ

=
1

2π

( �
|y|<δ

+

�
δ<|y|<π

)
Dm(θ)

(
f(x+ θ)− f(x)

)
dθ.

We see that ∣∣∣∣�
|y|<δ

Dm(θ)
(
f(x+ θ)− f(x)

)
dθ

∣∣∣∣ ≤ C

�
|y|<δ

∣∣∣∣f(x− y)− f(x)

y

∣∣∣∣ dy.
From (1.6.1), given any ϵ > 0, we can choose δ = δ(ϵ) > 0 such that∣∣∣∣ �

|y|<δ
Dm(θ)

(
f(x+ θ)− f(x)

)
dθ

∣∣∣∣ ≤ C

�
|y|<δ

∣∣∣∣f(x− y)− f(x)

y

∣∣∣∣ dy < ϵ.

Using Lemma 1.6.2, we have

lim sup
m→∞

(
Smf(x)− f(x)

)
≤ ϵ.

Then our result follows from the arbitrariness of ϵ > 0. □

1.7. Cesàro summability of Fourier series in Lp

We begin our discussions from the following simple observation:

Lemma 1.7.1. Let {cm}m=0,1,2,··· be a sequence of complex numbers. Suppose that it con-
verges to a limit c ∈ C, then so its Cesàro sum:

lim
N→∞

1

N + 1

N∑
m=0

cn = ℓ.
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Proof. Given any ϵ > 0, there exists a su�ciently large N0 ∈ N such that

|am − ℓ| ≤ ϵ for all m > N0.

For each N > N0, we write∣∣∣∣ 1

N + 1

N∑
m=0

cm − ℓ

∣∣∣∣ ≤ 1

N

N∑
m=0

|am − ℓ| = 1

N

N0∑
m=0

|am − ℓ|+ 1

N

N∑
m=N0+1

|am − ℓ|

≤ 1

N

(
(N0 + 1) sup

0≤m≤N0

|am − ℓ|
)
+

≤ 1︷ ︸︸ ︷
N −N0

N

≤ ϵ︷ ︸︸ ︷
sup

N0<m≤N
|am − ℓ|

≤ 1

N

(
(N0 + 1) sup

0≤m≤N0

|am − ℓ|
)
+ ϵ,

which implies

lim sup
N→∞

∣∣∣∣ 1

N + 1

N∑
m=0

cm − ℓ

∣∣∣∣ ≤ ϵ.

Our lemma follows from the arbitrariness of ϵ > 0. □

Example 1.7.2 (Grandi's series). Let am = (−1)m for m ≥ 0. Hence {am}∞m=0 is the
sequence 1,−1, 1,−1, · · · . Clearly the partial sum Sm =

∑m
k=0 ak does not converges, and in

particular

{Sm}∞m=0 = {1, 0, 1, 0, · · · }.

We see that the Cesàro sums are given by

σN =
1

N + 1

N∑
m=0

Sm =

{
M

2M−1
if N = 2M − 1 is odd,

1
2

if N = 2M is even,

which implies

lim
N→∞

σN =
1

2
.

The above observation suggests that, instead of the partial sums Smf , we consider the
Cesàro sums

σNf(x) =
1

N + 1

N∑
m=0

Smf(x).

This can be written in convolution form as

σNf(x) =
1

N + 1

N∑
m=0

(Dm ∗ f)(x) = (FN ∗ f)(x),
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where FN is the Fejér kernel :

FN(x) =
1

N + 1

N∑
m=0

ei(m+ 1
2
)x − e−i(m+ 1

2
)x

ei
1
2
x − e−i

1
2
x

=
1

N + 1

ei
1
2
x( e

i(N+1)x−1
eix−1

)− e−i
1
2
x( e

−i(N+1)x−1
e−ix−1

)

ei
1
2
x − e−i

1
2
x

=
1

N + 1

ei(N+1)x − 1 + e−i(N+1)x − 1

(ei
1
2
x − e−i

1
2
x)2

=
1

N + 1

sin2(N+1
2
x)

sin2(1
2
x)

.

Exercise 1.7.3. Verify that the Fejér kernel is an approximate identity as in De�ni-
tion 1.3.6.

Our previous sections concerning how the partial sum Smf ≡ Dm ∗ f converges to f in
di�erent senses. Since the Dirichlet kernel Dm takes negative values, it is not an approximate
identity (De�nition 1.3.6). However, using the summation method, we obtain an approximate
kernel. In other words, the Cesàro sums �regularize� the kernel1. Therefore using Lemma 1.3.8
we conclude the following theorem.

Theorem 1.7.4 (Cesàro summability of Fourier series). Let f be a 2π-periodic function
in R. If f ∈ Lp(−π, π) for some 1 ≤ p <∞, then

lim
N→∞

∥σNf − f∥Lp(−π,π) = 0.

If f is continuous, then
lim
N→∞

∥σNf − f∥L∞(−π,π) = 0.

1A possible topic for �nal presentation: In view of Gibbs-Wilbraham phenomena (Theorem 1.4.2), does
Cesàro sum reduces some noise?



CHAPTER 2

Fourier transform

In previous chapter, we consider Fourier series for periodic functions. The main goal of
this chapter is to study an analogue for non-periodic functions.

2.1. Motivations

We �rst perform some formal computations to bring out some motivations.

Exercise 2.1.1. Let T > 0 and let f : Rn → C be a function with period 2T on each
variable. Show that the Fourier series of f is given by

(2.1.1) f(x) =
∑
k∈Zn

f̂(k)ei
π
T
k·x with f̂(k) =

 
[−T,T ]n

f(y)e−i
π
T
k·y dy,

where
�
[−T,T ]n is the average integral given by

�
[−T,T ]n ≡ 1

|[−T,T ]n|

�
[−T,T ]n ≡ 1

(2T )n

�
[−T,T ]n .

If we denote ξ = k π
T
∈ π

T
Z, then (2.1.1) is just simply

f(x) =
1

(2π)n

∑
k∈Zn

( �
[−T,T ]n

f(y)e−iξ·y
)
eiξ·x

(
π

T

)n

.

We observe that ( π
T
)n is the volume of each square in the mesh π

T
Z. In view of Riemann

integral, formally taking the limit T → ∞ we see that

(2.1.2) f(x) =
1

(2π)n

�
Rn

( �
Rn

f(y)e−iξ·y
)
eiξ·x dξ.

Definition 2.1.2. The Fourier transform of f ∈ L1(Rn) is de�ned by (Ff)(ξ) ≡
f̂(ξ) :=

�
Rn

f(y)e−iξ·y dy.

Remark 2.1.3. It is easy to see that ∥f̂∥L∞(Rn) ≤ ∥f∥L1(Rn) and f̂ ∈ C0(Rn).

From (2.1.2) we formally have the Fourier inversion formula

(2.1.3) f(x) =
1

(2π)n

�
Rn

f̂(ξ)eiξ·x dξ,

which is indeed true in some sense. In this course, we will focus on Fourier series in Euclidean
space Rn. Here we remark that the Fourier series we consider in previous chapter is indeed
equivalent to the Fourier transform on torus Tn.

Indeed, we often approximate Fourier transform by Fourier series in practical engineering
application (e.g. signal processing).

Exercise 2.1.4 (Riemann-Lebesgue). Prove that if f ∈ L1(Rn), then lim|ξ|→∞ f̂(ξ) = 0.
[Hint: C∞

c (Rn) is dense in L1(Rn), and consider the Laplacian.]1

1See Lemma 1.6.1 for corresponding lemma for Fourier series

21
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2.2. Schwartz space S (Rn)

Using Fubini's theorem, it is easy to see that

(2.2.1)

�
Rn

f̂(ξ)g(ξ) dξ =

�
Rn

f(x)ĝ(x) dx for all f, g ∈ L1(Rn).

Identity (2.2.1) might suggest de�ning the Fourier transform f̂ of a distribution f ∈ D ′(Rn) ≡
(C∞

c (Rn))′. However, there is a series problem to implement this idea, since

F (C∞
c (Rn)) ̸⊂ C∞

c (Rn),

see Corollary 2.3.7. To overcome this di�culty, we consider the functional space S (Rn),
which is the set of those smooth functions which, together with their derivatives, decrease
more rapidly than the inverse of any polynomial. Precisely see the following de�nition:

Definition 2.2.1. The Schwartz class of rapidly decreasing functions is de�ned as

(2.2.2) S (Rn) :=

{
φ ∈ C∞(Rn)

[φ]α,β := sup
x∈Rn

|xβ∂αφ(x)| <∞

for all multi-indices α, β

}
.

The elements of S (Rn) are called the Schwartz function.

Remark 2.2.2. For each m ∈ N, we see that there exists C ≥ 1 such that

C−1|x|m ≤
∑
|γ|=m

|xγ| ≤ C|x|m for all x ∈ Rn,

since the restriction of the function g(x) :=
∑

|γ|=m |xγ| on Sn−1 attains a nonzero minimum.

Therefore each smooth function φ belongs to S (Rn) if and only if

(2.2.3) sup
x∈Rn

∣∣⟨x⟩m∂αφ(x)∣∣ <∞ with ⟨x⟩ = (1 + |x|2)
1
2

for all m ∈ Z≥0 and for all multi-index α with |α| ≤ m. In other words,

(2.2.4) S (Rn) =

 φ ∈ C∞(Rn)
∥φ∥m :=

∑
|α|≤m

sup
x∈Rn

∣∣⟨x⟩m∂αφ(x)∣∣ <∞

for all m ∈ N

 .

Here we remark that [·]α,β is a semi-norm and ∥ · ∥m is a norm.

Exercise 2.2.3. Prove that for each �xed number a ∈ (0,∞) the function f(x) = e−a|x|
2

(x ∈ Rn) belongs to S (Rn). Therefore C∞
c (Rn) ⊊ S (Rn) ⊊ C∞(Rn). However note that

e−|x| is not in Schwartz space since it is not C∞ near the origin.

We already de�ne Schwartz class S (Rn) as a set. We now de�ne a topology for it (i.e.
de�ne open sets in S (Rn)), in order to make the notion of �continuous� make sense. Using
the norms ∥ · ∥m, we now de�ne

(2.2.5) dS (Rn)(φ, ψ) :=
∞∑
m=0

2−m
∥φ− ψ∥m

1 + ∥φ− ψ∥m
for all φ, ψ ∈ S (Rn).

Exercise 2.2.4. Verify that (2.2.5) is a metric. [Hint: If ∥ ·∥ is a norm on a vector space,

show that ∥u+v∥
1+∥u+v∥ ≤ ∥u∥

1+∥u∥ +
∥v∥

1+∥v∥ .]
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In particular, {φj} ⊂ S (Rn) converges to zero in S (Rn) if and only if

∥φj∥m → 0 for all m ∈ Z≥0,

or equivalently [φj]α,β → 0 for all multi-indices α, β. Consequently, we have the following
observation:

Lemma 2.2.5. The linear operator T : S (Rn) → S (Rn) is continuous if and only if

(2.2.6) ∥Tφj∥m → 0 provided ∥φj∥m → 0 for all m ∈ Z≥0,

or equivalently

[Tφj]α,β → 0 provided [φj]α,β → 0 for all multi-indices α, β.

Proof. If T : S (Rn) → S (Rn) is continuous, then it is clearly that (2.2.6) holds.
Conversely, we now assume that (2.2.6). Since

∑∞
m=0 2

−m <∞, given any ϵ > 0, there exists
N(ϵ) > 0 such that

∑∞
m=N(ϵ)+1 2

−m < ϵ, which implies

dS (Rn)(φ, ψ)−
N(ϵ)∑
m=0

2−m
∥φ− ψ∥m

1 + ∥φ− ψ∥m
=

∞∑
m=N(ϵ)+1

2−m
∥φ− ψ∥m

1 + ∥φ− ψ∥m
≤

∞∑
m=N(ϵ)+1

2−m < ϵ.

Hence from (2.2.6) we have

lim sup
d(φ,ψ)→0

dS (Rn)(Tφ, Tψ) ≤ ϵ+

N(ϵ)∑
m=0

2−m lim sup
∥φ−ψ∥m→0

∥T (φ− ψ)∥m
1 + ∥T (φ− ψ)∥m

= ϵ.

By arbitrariness of ϵ > 0, we conclude our lemma. □

Theorem 2.2.6. Let dS (Rn) be the metric given by (2.2.5). Then (S (Rn), dS (Rn)) is a
Fréchet space space, that is, it is a complete metric space.

Remark 2.2.7. Note that S (Rn) is a (Grothedieck) nuclear space. Since each in�nitely
dimensional Banach space spaces are not nuclear, then we cannot de�ne a norm on S (Rn).

Proof of Theorem 2.2.6. Let {φj} be a Cauchy sequence in S (Rn). Given any ϵ > 0
and multi-indices α, β, using the above observation, there exists M > 0 such that

[φj − φk]α,β ≡ ∥xα∂βφj − xα∂βφk∥L∞(Rn) < ϵ for all j, k ≥M.

Hence the sequence {xα∂βφj} is a Cauchy in the complete space
(
C0(Rn), ∥ · ∥L∞(Rn)

)
, then

there exists a unique gα,β ∈ C0(Rn) such that

lim
j→∞

∥xα∂βφj − gα,β∥L∞(Rn) = 0.

Let g := g0,0, using the fact that C
m(Rn) is complete, then we see that ∂βg = g0,β inductively.

By the uniqueness of the limit, we see that xα∂βg = gα,β and g ∈ S (Rn), and consequently
φj → g in S (Rn). □

Definition 2.2.8. The space of slowly increasing functions in Rn is de�ned as

OM(Rn) :=

{
f ∈ C∞(Rn)

for each multi-index α, there exists
M ∈ Z≥0 such that sup

x∈Rn

∣∣⟨x⟩−M∂αf(x)∣∣ <∞

}
Exercise 2.2.9. Prove that for each s ∈ R the function f(x) := ⟨x⟩s (x ∈ Rn) belongs

to OM(Rn).
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Exercise 2.2.10. Prove that the function f(x) = ei|x|
2
(x ∈ Rn) belongs to OM(Rn).

Some other basic properties of the Schwartz class are collected in the next proposition.

Proposition 2.2.11. If f ∈ OM(Rn) and v ∈ S (Rn), then the following operations are
continuous maps from S (Rn) into S (Rn):

(1) Re�ection. φ 7→ φ̃ with φ̃(x) = φ(−x),
(2) Conjugation. φ 7→ φ,
(3) Translation. φ 7→ τx0φ with τx0φ(x) = φ(x− x0),
(4) Derivative. φ 7→ ∂αφ, in other words, S (Rn) is stable under di�erentiation (using

similar arguments, we know that OM(Rn) is also stable under di�erentiation),
(5) Multiplication. φ 7→ fφ.

Proof. Part (1) and (2) are clear. For (3), by observing that

xα = (x− x0 + x0)
α =

∑
γ≤α

cγ(x− x0)
γ,

we see that

[τx0φ]α,β = sup
x∈Rn

|xα∂βφ(x− x0)|

≤ C
∑
γ≤α

sup
x∈Rn

|(x− x0)
γ∂βφ(x− x0)| = C

∑
γ≤α

[φ]γ,β.

Therefore (3) follows from Lemma 2.2.5. Part (4) is an immediate consequence of the follow-
ing identity:

[∂βφ]α′,β′ = [φ]α′,β′+β.

Since f ∈ OM, given any β we may choose C and N such that
∣∣⟨x⟩−N∂γf(x)∣∣ ≤ C whenever

γ ≤ β. Now we have

[fφ]α,β = ∥xα∂β(fφ)∥L∞(Rn) =

∥∥∥∥xα∑
γ≤β

cγ(∂
β−γf)(∂γφ)

∥∥∥∥
L∞(Rn)

≤ C
∑
γ≤β

∥∥xα⟨x⟩N ≤C︷ ︸︸ ︷(
⟨x⟩−N∂β−γf

)
(∂γφ)

∥∥
L∞(Rn)

≤ C
∑
γ≤β

∥∥xα⟨x⟩N∂γφ∥∥
L∞(Rn)

.

Therefore (5) follows from Lemma 2.2.5. □

Lemma 2.2.12. For each 1 ≤ p <∞, the space S (Rn) is continuous embedded in Lp(Rn),
i.e. S (Rn) ⊂ Lp(Rn) as a set and the inclusion mapping ι : S (Rn) → Lp(Rn) is continuous.

Proof. Let φ ∈ S (Rn). For p = 1, the claim follows from

∥φ∥L1(Rn) =

�
Rn

⟨x⟩−n−1
(
⟨x⟩n+1|φ(x)|

)
dx

≤ ∥⟨x⟩n+1φ∥L∞(Rn)

<∞︷ ︸︸ ︷�
Rn

⟨x⟩−n−1 dx

≡ C∥⟨x⟩n+1φ∥L∞(Rn).
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For p > 1, the inequality

∥φ∥Lp(Rn) =

( �
Rn

|φ(x)||φ(x)|p−1 dx

) 1
p

≤ ∥φ∥
1
p

L1(Rn)∥φ∥
1− 1

p

L∞(Rn)

implies the result. □

2.3. Fourier transform on Schwartz space

In view of Lemma 2.2.12, the Fourier transform is well-de�ned on S (Rn) by restriction.

Exercise 2.3.1. Let ϕn(x) = e−
1
2
|x|2 , which is in S (Rn) by Exercise 2.2.3. Prove that

ϕ̂n = (2π)
n
2 ϕn and ϕn(0) = (2π)−n

�
Rn ϕ̂n(x) dx.

We �rst show that f̂ is smooth whenever f ∈ S (Rn):

Lemma 2.3.2. For any f ∈ S (Rn), the Fourier transform f̂ is in C∞(Rn) and ∂αf̂ ∈
L∞(Rn) for all multi-index α.

Proof. From Lemma 2.2.12 and the de�nition of the Fourier transform, we know that
f̂ ∈ L∞(Rn).

Observe that

f̂(ξ + hek)− f̂(ξ)

h
=

�
Rn

e−ix·ξf(x)
e−ihxk − 1

h
dx

=

�
Rn

e−ix·ξf(x)

(
1

h

� xk

0

d

dt
(e−iht) dt

)
dx

= −i
�
Rn

e−ix·ξf(x)

( � xk

0

e−iht dt

)
dx.

Since |
� xk
0
e−iht dt| ≤ |xk|, the Lebesgue dominated convergence theorem implies

∂ξk f̂(ξ) = lim
h→0

f̂(ξ + hek)− f̂(ξ)

h

= −i
�
Rn

e−ix·ξf(x)

(
lim
h→0

� xk

0

e−iht dt

)
dx

=

�
Rn

e−ix·ξ
(
− ixkf(x)

)
dx = F (−ixkf(x)).

Since −ixkf(x) is also in S (Rn), the using the observation in the �rst line of the proof we see

that ∂ξk f̂(ξ) is in L
∞(Rn). Inductively, by observing that xαf(x) is in S (Rn), we conclude

that ∂αξ f̂(ξ) is in L
∞(Rn). □

Proposition 2.3.3 (Basic properties of Fourier transform). Let f ∈ S (Rn), x0, ξ0 ∈ Rn,
c > 0 and multi-indices α, β. Then the following identities hold:

(1) Translation. (τx0f)
∧(ξ) = e−ix0·ξf̂(ξ) with τx0f(x) = f(x− x0),

(2) Modulation. (eix·ξ0f)∧(ξ) = τξ0 f̂(ξ),

(3) Scaling. (fc)
∧(ξ) = c−nf̂(ξ/c) with fc(x) = f(cx),

(4) Derivative. (∂αx f)
∧(ξ) = (iξ)αf̂(ξ),

(5) Polynomial. ((−ix)βf)∧(ξ) = ∂βξ f̂(ξ).
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Remark 2.3.4. In some context of pseudo-di�erential operator, some authors denote
Dxk = 1

i
∂xk . In this case, we write (Dα

xf)
∧(ξ) = ξαf̂(ξ) and ((−x)βf)∧(ξ) = Dβ

ξ f̂(ξ).

Exercise 2.3.5. Proof Proposition 2.3.3.

We are now able to prove (2.1.2) in a rigorous sense as follows:

Theorem 2.3.6. The mapping F : S (Rn) → S (Rn) is an algebraic and topological
isomorphism (i.e. it is bijective, continuous and its inverse is also continuous). In addition,
its inverse is the operator F−1 : S (Rn) → S (Rn) is given by the formula

(2.3.1) (F−1g)(x) = (2π)−n
�
Rn

eix·ξg(ξ) dξ for all g ∈ S (Rn) and x ∈ Rn,

that is, (F−1g)(ζ) = (2π)−n(Fg)(−ζ).

Proof. Let f ∈ S (Rn). From Lemma 2.3.2, we already know that f̂ ∈ C∞(Rn). Given
any multi-indices α and β, we see that

[f̂ ]α,β = sup
ξ∈Rn

|ξα∂βξ f̂(ξ)| = sup
ξ∈Rn

|(iξ)α∂βξ f̂(ξ)|

= sup
ξ∈Rn

∣∣[∂αx ((−ix)βf)]∧(ξ)∣∣
≤ ∥∂αx

(
(−ix)βf

)
∥L1(Rn).

Using Leibniz rule (a.k.a. product rule), we see that ∂αx
(
(−ix)βf

)
=

∑m
k=1 ckx

αk∂βkx f(x) for
some constants ck and multi-indices αk, βk, so

[f̂ ]α,β ≤ C
m∑
k=1

∥xαk∂βkx f∥L1(Rn) ≤ C
m∑
k=1

∥xαk+n+1∂βkx f∥L∞(Rn).

By arbitrariness of α and β, and using Lemma 2.2.5, we conclude that F : S (Rn) → S (Rn)
is continuous.

To prove Theorem 2.3.6, it is remain to show (2.3.1). Fixing any φ ∈ S (Rn) and c > 0.
Choosing g(x) = φ(x/c) in (2.2.1) gives�

Rn

f̂(x)φ(x/c) dx =

�
Rn

f(y)cnφ̂(cy) dy =

�
Rn

f(y/c)φ̂(y) dy.

Taking the limit c → ∞ (Lebesgue dominated convergence theorem) in the equality above,
we have

φ(0)

�
Rn

f̂(x) dx = f(0)

�
Rn

φ̂(y) dy.

We now choose φ to be the Gaussian ϕn in Exercise 2.3.1, then we obtain that

f(0) = (2π)−n
�
Rn

f̂(x) dx,

which proves (2.3.1) for x = 0. Therefore, from Proposition 2.3.3 we know that

(2.3.2) f(x) = (τxf)(0) = (2π)−n
�
Rn

(τxf)
∧(x) dx = (2π)−n

�
Rn

eix·ξf̂(ξ) dξ,

which implies the theorem2. □
2The surjectivity can be seen by rephrase (2.3.2) as (F 2f)(−x) = (2π)nf(x) for all x ∈ Rn.
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Corollary 2.3.7. If φ ∈ C∞
c (Rn) and φ̂ ∈ C∞

c (Rn), then φ ≡ 0.

Proof. Suppose that φ ∈ C∞
c (Rn) with φ̂ ∈ C∞

c (Rn), and let x∗ = (x∗1, · · · , x∗n) ∈ Rn.
De�ne Φ : C → C by setting

Φ(z) :=

�
Rn

e−i(zx1+
∑n

j=2 x
∗
jxj)φ(x1, · · · , xn) dx1 · · · dxn for z ∈ C.

Then Φ is analytic in C and Φ(t) = φ̂(t, x∗2, · · · , x∗n) for every t ∈ R. Since φ̂ has compact
support, then Φ = 0 in R \ [−R,R] if R > 0 su�ciently large. Using the unique continuation
property of analytic function, we conclude that Φ ≡ 0 in C, which gives

φ̂(x∗) = Φ(x∗1) = 0.

By arbitrariness of x∗ ∈ Rn, and using the injectivity of the Fourier transform on C∞
c (Rn) ⊂

S (Rn), we conclude our lemma. □

We �nally end this subsection by the following proposition.

Proposition 2.3.8. For each f, g ∈ S (Rn), one has

(1) Symmetry. F 2f = (2π)nf̃ with f̃(x) = f(−x). Consequently, F 4f = (2π)2nf .

(2) Parseval's identity.

�
Rn

f̂(x)g(x) dx =

�
Rn

f(x)ĝ(x) dx.

(3) Parseval's identity.

�
Rn

f(x)g(x) dx = (2π)−n
�
Rn

f̂(ξ)ĝ(ξ) dξ. Consequently,�
Rn

|f(x)|2 dx = (2π)−n
�
Rn

|f̂(ξ)|2 dξ.

Exercise 2.3.9. Prove Proposition 2.3.8.

2.4. The space of tempered distributions S ′(Rn)

We now want to de�ne the corresponding class of distributions, namely the tempered
distributional Fourier transform.

Definition 2.4.1. Let S ′(Rn) be the set of continuous (w.r.t. the metric (2.2.5)) linear
functional on S (Rn), i.e. dual space of S (Rn). Precisely,

S ′(Rn) :=

{
T : S (Rn) → C T linear and T (φj) → 0

whenever φj → 0 in S (Rn)

}
.

The elements of S ′(Rn) are called tempered distributions.

We �rst show that any tempered distribution has �nite order in the following lemma:

Lemma 2.4.2. For any T ∈ S ′(Rn), there exist C > 0 and N ∈ N such that

|T (φ)| ≤ C
∑
|β|≤N

∥⟨x⟩N∂βφ∥L∞(Rn) for all φ ∈ S (Rn).

Proof. Suppose the contrary, that for any N > 0 there is a φN ∈ S (Rn) such that

(2.4.1) |T (φN)| ≥ N
∑
|β|≤N

∥⟨x⟩N∂βφN∥L∞(Rn).
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If we de�ne

ψN(x) :=
1

N

( ∑
|β|≤N

∥⟨x⟩N∂βφN∥L∞(Rn)

)−1

φN(x) for all x ∈ Rn,

from (2.4.1) it is easy to see that

(2.4.2) |T (ψN)| ≥ 1 for all N ∈ N.

On the other hand, for each �xed multi-index β0 we have

∥⟨x⟩N∂β0ψN∥L∞(Rn) =
1

N

( ∑
|β|≤N

∥⟨x⟩N∂βφN∥L∞(Rn)

)−1

∥⟨x⟩N∂β0φN∥L∞(Rn) ≤
1

N

for all su�ciently large N . By arbitrariness of β0, from Lemma 2.2.5 we know that ψN → 0
in S (Rn). Since T ∈ S ′(Rn), then

lim
N→∞

T (ψN) = 0,

which contradicts with (2.4.2). □

Example 2.4.3. If f : Rn → C any measurable polynomially bounded function f , in the
sense that |f(x)| ≤ C⟨x⟩N for a.e. x ∈ Rn, de�ne

Tf : S (Rn) → C, Tf (φ) =

�
Rn

fφ dx.

Since for any φ ∈ S (Rn) we have

|Tf (φ)| =
∣∣∣∣ �

Rn

fφ dx

∣∣∣∣ ≤ C

�
Rn

⟨x⟩N |φ(x)| dx ≤ C∥⟨x⟩N+n+1φ∥L∞(Rn).

Using Lemma 2.2.5, we know that T (φj) → 0 whenever φj → 0 in S (Rn). Moreover, it is
possible to identify the distribution Tf with the function f , since the condition Tf1 = Tf2
implies that �

Rn

(f1 − f2)φdx = 0 for all φ ∈ S (Rn),

which implies that f1 = f2 a.e., hence it is legitimate to denote f ∈ S ′(Rn). Therefore, we
can identify OM(Rn) as a subspace of S ′(Rn).

Exercise 2.4.4. Prove that for each a ∈ (−n,∞) the function |x|a is a tempered distri-
bution in Rn. Therefore, we know that OM(Rn) ⊊ S ′(Rn).

Example 2.4.5 (Measures as distributions). Let µ be either a complex Borel measure or
a positive Borel measure3 on Rn. We say that the measure µ is polynomially bounded if for
some N the total variation |µ| satis�es�

Rn

⟨x⟩−Nd|µ|(x) <∞.

3For complex measures, the measure can take on complex values, in�nite values are not allowed. In
contrast, in�nite values are allowed for positive measures. In particular, a �nite positive measure is a special
case of a complex measures.
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Any polynomial bounded measure µ and for any φ ∈ S (Rn), we see that∣∣∣∣�
Rn

φ(x) dµ(x)

∣∣∣∣ ≤ �
Rn

|φ(x)| d|µ|(x) ≤ ∥⟨x⟩Nφ(x)∥L∞(Rn)

�
Rn

⟨x⟩−N d|µ|(x),

which shows µ can be identify as an element Tµ in S ′(Rn) given by

Tµ(φ) :=

�
Rn

φ(x) dµ(x),

therefore it is legitimate to denote µ ∈ S ′(Rn).

Example 2.4.6 (Lp functions as distributions). For each 1 ≤ p ≤ ∞, we have Lp(Rn)
can be identify as a subspace of S ′(Rn) by identifying f with the element

Tf (φ) :=

�
Rn

f(x)φ(x) dx.

In particular, we see that

|Tf (φ)| ≤ ∥f∥Lp(Rn)∥φ∥Lp′ (Rn) ≤ C∥f∥Lp(Rn)∥φ∥S (Rn),

where we used Hölder's inequality and Lemma 2.2.12.

Definition 2.4.7. Let {Tj}∞j=1 ⊂ S ′(Rn) and T ∈ S ′(Rn). We say that Tj → T in
S ′(Rn) if

Tj(φ) → T (φ) for any φ ∈ S (Rn).

Lemma 2.4.8 (Convergence in S ′(Rn)). The followings are true:

(1) If Tj → T in S ′(Rn) and Tj → S in S ′(Rn), then T ≡ S.
(2) If {φj} is a sequence in S (Rn) (resp. Lp(Rn) for some 1 ≤ p ≤ ∞) with φj → φ

in S (Rn) (resp. in Lp(Rn)), then φj → φ in S ′(Rn).

Exercise 2.4.9. Prove Lemma 2.4.8.

The operations on tempered distribution can be induced from Proposition 2.2.11:

Proposition 2.4.10. Let f ∈ OM(Rn). The following operations map S ′(Rn) into
S ′(Rn), and they extend the corresponding operations on S (Rn):

(1) Re�ection. T̃ (φ) = T (φ̃) with φ̃(x) = φ(−x),
(2) Conjugation. T (φ) = T (φ),
(3) Translation. (τx0T )(φ) = T (τ−x0φ) with τ−x0φ(x) = φ(x+ x0),
(4) Distributional derivative. (∂αT )(φ) = (−1)|α|T (∂αφ),
(5) Multiplication. (fT )(φ) = T (fφ).

Remark 2.4.11 (Distributional derivatie v.s. weak derivative). Perhaps the most strik-
ing point is that any tempered distribution has distributional derivatives of any order,
and these derivatives are still tempered distributions. We consider the Heaviside function
H ∈ L∞(R) ⊂ S ′(R) (see Example 2.4.6) given in (1.1.6). According to Proposition 2.4.10,
the distributional derivative of H is given by

H ′(φ) = −H(φ′) = −
� ∞

−∞
H(x)φ′(x) dx = −

� ∞

0

φ′(x) dx = φ(0) for all φ ∈ S (R),

therefore, we have H ′ = δ0. It is worth-mentioning that the weak derivative (De�nition 1.1.1)
of H does not exist (see Example 1.1.6). Each weak derivative also a distributional derivative,
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but not the converse. Without any ambiguity, here and after, we denote ∂α the distributional
derivatives.

2.5. Fourier transform on S ′(Rn)

Parseval's identity in Proposition 2.3.8 shows that the following de�nition extends the
Fourier transform:

Definition 2.5.1. The Fourier transform of any tempered distribution T ∈ S ′(Rn) is

the tempered distribution T̂ = FT de�ned by

T̂ (φ) = T (φ̂).

Similarly, the inverse Fourier transform of T ∈ S ′(Rn) is the distribution Ť = F−1T for
which Ť (φ) = T (φ̌).

Example 2.5.2. The Fourier transform of the Dirac measure δx0 is the tempered distri-
bution given by

(δx0)
∧(φ) = δx0(φ̂) = φ̂(x0) =

�
Rn

e−ix0·ξφ(ξ) dξ.

Thus, (δx0)
∧ can be identify with the function ξ 7→ e−ix0·ξ. In particular, F δ0 = 1.

Example 2.5.3. Using Proposition 2.3.3, the derivative of Dirac measure can be com-
puted as followings:

(∂αδ0)
∧(φ) = (∂αδ0)(φ̂) = (−1)|α|δ0(∂

αφ̂)

= (−1)|α|δ0
(
((−ix)αφ)∧

)
= δ0

(
((ix)αφ)∧

)
=

�
Rn

(iξ)αφ(ξ) dξ,

which conclude (∂αδ0)
∧ = (iξ)α.

Similar to the Fourier transform on Schwartz space, it is easy (and natural) to see that
the Fourier transform is also isomorphism on the space of the tempered distributions. Here
we record this observation as a theorem:

Theorem 2.5.4 (Fourier inversion theorem). The Fourier transform is a bijective map
from S ′(Rn) → S ′(Rn). It is continuous in the sense that

Tj → T in S ′(Rn) =⇒ T̂j → T̂ in S ′(Rn).

One has the inversion formula

(2.5.1) T (φ̃) = (2π)−nT̂ (φ̂) for all φ ∈ S (Rn)

with φ̃(x) = φ(−x).
Proof. The inversion formula (2.5.1) immediately follows from Proposition 2.3.8. From

(2.5.1) and since F : S (Rn) → S (Rn) is continuous bijective, we know that F : S ′(Rn) →
S ′(Rn) is also continuous bijective. □

From Proposition 2.3.3, it is easy to see the following properties:

Proposition 2.5.5 (Basic properties of Fourier transform). Let T ∈ S ′(Rn), φ ∈
S (Rn), x0, ξ0 ∈ Rn, c > 0 and multi-indices α, β. Then the Fourier transform on S ′(Rn)
has the following properties:
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(1) Translation. (τx0T )
∧ = e−ix0·ξT̂

(2) Modulation. (eix·ξ0T )∧ = τξ0T̂ ,

(3) Derivative. (∂αxT )
∧ = (iξ)αT̂ ,

(4) Polynomial. ((−ix)βT )∧ = ∂βξ T̂ .

Here the operators are given in Proposition 2.4.10.

2.6. Fourier transform on L2

To extend the Fourier transform on L2(Rn), we prove the following extension lemma for
densely de�ned bounded linear transform:

Lemma 2.6.1. Let X and Y be Banach spaces and let X0 be a dense subspace of X. If
T0 : X0 → Y be a linear mapping satis�es

(2.6.1) ∥T0x∥Y ≤ C∥x∥X for all x ∈ X0,

then there exists a unique bounded linear mapping T : X → Y with T |X0 ≡ T0 such that

(2.6.2) ∥Tx∥Y ≤ C∥x∥X for all x ∈ X

and

(2.6.3) Tx = lim
j→∞

T0xj for all {xj} ⊂ X0 with xj → x in X.

Proof. Let {xj} ⊂ X0 be such that xj → x in X. Using (2.6.1), it is easy to see that

lim sup
j,k→∞

∥T0xj − T0xk∥Y ≤ lim sup
j,k→∞

∥xj − xk∥X = 0,

that is {T0xj} is a Cauchy sequence in Y . Since Y is a Banach space, then there exists a
unique y ∈ Y such that

lim
j→∞

T0(xj) = y in Y.

Suppose that {x′j} ⊂ X0 is another sequence such that x′j → x. Using (2.6.1), we see that

lim sup
j→∞

∥T0xj − T0x
′
j∥Y ≤ lim sup

j→∞
∥xj − x′j∥X = 0.

Therefore, the unique extension T given in (2.6.3) is well-de�ned. On the other hand, we see
that

∥Tx∥Y ≤ lim sup
j→∞

(
∥Tx− T0xj∥Y + ∥T0xj∥Y

)
= lim sup

j→∞
∥T0xj∥Y ≤ lim sup

j→∞
C∥xj∥X

≤ C

(
lim sup
j→∞

∥xj − x∥X + ∥x∥X
)

= C∥x∥X ,

which conclude (2.6.2). □

Using the fact that S (Rn) is a dense subspace of Lp(Rn) for 1 ≤ p < ∞, we now show
that the restriction of F : S ′(Rn) → S ′(Rn) on L1(Rn) is consistent with the Fourier
transform on L1(Rn).



2.6. FOURIER TRANSFORM ON L2 32

Theorem 2.6.2. The Fourier transform is a continuous map from L1(Rn) into C0(Rn).
For any f ∈ L1(Rn) the Fourier transform is given by the usual formula

(2.6.4) f̂(ξ) =

�
Rn

e−ix·ξf(x) dx for all ξ ∈ Rn.

Proof. If f ∈ S (Rn) then we already know that f̂ ∈ C0(Rn) such that ∥f̂∥L∞(Rn) ≤
∥f∥L1(Rn). This means that F : S (Rn) → C0(Rn) is a bounded linear map from a dense
subspace of L1(Rn) to C0(Rn), hence using Lemma 2.6.1 there exists a unique bounded
extension

Φ : L1(Rn) → C0(Rn) with ∥Φ(f)∥L∞(Rn) ≤ ∥f∥L1(Rn).

We wish to show that Φ = F |L1(Rn), where F is the Fourier transform on S ′(Rn). For this
we take any f ∈ L1(Rn) and choose a sequence {fj} ⊂ S (Rn) such that fj → f in L1(Rn).
Then

Ffj → Φ(f) in L∞(Rn) =⇒ Ffj → Φ(f) in S ′(Rn).

Using Theorem 2.5.4, we know that Ffj → Ff in S ′(Rn), then the uniqueness of limit
gives

Ff = Φ(f) in S ′(Rn).

The formula (2.6.4) is given by

Φ(f)(ξ) = lim
j→∞

f̂j(ξ) = lim
j→∞

�
Rn

e−ix·ξfj(x) dx =

�
Rn

e−ix·ξf(x) dx,

where the last equality follows since ∥fj − f∥L1(Rn) → 0. □

Theorem 2.6.3 (Plancherel). The Fourier transform is an isomorphism from L2(Rn)
onto L2(Rn). It is isometric in the sense that

∥f̂∥L2(Rn) = (2π)
n
2 ∥f∥L2(Rn).

The transform is given by

(2.6.5) f̂(ξ) = lim
R→∞

�
|x|≤R

f(x)e−ix·ξ dx in L2(Rn).

Proof. Using the Parseval's identity, we know that F : S (Rn) → L2(Rn) is an isometry
from a dense subset of L2(Rn) to L2(Rn). Therefore from Lemma 2.6.1, it extends uniquely
to an isometry Φ : L2(Rn) → L2(Rn). Using a similar argument, we can show that Φ and
F |L2(Rn) coincide. For any f ∈ L2(Rn), we have

χBR
f → f in L2(Rn) as R → ∞.

Hence Parseval's identity gives�
|x|≤R

e−ix·ξf(x) dx = (χBR
f)∧ → f̂ in L2(Rn) as R → ∞,

where we used the fact that χBR
f ∈ L1(Rn). □
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2.7. The space of compactly supported distributions E ′(Ω)

To study the local behavior of tempered distributions, we introduce the following concepts.

Definition 2.7.1. For any open set Ω ⊂ Rn, the distribution T ∈ S ′(Rn) is said to
vanish on Ω, written T = 0 in Ω, if

T (φ) = 0 for all φ ∈ C∞
c (Ω).

Two distributions T1 and T2 are said to be equal in Ω if T1 − T2 vanish in Ω.

We recall the following proposition regarding to the partition of unity [Mit18, Theo-
rem 14.42]:

Proposition 2.7.2 (Partition of unity for arbitrary open covers). Let {Ωj}j∈J be an arbi-
trary family of open sets in Rn and set Ω :=

⋃
j∈J Ωj. Then there exists an at most countable

collection {φi}i∈I ⊂ C∞(Ω) of non-zero functions satisfying the following properties:

(1) For every i ∈ I, there exists j ∈ J such that supp (φi) ⊂ Ωj;
(2) For every i ∈ I, one has 0 ≤ φi ≤ 1 in Ω;
(3) The family of sets

{
x ∈ Ω φi(x) ̸= 0

}
, indexed by i ∈ I, is locally �nite in Ω; 4

(4)
∑

i∈I φi(x) = 1 for every x ∈ Ω.

The family {φi}i∈I is called a partition of unity subordinate to the family {Ωj}j∈J .

Remark 2.7.3 (Reindexing). First of all, for those j ∈ J such that there does not exist
i such that supp (φi) ⊂ Ωj, we de�ne ψj ≡ 0. Let J̃ ⊂ J be the index set such that for

each j ∈ J̃ there exists i ∈ I such that supp (φi) ⊂ Ωj. Since I is countable, then J̃ is also

countable, therefore we can identify J̃ ∼= N. We de�ne 5

I1 :=
{
i ∈ I supp (φi) ⊂ Ω1

}
,

Ij :=
{
i ∈ I supp (φi) ⊂ Ωj

}
\ Ij−1 for all j = 2, 3, · · · .

We see that Ij are disjoint and
⋃
j∈N Ij = I. We now consider the family of functions {ψj}j∈J

de�ned by

ψj =
∑
i∈Ij

φi.

We see that ψj ∈ C∞(Ωj), 0 ≤ ψj ≤ 1, such that any compact set K ⊂ Ω has a neighborhood
U where only �nite many ψj are not identically zero, and∑

j∈J

ψj(x) = 1 for all x ∈ U.

We now able to prove the following lemma:

Lemma 2.7.4. If {Ωj}j∈J is a family of open sets in Rn, and if T vanishes in each Ωj,
then T vanishes on Ω :=

⋃
j∈J Ωj.

4A family {Ai}i∈I of subsets of Rn is said to be locally �nite in E ⊂ Rn provided every x ∈ E has a
neighborhood U ⊂ Rn with the property that the set

{
i ∈ I Ai ∩ U ̸= ∅

}
is �nite.

5Here we remark that it is possible to have supp (φi) ⊂ Ωj1 ∩ Ωj2 with j1 ̸= j2.
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Proof. Let {ψj}j∈J be the family of functions described in Remark 2.7.3. Let φ ∈ C∞
c (Ω)

and write K = supp (φ). We can now write

φ =
∑
j∈J

ψjφ

where only �nitely many terms of the sum are nonzero. Thus

T (φ) =
∑
j∈J

T (ψjφ) = 0,

using the fact that T vanishes on each Ωj. □

This lemma ensures the following make sense:

Definition 2.7.5. The support of a distribution T ∈ S ′(Rn), denoted by supp (T ), is
the complement of the largest open subset of Rn where T vanishes.

We now want to give a characterization of the tempered distributions with compact
support. Let E (Rn) = C∞(Rn). We de�ne

[f ]N =
∑
|α|≤N

∥∂αf∥L∞(BN (0)) for each N ∈ Z≥0,

which are semi-norms on E (Rn). Similarly to Exercise 2.2.4, we induce a metric on E (Rn)
de�ned by

(2.7.1) dE (Rn)(φ, ψ) :=
∞∑
N=0

2−N
[φ− ψ]N

1 + [φ− ψ]N
for all φ, ψ ∈ E (Rn),

and that fj → f in E (Rn) if and only if ∂αfj → ∂αf uniformly on compact subsets of Rn

for any multi-index α. Therefore, using a similar argument as in Theorem 2.2.6, we have the
following:

Theorem 2.7.6. Let dE (Rn) be the metric given by (2.7.1). Then (E (Rn), dE (Rn)) is a
Fréchet space space (i.e. complete metric space), and the identity map ι : S (Rn) → E (Rn)
is continuous.

Remark 2.7.7. Similar to Remark 2.2.7, since E (Rn) is a (Grothedieck) nuclear space,
then we cannot de�ne a norm on E (Rn).

Similar to De�nition 2.4.1, we also consider the following de�nition:

Definition 2.7.8. Let E ′(Rn) be the set of continuous (w.r.t. the metric (2.7.1)) linear
functional on E (Rn), i.e. dual space of E (Rn). Precisely,

E ′(Rn) :=

{
T : E (Rn) → C T linear and T (φj) → 0

whenever φj → 0 in E (Rn)

}
.

Similar to Lemma 2.4.2, we have the following lemma:

Lemma 2.7.9. For any T ∈ E ′(Rn), there exist C > 0 and N ∈ N such that

|T (f)| ≤ C
∑
|α|≤N

∥∂αφ∥L∞(BN (0)) for all f ∈ E (Rn).

Exercise 2.7.10. Prove Lemma 2.7.9.
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Each element S ∈ E ′(Rn) induces T := S ◦ ι ∈ S ′(Rn), where ι : S (Rn) → E (Rn) is
given in Theorem 2.7.6. Since S (Rn) is dense in E (Rn) (for any f ∈ E (Rn) just take a
sequence {fj} ⊂ S (Rn) such that fj = f in Bj(0)), then S induces a unique T = S ◦ ι.
Moreover, the mapping ι : S (Rn) → E (Rn) is continuous, therefore E ′(Rn) is continuously
embedded in S ′(Rn), i.e. the topology are compatible. The following theorem is the main
result of this section, it states that E ′(Rn) is exactly the compactly supported (tempered)
distributions:

Theorem 2.7.11. Let T ∈ S ′(Rn). The following are equivalent:

(1) T has compact support,
(2) T can be extended to an element in E ′(Rn).

Remark 2.7.12. Accordingly, we can de�ne Fourier transform on E ′(Rn) as in De�ni-
tion 2.5.1.

Proof of Theorem 2.7.11. (1) =⇒ (2). Suppose T ∈ S ′(Rn) has compact support,
and choose ψ ∈ C∞

c (Rn) so that ψ = 1 on some open set containing supp (T )6, and we denote
K := supp (ψ). Then we see that

T (φ) = T (ψφ) for all φ ∈ S (Rn),

and we can extend T on E (Rn) by de�ning

T (f) = T (ψf) for all f ∈ E (Rn).

We now want to show T ∈ E ′(Rn). Since T ∈ S ′(Rn), using Lemma 2.4.2 there exist C and
N such that

|T (φ)| ≤ C
∑
|α|≤N

∥⟨x⟩N∂αφ∥L∞(Rn) for all φ ∈ S (Rn).

Since for any f ∈ E (Rn), the function ψf ∈ C∞
c (Rn) satis�es supp (ψf) ⊂ K, this implies

that

|T (f)| = |T (ψf)| ≤ C ′
∑
|α|≤N

∥∂α(ψf)∥L∞(Rn) ≤ C ′′
∑
|α|≤N

∥∂αf∥L∞(K),

which implies that T ∈ E ′(Rn).

(2) =⇒ (1). For the converse, we suppose that T ∈ E ′(Rn). Using Lemma 2.7.9, there exist
C > 0 and N ∈ N such that

|T (f)| ≤ C
∑
|α|≤N

∥∂αφ∥L∞(BN (0)) for all f ∈ E (Rn).

If T does not have compact support, then for anyM there is a function φ ∈ C∞
c (Rn \BM(0))

for which T (φ) ̸= 0, this clearly contradicts the above inequality. □

The extreme case of a distribution with compact support is one whose support is a point.
The following theorem characterizes all distributions with support consisting of one point,
which can be found in [FJ98, Theorem 3.2.1]:

6Sometimes, we simply say ψ = 1 near supp (T ).
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Theorem 2.7.13. Suppose that T ∈ S ′(Rn) such that supp (T ) = {0}. Then there is a
non-negative integer N such that

T =
∑
|α|≤N

cα∂
αδ,

where cα are complex numbers.

For each u ∈ S ′(Rn), we can de�ne the distributional Laplacian

∆u :=
n∑
j=1

∂2ju ∈ S ′(Rn)

by using Proposition 2.4.10. Then we say that ∆u = 0 in distribution sense if (∆u)(φ) = 0
for all φ ∈ S (Rn). As a consequence, we obtain a generalization of the standard Liouville
theorem which states that any bounded harmonic function is constant.

Corollary 2.7.14 (Liouville-type theorem for distributions). If u ∈ S ′(Rn) satis�es
∆u = 0 in distribution sense, then u is a polynomial.

Remark 2.7.15. The only bounded polynomial is constant function. Therefore, if u ∈
L∞(Rn) satisfying ∆u = 0 (in distribution sense), then u ≡ constant.

Proof. Using Proposition 2.5.5, taking Fourier transform in the equation∆u = 0 implies
that |ξ|2û = 0 in distribution sense. Hence we know that

û(φ) = |ξ|2û(|ξ|−2φ) = 0 for all φ ∈ C∞
c (Rn \ {0}),

which shows that supp (û) = {0}. Using Theorem 2.7.13, we know that

û =
∑
|α|≤N

cα∂
αδ.

Taking the inverse Fourier transform and using Proposition 2.5.5, we see that u is a polyno-
mial. □

2.8. The space of test functions D(Ω) and distributions D ′(Ω)

Fixing any compact set K in Rn, we denote

DK :=
{
φ ∈ C∞(Rn) supp (φ) ⊂ K

}
.

For each �xed N ∈ Z≥0, it is easy to see that

∥φ∥N,K :=
∑
|α|≤N

∥∂αφ∥L∞(K)

is a norm de�ned on DK . Similar to (2.2.5), Exercise 2.2.4 and Theorem 2.2.6, we have the
following lemma:

Lemma 2.8.1. DK is a Fréchet space (i.e. complete metric space) equipped with the metric

(2.8.1) dDK
(φ, ψ) :=

∞∑
N=0

2−N
∥φ− ψ∥N,K

1 + ∥φ− ψ∥N,K
.

Remark 2.8.2. Similar to Remark 2.2.7, since DK is a (Grothedieck) nuclear space, then
we cannot de�ne a norm on DK .
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Let Ω ⊂ Rn be an open set. We now de�ne the set of test functions by

D(Ω) := C∞
c (Ω) ≡

⋃
K⊂Ω compact

DK .

Similarly, let us introduce the norms

∥φ∥N ≡ ∥φ∥N,Ω :=
∑
|α|≤N

∥∂αφ∥L∞(Ω).

Similarly, we can equip D(Ω) with the metric

dD(Ω)(φ, ψ) :=
∞∑
N=0

2−N
∥φ− ψ∥N

1 + ∥φ− ψ∥N
.

However, this topology has the disadvantage of not being complete.

Example 2.8.3. Take n = 1 and Ω = R. Let ϕ ∈ D(R) with supp (ϕ) ⊂ [0, 1] and ϕ > 0
in (0, 1). De�ne

ψm(x) := ϕ(x− 1) +
1

2
ϕ(x− 2) + · · ·+ 1

m
ϕ(x−m).

Note that {ψm} is a Cauchy sequence in (D(R), dD(R)), but the limit limm→∞ ψm(x) does not
have compact support.

We usually equip D(Ω) by another (locally convex) topology τ in which Cauchy sequences
do converge. The fact the topology τ is not metrizable is only a minor inconvenience. The
following fact can be found in [Rud91, Chapter 6] (see also [Mit18, Appendix 14.1] as well
as Theorem 3.6.2 in Mikko Salo's lecture note):

Theorem 2.8.4. There exists a topology τ on D(Ω) which is a vector space topology (i.e.
addition and scalar multiplication are continuous operations) and has the following properties:

(1) A sequence {φj} in D(Ω) converges if and only if {φj} ⊂ DK for some �xed compact
set K ⊂ Ω and {φj} converges in DK,

(2) D(Ω) is a complete topological space (i.e. any Cauchy sequence, or net, in D(Ω)
converges).

We now introduce the usual operations on the space D(Ω), which can be proved similar
to the case of Schwartz functions:

Proposition 2.8.5. Let Ω ⊂ Rn be an open set, and we consider the topological space
(D(Ω), τ), where τ is the topology given in Theorem 2.8.4. If f ∈ C∞(Ω), then the following
operations are continuous maps from (D(Ω), τ) into (D(Ω), τ):

(1) Conjugation. φ 7→ φ,
(2) Derivative. φ 7→ ∂αφ,
(3) Multiplication. φ 7→ fφ.

If Ω = Rn, then additionally the following operations are continuous from (D(Rn), τ) into
(D(Rn), τ):

(1) Re�ection. φ 7→ φ̃ with φ̃(x) = φ(−x),
(2) Translation. φ 7→ τx0φ with τx0φ(x) = φ(x− x0),

The following theorem is a special case of [Rud91, Chapter 6] (see also [Mit18, Appen-
dix 14.6] as well as Theorem 3.6.3 in Mikko Salo's lecture note):

http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf
http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf
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Theorem 2.8.6. Let T be a linear map from (D(Ω), τ) into (C, | · |). The following
statements are equivalent:

(1) T is continuous (with respect to the topology τ given in Theorem 2.8.4),
(2) limj→∞ T (φj) = 0 whenever φj → 0 in (D(Ω), τ),
(3) T |DK

is continuous for each compact subset K in Ω wit respect to the metric dK
given in (2.8.1).

Here and after, we do not explicit state the topology τ of the space of test function D(Ω).
The following de�nition suggested by Theorem 2.8.6:

Definition 2.8.7 (Distributions). The set of continuous linear functionals on D(Ω) is
denoted by D ′(Ω) and its elements are called distributions on Ω.

The following fact can be proved using similar ideas as in Lemma 2.4.2:

Lemma 2.8.8. If T ∈ D ′(Ω), then for any compact set K ⊂ Ω there exist C > 0 and
N > 0 (depending on K) such that

(2.8.2) |T (φ)| ≤ C
∑
|α|≤N

∥∂αφ∥L∞(K) for all φ ∈ DK .

Definition 2.8.9. If there is a �xed N such that (2.8.2) is satis�es for any K (i.e. N is
independent of K), then such distribution T is said to be of order ≤ N , and if N is the least
such integer then T is said to be of order N .

Example 2.8.10. Each element f ∈ L1
loc(Ω) can be identify with Tf ∈ D ′(Ω) de�ned by

Tf (φ) :=

�
Rn

f(x)φ(x) dx,

by using Theorem 2.8.6 with the estimate

|Tf (φ)| ≤
�
K

|f(x)φ(x)| dx ≤ ∥φ∥L∞(K)

�
K

|f(x)| dx for all φ ∈ DK .

In particular, any continuous function gives rise to a distribution.

Example 2.8.11 (Measures). Let µ be either a complex Borel measure on Ω, or a Borel
positive measure on Ω that is locally �nite (i.e. satis�es |µ|(K) < ∞ for every compact
K ⊂ Ω)7. Consider the linear mapping Tµ : D(Ω) → C de�ned by

Tµ(φ) =

�
Ω

φ(x) dµ(x) for all φ ∈ D(Ω) ≡ C∞
c (Ω).

It is easy to see that

|Tµ(φ)| ≤ |µ|(K)∥φ∥L∞(K) for all φ ∈ DK ,

where the positive Borel measure |µ| is the total variation of µ. Therefore from Theorem 2.8.6
we know that Tµ ∈ D ′(Ω) and it is of order 0.

Conversely, if T ∈ D ′(Rn) has order 0, using [Mit18, Proposition 2.16], in particular T
determines a (necessarily unique) measure µ. Precisely, the statement reads:

7For complex measures, the measure can take on complex values, in�nite values are not allowed. In
contrast, in�nite values are allowed for positive measures. In particular, a �nite positive measure is a special
case of a complex measures.



2.8. THE SPACE OF TEST FUNCTIONS D(Ω) AND DISTRIBUTIONS D ′(Ω) 39

Theorem 2.8.12. Let T ∈ D ′(Ω) has order 0. Then the distribution T extends uniquely
to linear map Tµ : C0

c (Ω) → C that is locally bounded in the following sense: for each compact
set K ⊂ Ω there exists CK > 0 such that

|Tµ(φ)| ≤ CK∥φ∥L∞(K) for all φ ∈ C0
c (Ω).

In addition, the functional Tµ satis�es the following properties:

(1) Let {Kj}j∈N be a compact exhaustion8 of Ω, that is, a sequence of compact subsets
of Ω satisfying Kj ⊂ int (Kj+1) and Ω =

⋃∞
j=1Kj. Then there exists a sequence of

complex regular Borel measures µj on Kj such that
(a) µj(E) = µℓ(E) for every ℓ ∈ N, every Borel set E ⊂ int (Kℓ) and every j ≥ ℓ,
(b) for each j ∈ N one has

Tµ(φ) =

�
Kj

φdµj for all φ ∈ C0(Ω) with supp (φ) ⊂ Kj.

(2) There exist two Radon measures µ1, µ2, taking Borel sets from Ω into [0,∞], such
that

ℜ(Tµ(φ)) =
�
Ω

φdµ1 −
�
Ω

φdµ2 for all real-valued φ ∈ C0
c (Ω).

Furthermore, a similar conclusion is valid for ℑ(Tµ(φ)).

Hence we can identify Radon measures with distributions of order 0.

Example 2.8.13 (Continuous embedding). Clearly, S ′(Rn) is a subset of D ′(Rn). We
now want to show the topology are compatible, that is, we want to show that S ′(Rn) is
continuously embedded in D ′(Rn): We want to show if T ∈ S ′(Rn) and φj → 0 in D(Rn),
then T (φj) → 0. Using Theorem 2.8.4, there exists a compact set K ⊂ Rn such that
supp (φj) ⊂ K for all j and ∂αφj → 0 uniformly on K for any multi-index α. It is easy to
see that

lim
j→∞

∥⟨x⟩N∂αφj∥L∞(K) = 0 for any N and α,

showing that φj → 0 in S (Rn). Since T ∈ S ′(Rn), then T (φj) → 0. Together with
Theorem 2.7.11, we have the following continuous embedding:

E ′(Rn) ⊂ S ′(Rn) ⊂ D ′(Rn).

In particular, the distribution derivative in Proposition 2.4.10 is a special case of the
following de�nition:

Definition 2.8.14. For any T ∈ D ′(Ω), the distribution derivative ∂αT ∈ D ′(Ω) of T is
de�ned by

(∂αT )(φ) := (−1)|α|T (∂αφ) for all φ ∈ D(Ω).

Remark 2.8.15. Despite some authors also called it the weak derivative, remember not
to be confused with De�nition 1.1.1. We again refer to Remark 2.4.11.

Proposition 2.8.16. D(Rn) is dense in S (Rn). Consequently, from Example 2.8.13, we
know that

u, v ∈ S ′(Rn) with u = v in D ′(Rn) =⇒ u = v in S ′(Rn).

8For example, if we de�ne Kj := Ω \
( {

x |x| > m
}
∪
⋃

z∈Rn\ΩB1/m(z)
)
, then {Kj}j∈N is a compact

exhaustion of Ω.
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Proof. Fixing any φ ∈ S (Rn). We choose ρ ∈ C∞
c (Rn) such that ρ = 1 for |x| ≤ 1 and

set
φj(x) = ρ(x/j)φ(x) where j ∈ N.

Then there are constants CN such that∑
|α|≤N,|β|≤N

[φ− φj]α,β ≤ CN
∑

|α|≤N,|β|≤N

sup
|x|≥j

|xα∂βφ(x)|.

Since φ ∈ S (Rn), then the right-hand-side converges to 0 as j → ∞. □

Since ∂α : D(Ω) → D(Ω) is continuous (Proposition 2.8.5), then using Theorem 2.8.6 we
know that ∂αT is continuous (with respect to the topology τ given in Theorem 2.8.4), that
is,

∂αT ∈ D ′(Ω) for any multi-index α,

showing that De�nition 2.8.14 is well-de�ned for all multi-index α. In other words, any
distribution has well de�ned derivatives of any order even if it arises from a function which
is not di�erentiable in the classical sense (as well as in the sense of De�nition 1.1.1).

Exercise 2.8.17. Prove that for every c ∈ R one has

(e−c|x|)′ = −ce−cxH(x) + cecxH(−x) in D ′(R).

Exercise 2.8.18. Let f : R → R be de�ned by

f(x) =

{
x ln |x| − x for x ̸= 0,

0 for x = 0.

Prove that f is a continuous function and compute its distributional derivative (of order 1)
f ′.

Exercise 2.8.19. Let n = 1 and T =
∑∞

j=1 ∂
jδj ∈ D ′(R), that is,

T (φ) =
∞∑
j=1

(−1)jφ(j)

∣∣∣∣
x=j

for all φ ∈ D(R).

Show that T does not have �nite order.

An immediate consequence of the de�nition is that this map is also sequentially continu-
ous:

Theorem 2.8.20 (Theorem 2.1.1 in [FJ98]). If {Tj} be a sequence of distributions in
D ′(Ω) converges to T in D ′(Ω). For each multi-index α, one has

∂αTj → ∂αT in D ′(Ω).

Proof. It follows from the Theorem 2.8.6 and De�nition 2.8.14 that as j → ∞,

lim
j→∞

∂αTj(ϕ) = (−1)|α| lim
j→∞

Tj(∂
αϕ) = (−1)|α|T (∂αϕ) = ∂αT (ϕ)

for all ϕ ∈ D(Ω) ≡ C∞
c (Ω). □

The �nal operation on distributions that we wish to introduce here is multiplication by
functions. This is easy to de�ne since if f ∈ C∞(Ω) then fT is a well-de�ned distribution if

(fT )(φ) := T (fφ) for all φ ∈ D(Ω) ≡ C∞
c (Ω).

We summarize that we have done in the following proposition:
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Proposition 2.8.21. If f ∈ C∞(Ω), then the following operations are well-de�ned maps
from D ′(Ω) into D ′(Ω):

(1) Re�ection. T̃ (φ) = T (φ̃) with φ̃(x) = φ(−x),
(2) Conjugation. T (φ) = T (φ),
(3) Translation. (τx0T )(φ) = T (τ−x0φ) with τ−x0φ(x) = φ(x+ x0),
(4) Distributional derivative. (∂αT )(φ) = (−1)|α|T (∂αφ),
(5) Multiplication. (fT )(φ) = T (fφ).

To study the local behavior of distributions we introduce the following concepts similar
to De�nition 2.7.1:

Definition 2.8.22. For any open set V ⊂ Ω, the distribution T ∈ D ′(Ω) is said to vanish
on V , written T = 0 in V , if

T (φ) = 0 for all φ ∈ D(V ) ≡ C∞
c (V ).

Two distributions T1 and T2 are said to be equal in V if T1 − T2 vanish in V .

It is an important fact that if the local behavior of a distribution is known at each point,
then the distribution is uniquely determined globally. The proof uses a partition of unity.

Theorem 2.8.23. Let {Ωi} be an open cover of Ω and let {Ti} be a family of distributions
such that Ti ∈ D ′(Ωi), and suppose that for any Ωi,Ωj with Ωi ∩ Ωj ̸= ∅, one has

Ti = Tj on Ωi ∩ Ωj.

Then there is a unique T ∈ D ′(Ω) for which T = Ti on each Ωi.

Proof. Let {ψi} be the partition of unity subordinate to {Ωi} as in Remark 2.7.3 (The-
orem 2.7.2). We see that ψi ∈ C∞(Ωi), 0 ≤ ψi ≤ 1, such that any compact set K ⊂ Ω has a
neighborhood U where only �nite many ψi are not identically zero, and∑

i

ψi(x) = 1 for all x ∈ U.

Accordingly, we de�ne the distribution T by

T (φ) =
∑
i

Ti(ψiφ) for all φ ∈ D(Ω) ≡ C∞
c (Ω).

Then we can easily verify that T = Ti in Ωi by testing φ ∈ DK with compact subset K ⊂ Ωi.
Using similar ideas, the uniqueness also follows. □

2.9. Convolution of functions

Definition 2.9.1. The convolution of two measurable functions f, g : Rn → C is the
function f ∗ g : Rn → C given by

(f ∗ g)(x) =
�
Rn

f(y)g(x− y) dy

provided that the integral exists almost everywhere.

Remark 2.9.2. A change of variable gives that f ∗ g = g ∗ f . Moreover, we also see that

(2.9.1) (f ∗ g)(x) =
�
Rn

f(y)g(x− y) dy =

�
Rn

f(y)g̃(y − x) dy =

�
Rn

f(y)(τxg̃)(y) dy.
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We denote9

Lpoly(Rn) :=

{
f : Rn → C there exists C > 0 such that

|f(x)| ≤ C⟨x⟩N for a.e. x ∈ Rn

}
,

Cpoly(Rn) :=
{
f ∈ Lpoly(Rn) f is continuous

}
,

C∞(Rn) :=
{
f ∈ C0(Rn) ⟨x⟩Nf ∈ L∞(Rn) for all N ∈ N

}
,

Ck
∞(Rn) :=

{
f : Rn → C ∂αf ∈ C∞(Rn) for all |α| ≤ k

}
,

Ck
poly(Rn) :=

{
f : Rn → C ∂αf ∈ Cpoly(Rn) for all |α| ≤ k

}
.

We will �rst prove the following theorem to ensure the well-de�nedness of convolution:

Theorem 2.9.3. The convolution is a mapping

(1) L1
loc(Rn)× Ck

c (Rn) → Ck(Rn),
(2) Cj(Rn)× Ck

c (Rn) → Cj+k(Rn),
(3) Cj

c (Rn)× Ck
c (Rn) → Cj+k

c (Rn),
(4) Lpoly(Rn)× Ck

∞(Rn) → Ck
poly(Rn),

(5) Cj
poly(Rn)× Ck

∞(Rn) → Cj+k
poly(Rn),

(6) Cj
∞(Rn)× Ck

∞(Rn) → Cj+k
∞ (Rn).

In addition, we have

(2.9.2) ∂α+β(f ∗ g) = (∂αf) ∗ (∂βg) whenever |α| ≤ j and |β| ≤ k.

We choose j = 0 in (1) and (4).

We need the following auxiliary lemma to prove Theorem 2.9.3:

Lemma 2.9.4. Given any positive integer N and a compact set K ⊂ Rn, we have

(2.9.3) ⟨x− y⟩N ≤ C⟨x⟩N for all y ∈ K

for some constant C = CK,N > 0. Consequently, if ⟨·⟩Nf ∈ L∞(Rn), then there exists a
constant C = CK,N > 0 such that

sup
y∈K

sup
x∈Rn

∣∣⟨x⟩Nf(x+ y)
∣∣ ≡ sup

y∈K
sup
x∈Rn

∣∣⟨x− y⟩Nf(x)
∣∣ ≤ C∥⟨x⟩Nf∥L∞(Rn).

Proof. Note that there exists R = R(K) > 0 such that K ⊂ BR(0). We �rst consider
the case when N = 2m to be an even integer. The expression

⟨x− y⟩2m = (1 + |x− y|2)m =
(
(1 + |x|2) + (−2x · y + |y|2)

)m
may be expanded using binomial theorem into

⟨x− y⟩2m =
m∑
j=0

(
m
j

)
(1 + |x|2)m−j(−2x · y + |y|2)j.

The condition |y| ≤ R implies that | − 2x · y + |y|2| ≤ CR⟨x⟩. We thus have the estimate

(2.9.4) ⟨x− y⟩2m ≤ C⟨x⟩2m for all y ∈ K.

If N = 2m+ 1 is an odd integer, we write

(2.9.5) ⟨x− y⟩2m+1 =
(
⟨x− y⟩2m

) 2m+1
2m ≤

(
C⟨x⟩2m

) 2m+1
2m ≤ C ′⟨x⟩2m+1 for all y ∈ K.

9Some authors denote L0(Ω) ≡ L(Ω) be the set of measurable functions f : Ω → C with |f(x)| < ∞ for
a.e. x ∈ Ω.
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Combining (2.9.4) and (2.9.5), we conclude (2.9.3). □

With Lemma 2.9.4 at hand, we are now ready to prove Theorem 2.9.3.

Proof of Theorem 2.9.3 (1). Let f ∈ L1
loc(Rn) and g ∈ Ck

c (Rn). For each �xed x ∈
Rn, using (2.9.1) we know that

(f ∗ g)(x) =
�
supp (τxg̃)

f(y)(τxg̃)(y) dy is well-de�ned.

On the other hand, for each h ∈ R \ {0}, we see that

(2.9.6)
(f ∗ g)(x+ hej)− (f ∗ g)(x)

h
=

�
Rn

f(y)
g(x− y + hej)− g(x− y)

h
dy.

We see that there exists a compact set K such that⋃
|h|≤1

supp

(
g(x− ·+ hej)− g(x− ·)

h

)
⊂ K.

In addition, for each |h| ≤ 1, using Taylor's theorem (in this particular case, simply the mean
value theorem), we have

(2.9.7)
g(x− y + hej)− g(x− y)

h
=

∂g

∂xj
(x− y + θej) for some |θ| ≤ 1.

Since ∂g
∂xj

is uniformly bounded, then we can apply Lebesgue dominated convergence theorem

on (2.9.6) to obtain

(2.9.8)
∂(f ∗ g)
∂xj

(x) =

(
f ∗ ∂g

∂xj

)
(x).

Iterating this argument gives that

∂β(f ∗ g) = f ∗ (∂βg) for all |β| ≤ k

and f ∗ g ∈ Ck(Rn). □

Proof of Theorem 2.9.3 (2). The same argument as in (1) shows that

∂α(f ∗ g) = (∂αf) ∗ g for all |α| ≤ j,

and we also conclude (2.9.2). □

Proof of Theorem 2.9.3 (3). Di�erentiability follows from (2), and the support con-
dition follows from the inclusion

supp (f ∗ g) ⊂
closed︷ ︸︸ ︷

supp (f)︸ ︷︷ ︸
compact

+supp (g)︸ ︷︷ ︸
compact

.

This fact can be shown by noting that: if x /∈ supp (f) + supp (g), then

y ∈ supp (f) =⇒ x− y /∈ supp (g),

and then (f ∗ g)(x) = 0 by the de�nition of convolution, i.e. x /∈ supp (f ∗ g). □

Exercise 2.9.5. Show that if A ⊂ Rn is compact and B ⊂ Rn is closed, then A+B is a
closed set in Rn.
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Proof of Theorem 2.9.3 (4). Let f ∈ Lpoly(Rn) and g ∈ Ck
∞(Rn). Then ⟨·⟩−Nf ∈

L1(Rn) for some large enough N , and for any �xed x ∈ Rn, by using (2.9.1) we have

|(f ∗ g)(x)| ≤
�
Rn

|f(y)g(x− y)| dy ≤ ∥⟨·⟩−Nf∥L1(Rn)∥⟨·⟩Nτxg̃∥L∞(Rn),

which shows that f ∗ g is well-de�ned. On the other hand, if |h| ≤ 1, using (2.9.7) we have

∣∣∣∣f(y)g(x− y + hej)− g(x− y)

h

∣∣∣∣ ≤
∈L1(Rn)︷ ︸︸ ︷

|⟨y⟩−Nf(y)|

uniformly bounded by Lemma 2.9.4︷ ︸︸ ︷∣∣∣∣⟨y⟩N ∂g

∂xj
(x− y + θej)

∣∣∣∣ for some |θ| ≤ 1.

Then we can apply Lebesgue dominated convergence theorem on (2.9.6) to obtain (2.9.8).
Similar to (1), it follows that f ∗ g ∈ Ck(Rn).

To show f ∗ g ∈ Ck
poly(Rn), using an iterative argument, it is su�ce to show f ∗ g ∈

Cpoly(Rn). We see that

|⟨x⟩−N(f ∗ g)(x)| =
∣∣∣∣⟨x⟩−N �

Rn

f(x− y)g(y) dy

∣∣∣∣
≤
�
Rn

⟨x− y⟩−N |f(x− y)|⟨x− y⟩N

⟨x⟩N
|g(y)| dy

≤ C∥⟨·⟩−Nf∥L1(Rn) sup
y∈Rn

⟨x− y⟩N

⟨x⟩N⟨y⟩N
.

Since

⟨x− y⟩2 = 1 + |x− y|2 ≤ 1 + 2(|x|2 + |y|2) ≤ 2(1 + |x|2)(1 + |y|2) = 2⟨x⟩2⟨y⟩2,
then we see that

sup
x,y∈Rn

⟨x− y⟩N

⟨x⟩N⟨y⟩N
=

(
sup
x,y∈Rn

⟨x− y⟩2

⟨x⟩2⟨y⟩2

)N
2

≤ 2
N
2 ,

thus |⟨x⟩−N(f ∗ g)(x)| ≤ CN∥⟨·⟩−Nf∥L1(Rn), which conclude our result. □

Proof of Theorem 2.9.3 (5). This follows similarly as in (4). □

Proof of Theorem 2.9.3 (6). By (5), it is enough to show that f ∗g ∈ C∞(Rn) when-
ever f, g ∈ C∞(Rn). The binomial expansion (1.1.1) gives

(x− y + y)α =
k∑
i=1

ci(x− y)αiyβi

for some constants ci and some multi-indices αi and βi, so we have

|xα(f ∗ g)(x)| ≤
�
Rn

∣∣∣∣(x− y + y)αf(y)g(x− y)

∣∣∣∣ dy
≤

k∑
i=1

|ci|
�
Rn

∣∣yβif(y)(x− y)αig(x− y)
∣∣ dy

≤
k∑
i=1

|ci|
(

sup
z∈Rn

|zαig(z)|
) �

Rn

|zβif(z)| dz.(2.9.9)

This implies that ⟨x⟩N(f∗g)(x) is a bounded function for any N ∈ N, so the claim follows. □
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Theorem 2.9.6. The convolution is a separately continuous map10

(1) D(Rn)× D(Rn) → D(Rn),
(2) E (Rn)× D(Rn) → E (Rn),
(3) S (Rn)× S (Rn) → S (Rn).

Proof. Theorem 2.9.3 immediately gives that the ranges in (1)�(3) are correct. It re-
mains to show continuity.

If f ∈ E (Rn) and φ ∈ DK , then for any compact subset K0 ⊂ Rn we have

sup
x∈K0

|∂α(f ∗ φ)(x)| = sup
x∈K0

|(f ∗ ∂αφ)(x)| ≤ sup
x∈K0

�
K

|f(x− y)(∂αφ)(y)| dy

≤ |K|∥f∥L∞(K1)∥∂αφ∥L∞(K),

where K1 := K0 − K is compact. Taking φ = φk with φk → 0 in DK , we conclude the
mapping

(2.9.10) φ ∈ D(Rn) 7→ f ∗ φ ∈ E (Rn)

is continuous by using Theorem 2.8.6.
Similarly, for each �xed φ ∈ D(Rn), we can obtain the estimate

sup
x∈K0

|∂α(f ∗ φ)(x)| ≤ |K|∥∂αf∥L∞(K1)∥φ∥L∞(K)

Taking f = fk with fk → 0 in E (Rn), we conclude the mapping

(2.9.11) f ∈ E (Rn) 7→ f ∗ φ ∈ E (Rn)

is continuous. Then we conclude (1) and (2) by (2.9.10) and (2.9.11).
Using (2.9.9), we know that

sup
x∈Rn

|xα(f ∗ g)(x)| ≤ ρ(g) :=
k∑
i=1

|ci|
(

sup
z∈Rn

|zαig(z)|
) �

Rn

|zβif(z)| dz.

Note that ρ is a continuous semi-norm on S (Rn). This implies that

[f ∗ g]α,β = sup
x∈Rn

|xα(f ∗ ∂βg)(x)| ≤ ρ(∂βg)

and we see that g 7→ ρ(∂βg) is also a continuous semi-norm on S (Rn). Then we conclude
(3) from Lemma 2.2.5. □

2.10. Tensor products

Before we de�ne convolution between distributions, we �rst introduce some concept of
tensor products. Given any functions f, g, the tensor product f ⊗ g is de�ned by

(f ⊗ g)(x, y) := f(x)g(y).

If Tf ∈ D ′(Ω1) (resp. Tg ∈ D ′(Ω2)) is the corresponding distribution of f (resp. g), then we
de�ne

(Tf ⊗ Tg)(φ) :=

�
Ω1×Ω2

f(x)g(y)φ(x, y) dx dy for all φ ∈ D(Ω1 × Ω2).

10This means that convolution satis�es the followings:

(1) for each �xed ψ, the mapping φ 7→ φ ∗ ψ is continuous,
(2) for each φ, the mapping ψ 7→ φ ∗ ψ is continuous.
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If one take φ(x, y) = (φ1 ⊗ φ2)(x, y) ≡ φ1(x)φ2(y), here one obtains the identity

(Tf ⊗ Tg)(φ1 ⊗ φ2) = Tf (φ1)Tg(φ2).

The above ideas are in fact rigorous by the following facts (here we list them without proof):

Proposition 2.10.1 (Corollaries 4.1.1 and 4.1.2 in [FJ98]). Let U, V ⊂ Rn be open sets.
Let T ∈ D ′(U) and let ϕ ∈ E (U × V ) satisfy the following hypothesis: each point y′ ∈ V has
a neighborhood Ω(y′) ⊂ V such that supp (ϕ(·, y)) is contained in a compact set K = K(y′)
if y ∈ Ω(y′). Then

v(y) := T (ϕ(·, y)) is in C∞(V )

and for each multi-index α we have

∂αy v(y) = T (∂αy ϕ(·, y)).

In particular, we have the following special cases:

(1) If T ∈ D ′(U) and ϕ ∈ D(U × V ), then v ∈ D(V ).
(2) If T ∈ E ′(U) and ϕ ∈ E (U × V ), then v ∈ E (V ).

The following theorem ensures the well-de�nedness of the tensor product of distributions:

Theorem 2.10.2 (Theorem 4.3.2 in [FJ98]). Let U, V ⊂ Rn be open sets. Given any
T ∈ D ′(U) and S ∈ D ′(V ). There exists a unique element T ⊗ S ∈ D ′(U × V ), called the
tensor product of T and S, written as T × S, such that

(T ⊗ S)(φ1 ⊗ φ2) = T (φ1)S(φ2) for all φ1 ∈ D(U) and φ2 ∈ D(V ).

Proposition 2.10.3 (Theorem 4.3.3 in [FJ98]). Let U, V ⊂ Rn be open sets. Given any
T ∈ D ′(U), S ∈ D ′(V ) and ϕ ∈ D(U × V ).

(1) The tensor product T ⊗S ∈ D ′(U × V ) given in Theorem 2.10.2 can be computed as

(T ⊗ S)(φ) = S(v), v(y) = T (φ(·, y)) for each y ∈ V,

(T ⊗ S)(φ) = T (u), u(x) = S(φ(x, ·)) for each x ∈ U,

for all φ ∈ D(U × V ).
(2) supp (T ⊗ S) = supp (T )× supp (S).
(3) Given any multi-indices α and β, we have

∂αx∂
β
y (T ⊗ S) = ∂αxT ⊗ ∂βyS.

(4) The tensor product is a separately continuous bilinear form on D ′(U)× D ′(V ).

2.11. Convolution of distributions

We now want to de�ne convolution between distributions as a special case of tensor prod-
ucts. The usual requirement that the operation should extend the convolution of functions
leads to the following: Given any functions f, g, and let Tf , Tg ∈ D ′(Rn) be the corresponding
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distributions, we see that

(Tf ∗ Tg)(φ) =
�
Rn

(f ∗ g)(z)φ(z) dz =
�
Rn

�
Rn

g(y)f(z − y)φ(z) dy dz

=

�
Rn

�
Rn

f(x)g(y)φ(x+ y) dy dx

=

�
Rn

�
Rn

f(x)g(y)ϕ(x, y) dy dx where ϕ(x, y) = φ(x+ y)

= (Tf ⊗ Tg)(ϕ).

This suggests us to de�ne the convolution of T, S ∈ D ′(Rn) by

(2.11.1) (T ∗ S)(φ) := (T ⊗ S)(ϕ) for all φ ∈ D(Rn).

However, the convolution (2.11.1) may not exist, since in general ϕ ∈ E (Rn × Rn) does not
have compact support even when φ ∈ C∞

c (Rn). A simply way to overcome this di�culty is
to assume that one of the distributions T and S has compact support.

Let us assume T ∈ E ′(Rn) and S ∈ D ′(Rn). We choose ρ ∈ C∞
c (Rn) such that ρ = 1 on a

neighborhood of supp (T ), see Theorem 2.7.11. For each φ ∈ D(Rn), we de�ne the function

(2.11.2) ϕρ(x, y) := ρ(x)φ(x+ y).

Note that

(x, y) ∈ supp (ϕρ)

⇐⇒ x ∈ supp (ρ) and x+ y ∈ supp (φ)

⇐⇒ x ∈ supp (ρ) and y ∈ supp (φ)− x,

which implies that
supp (ϕρ) = supp (ρ)×

(
supp (φ)− supp (ρ)

)
,

which shows that ϕρ ∈ D(Rn×Rn). Plugging (2.11.2) in Proposition 2.10.3, we conclude the
followings:

Theorem 2.11.1. The convolution is a separately continuous map

(1) E ′(Rn)× D ′(Rn) → D ′(Rn),
(2) E ′(Rn)× E ′(Rn) → E ′(Rn),

Here, the convolution is given by

(2.11.3) (T ∗ S)(φ) := (T ⊗ S)(ϕρ) for all φ ∈ D(Rn)

with (2.11.2) and the cut-o� function ρ ∈ C∞
c (Rn) satis�es ρ = 1 on a neighborhood of

supp (T ). In particular, (2.11.3) is independent11 of choices of the cut-o� function ρ. More-
over, it can be computed as follows:

(T ∗ S)(φ) = S(v), v(y) = T (ϕρ(·, y)) for each y ∈ Rn,

(T ∗ S)(φ) = T (u), u(x) = S(ϕρ(x, ·)) for each x ∈ Rn,

for all φ ∈ D(Rn), and consequently T ∗ S = S ∗ T . In addition, we have

(2.11.4) supp (T ∗ S) ⊂ supp (T ) + supp (S) for all T ∈ E ′(Rn) and S ∈ D ′(Rn).

11If σ ∈ C∞
c (Rn) be another cut-o� function satis�es σ = 1 on a neighborhood of supp (T ), for each

x near supp (T ) we see that
(
ρ(x) − σ(x)

)
ϕ(x + y) = 0, and we have (T ⊗ S)(ϕρ) = (T ⊗ S)(ϕσ) for all

φ ∈ D(Rn).
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Remark 2.11.2. Since supp (T ) is compact and supp (S) is closed, then supp (T ) +
supp (S) is closed, see Exercise 2.9.5.

Proof. It is remain to show that 2.11.4. To show this, it is su�ce to show that if
x /∈ supp (T ) + supp (S), then x /∈ supp (T ∗ S), equivalently, we want to show

T ∗ S = 0 in Rn \ (supp (T ) + supp (S)).

From Proposition 2.10.3(2), we know that

(x, y) ∈ supp (T ⊗ S) =⇒ x+ y ∈ supp (T ) + supp (S).

Hence we know that if the support of ϕ ∈ D(Rn) is disjoint from supp (T ) + supp (S), then
the support of (x, y) 7→ ϕ(x+ y) is disjoint from

supp (T ⊗ S) = supp (T )× supp (S),

which conclude our theorem. □

Having de�ned the convolution on fairly general spaces, we now summarize some of the
properties of the operation.

Proposition 2.11.3. Let T ∈ E ′(Rn) and S ∈ D ′(Rn).

(1) Associativity. If R ∈ E ′(Rn), then R ∗ (S ∗ T ) = (R ∗ S) ∗ T = (R ∗ T ) ∗ S.
(2) Translation. If x ∈ Rn, then τx(T ∗ S) = (τxT ) ∗ S = T ∗ (τxS).
(3) Di�erentiation. If α is a multi-index, then ∂α(T ∗ S) = (∂αT ) ∗ S = T ∗ (∂αS).
(4) Translation. If x ∈ Rn, then S ∗ δx = δx ∗ S = τxS. In particular when x = 0, the

Dirac measure δ0 is an identity element for the convolution operation.

These are all easily derived from Theorem 2.11.1, the proofs are left to the reader.

Exercise 2.11.4. Let T1 = 1, T2 = δ′0 and T3 = H (the Heaviside unit step function)
and show that

(T1 ∗ T2) ∗ T3 and (T2 ∗ T3) ∗ T1 both exist but they are not identical.

This exercise emphasizes that in general the associativity property in Proposition 2.11.3(1)
only valid with the condition on supports.

The next theorem asserts that it is separately sequentially continuous with an appropriate
de�nition of convergence in E ′(Rn).

Proposition 2.11.5. The following are true:

(1) Suppose that T ∈ E ′(Rn) and the sequence {Sj}j∈N converges to S in D ′(Rn). Then

(2.11.5) T ∗ Sj → T ∗ S in D ′(Rn).

(2) Suppose that T ∈ D ′(Rn) and the sequence {Sj}j∈N converges to S in D ′(Rn) such
that supp (Sj) ⊂ K for some compact set K independent of j. Then (2.11.5) holds.

Proof. (1). If T ∈ E ′(Rn) and φ ∈ C∞
c (Rn), then v(y) = T (φ(· + y)) is in D(Rn) by

Proposition 2.10.1. Hence it follows from Theorem 2.11.1 that

lim
j→∞

(T ∗ Sj)(φ) = lim
j→∞

Sj(v) = S(v) = (T ∗ S)(φ) for all φ ∈ D(Rn).
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(ii). Choosing a cut-o� function ρ ∈ C∞
c (Rn) with ρ = 1 in a neighborhood of K. Then one

has, again from Theorem 2.11.1 that

lim
j→∞

(T ∗ Sj)(φ) = lim
j→∞

Sj(ρv) = S(ρv) = (T ∗ S)(φ) for all φ ∈ D(Rn),

which conclude our proposition. □

2.12. Convolution between distributions and functions

So far, we discussed the convolution between functions, and between distributions. We
now consider the convolution between a function and a distribution. Fixing any φ ∈ C∞

c (Rn).
Using Theorem 2.11.1 (with T = Tρ), we have

(Tρ ∗ S)(φ) = S(v), v(y) = Tρ(ϕσ(·, y)) for each y ∈ Rn,

with ϕσ(x, y) = σ(x)φ(x + y), where σ ∈ C∞
c (Rn) is a cut-o� function with σ = 1 on a

neighborhood of supp (ρ). We compute that

v(y) = Tρ(ϕρ(·, y)) =
�
Rn

ρ(x)φ(x+ y) dx

=

�
Rn

ρ(x− y)φ(x) dx.

Using Proposition 2.10.1 we know that the function w(x) := S(ρ(x− ·)) is actually is in C∞,
therefore we see that

(Tρ ∗ S)(φ) =
�
Rn

w(x)φ(x) dx for all φ ∈ C∞
c (Rn).

Therefore, in this case, we can just simply identify the distribution Tρ ∗ S with the function
w. In this case, we just simply denote w ≡ ρ ∗ S, i.e. we de�ne
(2.12.1) (ρ ∗ S)(x) := S(ρ(x− ·)) for all x ∈ Rn,

and we reach the following theorem:

Theorem 2.12.1. If S ∈ D ′(Rn) and ρ ∈ D(Rn), then ρ ∗ S ∈ C∞(Rn).

Remark 2.12.2. In particular when S ∈ E ′(Rn), then ρ ∗ S ∈ C∞
c (Rn). See also Theo-

rem 2.14.6.

From (2.12.1), we also see that (ρ ∗ S)∼(x) = (ρ ∗ S)(−x) = S(ρ(−x− ·)) = S(ρ̃(x+ ·)).
Let T ∈ E ′(Rn). Using Proposition 2.11.1, we conclude the following corollary:

Corollary 2.12.3. Let T ∈ E ′(Rn) and S ∈ D ′(Rn) (or T ∈ D ′(Rn) and S ∈ E ′(Rn)),
then T

(
(ρ ∗ S)∼

)
= (T ∗ S)(ρ̃) for all ρ ∈ D(Rn).

We can now prove one of the principal results in the theory of distributions.

Theorem 2.12.4 (Density). C∞
c (Rn) is dense in D ′(Rn).

Proof. Given any T ∈ D ′(Rn). Fixing any ψ ∈ C∞
c (Rn) with

�
ψ(x) dx = 1, and set

ψj(x) = jnψ(jx) for j = 1, 2, · · · . Then ψj → δ0 in D ′(Rn) and supp (ψj) ⊂ supp (ψ) for all
j. Hence by Proposition 2.11.5 we have

ψj ∗ T → δ0 ∗ T ≡ T in D ′(Rn).

By Theorem 2.12.1, we know that ψj ∗ T ∈ C∞(Rn).
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Now take χ ∈ C∞
c (Rn) such that χ = 1 in B1(0), and put

Tj := χ(x/j)ψj ∗ T for all j ∈ N.
If φ ∈ C∞

c (Rn), then

Tj(φ) :=

�
Rn

(ψj ∗ T )(x)φ(x) dx for all su�ciently large j.

Hence we know that Tj ∈ C∞
c (Rn) and converges to T in D ′(Rn), which conclude the proof

of the theorem. □

The above theorem can be extended to distributions de�ned on an open set Ω ⊂ Rn:

Theorem 2.12.5 (Density). If Ω ⊂ Rn is an open set, then C∞
c (Ω) is dense in D ′(Ω).

Proof. Let T ∈ D ′(Ω). Let {Kj}j∈N be a compact exhaustion of Ω (described in The-
orem 2.8.12). For each j, choosing ρj ∈ C∞

c (Ω) such that ρj = 1 in a neighborhood of Kj.
We de�ne

Tj := ρjT for all j ∈ N.
Then Tj ∈ E ′(Ω) extends trivially to an element of E ′(Rn). Now choose ψ such that

ψ ∈ C∞
c (Rn), supp (ψ) ⊂ B1(0),

�
Rn

ψ(x) dx = 1.

Using (2.11.4) (in Theorem 2.11.1), one can �nd a decreasing sequence of positive real num-
bers {ϵj}, which tending to zero, such that, if one sets

ψj(x) = ϵ−nj ψ(x/ϵj) for all j ∈ N,

then ψj ∗ Tj are supported in Ω and hence are elements of C∞
c (Ω).

It is remains to prove ψj ∗ Tj → T in D ′(Ω). For each φ ∈ C∞
c (Ω), there is a k such that

T (φ) = Tk(φ) and

(ψj ∗ Tj)(φ) = Tj(uj) = Tk(uj) = (ψj ∗ Tk)(φ) for all j ≥ k,

with uj(x) =
�
Rn ψj(y)φ(x+y) dy. By observing that ψj → δ in D ′(Rn) and that supp (ψj) ⊂

supp (ψ1) for all j ∈ N, using Proposition 2.11.5 we have

lim
j→∞

(ψj ∗ Tj)(φ) = lim
j→∞

(ψj ∗ Tk)(φ) = (δ ∗ Tk)(φ) = Tk(φ) = T (φ),

and our theorem follows by arbitrariness of φ ∈ C∞
c (Ω). □

2.13. Convolution of distributions with non-compact supports

So far, it has been assumed that at least one of the distributions T and S has compact
support, in order to ensure the existence of the convolution T ∗S. This can be replaced by a
condition that is more symmetric, and extends to any �nite set of distributions. Let m ∈ Z≥2

and let

(2.13.1) µ(x(1), · · · , x(m)) := x(1) + · · ·+ x(m) for all x(j) ∈ Rn.

Definition 2.13.1. Let A1, · · · , Am be closed sets in Rn. We shall say that the restriction
of the mapping µ (as in (2.13.1)) to A1×· · ·×Am is proper if, for any δ > 0, there is a δ′ > 0
such that

∥µ∥L∞(A1×···×Am) ≤ δ =⇒ sup
j=1,··· ,m

|x(j)| ≤ δ′.
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Example 2.13.2. Suppose that Aj ⊂
{
x ∈ Rn xi ≥ 0 for all i = 1, · · · , n

}
, then the

restriction of the mapping µ (as in (2.13.1)) to A1 × · · · × Am is proper by choosing δ′ = δ.

Lemma 2.13.3. Let A1, · · · , Am be closed subsets of Rn. Let ϵ > 0 and let Aϵj = Aj+Bϵ(0)
be the closed neighborhood of Aj. Assume that the restriction of the mapping µ (as in (2.13.1))
to A1 × · · · × Am is proper, then its restriction to Aϵ1 × · · · × Aϵj is also proper.

Proof. Fixing any δ > 0. Suppose that x(j) ∈ Aϵj and |x(1)+ · · ·+x(m)| ≤ δ. There exist

x
(j)
0 ∈ Aj such that |x(j) − x

(j)
0 | ≤ ϵ, hence

|x(1)0 + · · ·+ x
(m)
0 | ≤ δ +mϵ.

Since the restriction of the mapping µ (as in (2.13.1)) to A1 × · · · ×Am is proper, then there
exists δ′′ > 0 such that

sup
j=1,··· ,m

|x(j)0 | ≤ δ′′ which implies sup
j=1,··· ,m

|x(j)| ≤ δ′ ≡ δ′′ + ϵ,

which conclude the lemma. □

Let T1, · · · , Tm ∈ D ′(Rn), and suppose that the restriction of the mapping µ (as in
(2.13.1)) to supp (T1)×· · ·×supp (Tm) is proper. Let ϵ > 0, φ ∈ D(Rn) and we set ϕ := φ◦µ.
By Lemma 2.13.3, the set

Kϵ(φ) :=

((
supp (T1)

)ϵ × · · · ×
(
supp (Tm)

)ϵ) ∩ supp (ϕ)

is compact12. One can choose cut-o� functions ρ1, · · · , ρm ∈ C∞
c (Rn) such that

ρ(x(1), · · · , x(m)) := (ρ1 ⊗ · · · ⊗ ρm)(x
(1), · · · , x(m)) ≡ ρ1(x

(1)) · · · ρm(x(m))

is supported in Kϵ(φ) and ρ = 1 in a neighborhood of K0(φ). Then we we conclude the
following theorem:

Theorem 2.13.4 (Convolution of distributions with non-compact supports). Let
T1, · · · , Tm ∈ D ′(Rn). If restriction of the mapping µ (as in (2.13.1)) to supp (T1) × · · · ×
supp (Tm) is proper, then we can de�ne the convolution T1 ∗ · · · ∗ Tm ∈ D ′(Rn) by

(2.13.2) (T1 ∗ · · · ∗ Tm)(φ) := (T1 ⊗ · · · ⊗ Tm)(ρϕ) for all φ ∈ D(Rn).

The de�nition (2.13.2) is independent of the choice of cut-o� functions ρ.

Remark 2.13.5. It reduces to the convolution as de�ned in Theorem 2.11.1 when m = 2
and T1 ∈ E ′(Rn).

We also list some basic properties of this extended version of convolution as a proposition.

Proposition 2.13.6. Let T1, · · · , Tm ∈ D ′(Rn) and assume that the restriction of the
mapping µ (as in (2.13.1)) to supp (T1)× · · · × supp (Tm) is proper.

(1) Associativity. If I and J are disjoint subsets of {1, · · · ,m} whose union is
{1, · · · ,m}, then

T1 ∗ · · · ∗ Tm = (∗Ti)i∈I ∗ (∗Tj)j∈J .
(2) Support. supp (T1 ∗ · · · ∗ Tm) ⊂ supp (T1) + · · ·+ supp (Tm).

12Clearly Kϵ(φ) is closed. We only need to show boundedness, which is easily follows from Lemma 2.13.3.
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2.14. Structure of D ′(Rn), E ′(Rn) and S ′(Rn)

We �rst prove structure theorem for D ′(Rn) using some fundamental solutions of some
di�erential operators. Recall that the distributional derivative of the Heaviside function H
(given in (1.1.6)) is simply the Dirac measure, i.e.

∂H = δ0.

In other words, H is the fundamental solution of the di�erential operator ∂. This can easily
be extended as follows: By observing that

x+ = xH(x) for all x ∈ R,
we see that ∂x+ = H, and so

∂k
(

xk−1
+

(k − 1)!

)
= δ0 for each k ∈ N.

Using Proposition 2.10.3(iii), if one sets

Ek(x) :=
(x1)

k−1
+ · · · (xn)k−1

+

((k − 1)!)n
for all x ∈ Rn,

then one has

(2.14.1) (∂1 · · · ∂n)kEk = δ0 in D ′(Rn),

that is, Ek is the fundamental solution of the di�erential operator (∂1 · · · ∂n)k. This can be
used to prove the following so-called structure theorem:

Theorem 2.14.1 (Structure of D ′(Rn) restricted on a bounded open set). Let Ω be a
bounded open set in Rn. For each T ∈ D ′(Rn), then

T |Ω = ∂αf

for some multi-index α and for some function f ∈ C0(Rn). Precisely,

T (φ) = (−1)|α|
�
Rn

f(x)∂αφ(x) dx for all φ ∈ C∞
c (Ω).

Remark 2.14.2. From the proof, we see that we can choose supp (f) in any pre-assigned
neighborhood of Ω. In particular, the structure theorem also can be formulated in terms of
Laplacian, see Theorem 2.15.6.

Proof. Since Ω is bounded, one can �nd a cut-o� function ψ ∈ C∞
c (Rn) such that ψ = 1

in Ω. It is easy to see that
T = ψT in Ω.

Since ψT has compact support, then it is of �nite order N (as in De�nition 2.8.9). From
(2.14.1) (as well as Proposition 2.10.3(iii)), one has

ψT = (∂1 · · · ∂n)N+2EN+2 ∗ (ψT ).
So the theorem will follow, with multi-index α = (N + 2, · · · , N + 2), once it is shown that
the distribution EN+2 ∗ (ψT ) can be identify with a continuous function.

Let ρ ∈ C∞
c (Rn) be such that ρ ≥ 0, supp (ρ) ⊂ B1(0) and

�
Rn ρ(x) dx = 1. We set

ρϵ(x) := ϵ−nρ(x/ϵ) where ϵ > 0. We de�ne

fϵ :=
(
EN+2 ∗ (ψT )

)
∗ ρϵ ∈ C∞(Rn) (by Theorem 2.12.1).
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Since ψT and ρϵ have compact support, the associative law applies (Proposition 2.11.3), and
gives

fϵ = ψT ∗ (EN+2 ∗ ρϵ).
Using Theorem 2.12.1, we see that EN+2 ∗ ρϵ ∈ C∞(Rn), and therefore we compute that

fϵ(x) = ψT ((EN+2 ∗ ρ)(x− ·)).

In fact, we can show that

(2.14.2) EN+2 ∗ ρϵ → EN+2 in CN(Rn)

as ϵ→ 0 (left as exercise). Since ψT is of order N using De�nition 2.8.9 we see that for each
compact set K

lim
ϵ→0

∥fϵ − EN+2 ∗ (ψT )∥L∞(K) = 0,

thus the mapping

f(x) := EN+2 ∗ (ψT )(x) = ψT (EN+2(x− ·)) is in C0(Rn).

On the other hand, using Proposition 2.11.5, fϵ also converges to EN+2 ∗ (ψT ) in D ′(Rn)
as ϵ → 0. It is clear that the limits are the same in this case, therefore we conclude our
proof. □

Exercise 2.14.3. Prove (2.14.2). [Hint: Note that ρϵ is simply the standard molli�er.
See the proof of properties of molli�er.]

Corollary 2.14.4 (Structure of E ′(Rn)). Let T ∈ E ′(Rn). Then there is an integer
m ≥ 0 and a set of continuous functions {fα}|α|≤m such that

T =
∑
|α|≤m

∂αfα.

Precisely,

T (φ) =
∑
|α|≤m

(−1)|α|
�
Rn

fα(x)∂
αφ(x) dx for all φ ∈ E (Rn).

Proof. Let σ ∈ C∞
c (Rn) be such that σ = 1 in a neighborhood of supp (T ). Let Ω be

an open set such that supp (T ) ⊂ Ω. Using Theorem 2.14.1, we see that

T (ψ) = (−1)|α|
�
Rn

f(x)∂αψ(x) dx for all ψ ∈ D(Ω).

Therefore, we see that

T (φ) = T (σφ) = (−1)|α|
�
Rn

f(x)∂α(σφ)(x) dx for all φ ∈ E (Rn),

and thus we obtain our corollary. □

We now prove structure theorem for S ′(Rn) using Fourier transform, which stated that
every tempered distribution is a distributional derivative of �nite order of some continuous
function of polynomial growth, can be found in [FJ98, Theorem 8.3.1]:

Theorem 2.14.5 (Structure of S ′(Rn)). Any T ∈ S ′(Rn) can be written as T = ∂αf
for some multi-index α and some polynomially bounded continuous function f .
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Proof. It is su�ce to prove this for T ∈ S ′(Rn) supported in Ω ={
x ∈ Rn x1 > 0, · · · , xn > 0

}
, i.e.

T (φ) = 0 for all φ ∈ S (Rn) with supp (φ) ⊂ Rn \ Ω.
For this implies the result when T ∈ S ′(Rn) is supported in{
x ∈ Rn σ1x1 > −δ, · · · , σnxn > −δ

}
where δ > 0 and each σj = ±1 (using

Lemma 2.13.3), and, via a partition of unity, any tempered distribution can be writ-
ten as the sum of 2n distributions of this type.

Let T ∈ S ′(Rn) with supp (T ) ⊂ Ω. Using Lemma 2.4.2 (as well as Remark 2.2.2), we
have

(2.14.3) |T (φ)| ≤ C
∑

|α|,|β|≤N

sup
x∈Rn

xα|Dβφ(x)| for all φ ∈ S (Rn).

Choosing φ = ρϕ with ϕ ∈ C∞
c (Rn) and ρ ∈ C∞(Rn) with ρ = 1 on a neighborhood of

supp (T ), we have (with di�erent constant C)

|T (ϕ)| ≤ C
∑

|α|,|β|≤N

sup
x∈Ω

(
xα|Dβϕ(x)|

)
for all ϕ ∈ C∞

c (Rn),

since |xα| = xα when x ∈ Ω.
We de�ne EN+2 ∈ D ′(Rn) by

EN+2(x) :=
(x1)

N+1
+ · · · (xn)N+1

+

((N + 1)!)n
.

Since restriction of the mapping µ (as in (2.13.1)) to supp (EN+2) × supp (T ) is proper (see
Example 2.13.2), using Theorem 2.13.4 the convolution EN+2 ∗ T is well-de�ned. From
Theorem 2.11.1 and (2.14.1), we see that

supp (EN+2 ∗ T ) ⊂ Ω, T = (∂1 · · · ∂n)N+2(EN+2 ∗ T ).
As in the proof of Theorem 2.14.1, we can show that f := EN+2 ∗T ∈ C0(Rn) and that from
(2.14.3) we have

|f(x)| ≤ C ′
∑

|α|,|β|≤N

sup
t∈Ω

tα∂β
(
(x1 − t1)

N+1
+ · · · (xn − tn)

N+1
+

)
with C ′ = C/((N+1)!)n. An elementary computation, which is left to the reader, shows that
|f(x)| ≤ C ′′⟨x⟩M with M = 2N + 1 for some constant C ′′ > 0, so the theorem is proved. □

With the structure theorem at hand, we can prove the following result (see e.g. Theo-
rem 3.9.1 of Mikko Salo's lecture note).

Theorem 2.14.6. If T ∈ S ′(Rn) and f ∈ S (Rn), then f ∗ T ∈ OM(Rn).

Proof. By Theorem 2.14.5, there is a multi-index α and a polynomially bounded con-
tinuous function h such that T = ∂αh, i.e.

T (φ) = (−1)|α|
�
Rn

h(y)∂αy φ(y) dy.

From (2.12.1), we have

(f ∗ T )(x) = T (f(x− ·)) = (−1)|α|
�
Rn

h(y)∂αy f(x− y) dy = (−1)|α|
(
h ∗ ∂αf

)
(x),

http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf
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which implies our desired result. □

2.15. Fourier transform on E ′(Rn) and the convolution theorem

With the structure theorem at hand, we are now able to show that the Fourier transform
of compactly supported distribution (see De�nition 2.5.1 and Theorem 2.7.11) is actually a
smooth function in Rn. This illustrates the fact that the Fourier transform exchanges decay
properties with smoothness.

Theorem 2.15.1. Let T ∈ E ′(Rn), then its Fourier transform T̂ = TF with F (ξ) =
T (ϕ(·, ξ)) with ϕ(x, ξ) = e−ix·ξ and F ∈ OM(Rn).

Remark 2.15.2. Accordingly, we can identify T̂ with the function T̂ (ξ) := T (ϕ(·, ξ)) for
all ξ ∈ Rn.

Proof of Theorem 2.15.1. Let T ∈ E ′(Rn). Using the structure theorem in Corol-
lary 2.14.4, we can write T =

∑
|α|≤N ∂

αfα with fα ∈ Cc(Rn). Then by properties of the

Fourier transform on Schwartz functions (Proposition 2.3.3), for each φ ∈ S (Rn), we have

T̂ (φ) = T (φ̂) =
∑
|α|≤N

(−1)α
�
Rn

fα(x)∂
αφ̂(x) dx

=
∑
|α|≤N

�
Rn

fα(x)((iξ)
αφ)∧(x) dx

=

�
Rn

( ∑
|α|≤N

(iξ)αf̂α(ξ)

)
φ(ξ) dξ.

On the other hand, we compute that∑
|α|≤N

(iξ)αf̂α(ξ) =
∑
|α|≤N

(iξ)α
�
Rn

fα(ξ)e
−ix·ξ dξ

=
∑
|α|≤N

(−1)|α|
�
Rn

fα(ξ)∂
αe−ix·ξ dξ

= T (ϕ(·, ξ)) with ϕ(x, ξ) = e−ix·ξ,(2.15.1)

which gives

T̂ (φ) =

�
Rn

T (ϕ(·, ξ))φ(ξ) dξ.

Since f̂ ∈ L∞(Rn), from (2.15.1) we immediately see that the mapping ξ 7→ T (ϕ(·, ξ)) is in
OM(Rn). □

Corollary 2.15.3. If T, S ∈ E ′(Rn), then (T ∗ S)∧(ξ) = T̂ (ξ)Ŝ(ξ).

Proof. Using Theorem 2.11.1, we know that T ∗ S ∈ E ′(Rn). Using Theorem 2.15.1,
one can computes follows:

(T ∗ S)∧(ξ) = (T ∗ S)(ϕ(·, ξ)) with ϕ(x, ξ) = e−ix·ξ

= (T ⊗ S)(ψ(·, ξ)) with ψ(x, y, ξ) = e−i(x+y)·ξ = ϕ(x, ξ)ϕ(y, ξ)

= T (ϕ(·, ξ))S(ϕ(·, ξ)) = T̂ (ξ)Ŝ(ξ),
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which conclude our corollary. □

We now establish a version of the convolution theorem for distributions.

Theorem 2.15.4. Let T ∈ S ′(Rn) and S ∈ E ′(Rn). Then T ∗S ∈ S ′(Rn) and (T ∗S)∧ =

T̂ Ŝ.

Remark 2.15.5. Recall that F : L2(Rn) → L2(Rn) is an isomorphism. Using Schwartz's
inequality, it is easy to show that u ∗ v ∈ L∞(Rn) ⊂ S ′(Rn) is well-de�ned. Using Parseval's
identity, we also can easily see that ûv̂ ∈ L1(Rn) ⊂ S ′(Rn). In particular, the convolution
theorem also holds for L2(Rn) functions: (u ∗ v)∧ = ûv̂ for all u, v ∈ L2(Rn), see e.g. [FJ98,
Theorem 9.2.3].

Proof of Theorem 2.15.4. By Proposition 2.4.10 and Theorem 2.15.1, one has T̂ Ŝ ∈
S ′(Rn). Since F : S ′(Rn) → S ′(Rn) is bijective (Theorem 2.5.4), there exists a unique

R ∈ S ′(Rn) such that R̂ = T̂ Ŝ. To compute R, we use the Fourier inversion formula in
Theorem 2.5.4 and Corollary 2.15.3: For each φ ∈ D(Rn), we have

R(φ̃)
(2.5.1)
= (2π)−nR̂(φ̂) = (2π)−n(T̂ Ŝ)(φ̂) = (2π)−n

�
Rn

T̂ (ξ)Ŝ(ξ)φ̂(ξ) dξ

= (2π)−n
�
Rn

T̂ (ξ)(S ∗ φ)∧(ξ) dξ = (2π)−nT̂ ((S ∗ φ)∧) (2.5.1)
= T

(
(S ∗ φ)∼

)
= (T ∗ S)(φ̃),

where the last equality follows from Corollary 2.12.3. Hence we conclude our result from
density result in Proposition 2.8.16. □

We now also able to obtain a structure theorem for D ′(Rn) in terms of Laplacian (see
also Theorem 2.14.1).

Theorem 2.15.6 (Structure of D ′(Rn)). If T ∈ D ′(Rn) and Ω is a bounded open set in
Rn. Then there is a f ∈ C0(Rn) and an integer N ≥ 0 such that

T = (1−∆)Nf in Ω.

Proof. One can choose a cut-o� function ρ ∈ C∞
c (Rn) such that ρ = 1 in Ω. As

ρT ∈ E ′(Rn), Theorem 2.15.1 implies that (ρT )∧ ∈ OM(Rn). Hence one can �nd an integer
N such that

g(ξ) := (1 + |ξ|2)−N(ρT )∧(ξ) is in L1(Rn).

Since L1(Rn) ⊂ S ′(Rn) and F : S ′(Rn) → S ′(Rn) is bijective continuous, then there exists

f ∈ C0(Rn) such that such that f̂ = g, which gives

(ρT )∧(ξ) = (1 + |ξ|2)N f̂(ξ) for all ξ ∈ Rn.

Hence the Fourier inversion formula implies that

ρT = (1−∆)Nf in Rn,

which conclude our theorem. □
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2.16. Convolution of pv tempered distributions and Fourier transform

As a preamble, observe that f(x) := 1
x
for x ̸= 0 is not L1

loc(R), therefore we cannot
associate it by a distribution using the way described in Example 2.8.10. Nonetheless, it is
possible to associate to this function a certain using some tricks.

Example 2.16.1. We consider the mapping T : D(R) → C by

(2.16.1) T (φ) := lim
ϵ→0+

�
|x|≥ϵ

φ(x)

x
dx for all φ ∈ D(R).

We �rst prove the mapping (2.16.1) is well-de�ned. Given any φ ∈ D(R) and suppose R > 0
is such that supp (φ) ⊂ (−R,R). Fixing any 0 < ϵ < R, and since 1

x
is odd, we have�

|x|≥ϵ

φ(x)

x
dx =

�
ϵ≤|x|≤R

φ(x)

x
dx =

�
ϵ≤|x|≤R

φ(x)− φ(0)

x
dx.

Since |φ(x)−φ(0)
x

| ≤ sup|y|≤R |φ′(y)| for each x ∈ R\{0}, using Lebesgue dominated convergence
theorem, we see that

(2.16.2) T (φ) = lim
ϵ→0+

�
ϵ≤|x|≤R

φ(x)− φ(0)

x
dx =

�
|x|≤R

φ(x)− φ(0)

x
dx,

this shows that (2.16.1) is well-de�ned, and it can expressed in terms of (2.16.2). From the
estimate

|T (φ)| ≤ 2R sup
|x|≤R

|φ′(x)| for all φ ∈ D((−R,R)),

we know that T is a distribution in R of order at most one (see De�nition 2.8.9).
We are left with showing that T does not have order 0. Consider the compact set K =

[0, 1] and for each j ∈ N, let φj ∈ D((0, 1)) be such that 0 ≤ φj ≤ 1 and φj = 1 on
[ 1
j+2

, 1− 1
j+2

]. Then we see that

T (φj) =

� 1

0

φj(x)

x
dx ≥

� 1− 1
j+2

1
j+2

1

x
dx = ln(j + 1) for each j ∈ N.

Since supx∈K |φj(x)| ≤ 1 and limj→∞ ln(j + 1) = ∞, this shows that there is no constant
C > 0 with the property that

|T (φ)| ≤ C sup
x∈K

|φ(x)| for all φ ∈ DK ,

this proves that T does not have order 0. Therefore we conclude that T of order 1. We usually
denote such distribution T by pv 1

x
, called the principal value 1

x
. Many authors (including

myself) just simply ignore the notation �pv�, so we need to understand it by ourselves when
reading these literature.

Exercise 2.16.2. Show that pv 1
x
∈ S ′(R).

Exercise 2.16.3. Prove that (ln |x|)′ = pv 1
x
in S ′(R).

To generalize the above idea to general case, we need to introduce some de�nition.

Definition 2.16.4. A nonempty open set O in Rn is called a cone-like region if tx ∈ O
whenever x ∈ O and t > 0. Given a cone-like region O ⊂ Rn, call a function f : O → C
positive homogeneous of degree k ∈ R if f(tx) = tkf(x) for every t > 0 and every x ∈ O.
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From Example 2.16.1, we see that the key features of the function Θ(x) := 1
x
(x ∈ R\{0})

that allowed us to de�ne pv 1
x
as a tempered distribution on the real line as follows:

Θ ∈ C0(R \ {0}), positive homogeneous of degree − 1, Θ(1) + Θ(−1) = 0.

Exercise 2.16.5. Prove that if f ∈ C0(Rn\{0}) is positive homogeneous of degree k ∈ R,
then

|f(x)| ≤ ∥f∥L∞(Sn−1)|x|k for all x ∈ Rn \ {0}.

We now want to generalize the above to Rn:

Proposition 2.16.6. Let n ≥ 2 be an integer, and let Θ be a function satisfying

(2.16.3) Θ ∈ C0(Rn \ {0}), positive homogeneous of degree − n,

�
Sn−1

Θ ds = 0.

Then the linear map pvΘ : S (Rn) → C given by

(2.16.4) (pvΘ)(φ) := lim
ϵ→0+

�
|x|≥ϵ

Θ(x)φ(x) dx for all φ ∈ S (Rn)

is well-de�ned and is in S ′(Rn). In addition,

(2.16.5) pvΘ

∣∣∣∣
Rn\{0}

= Θ

∣∣∣∣
Rn\{0}

in D ′(Rn \ {0}).

Proof. Writing x̂ = x/|x| for all x ̸= 0. Fixing any radially symmetric function ψ ∈
C1(Rn) with ψ(0) = 1 and

|ψ(x)| ≤ C|x|−ϵ0 for all x with |x| ≥ R

for some ϵ0 > 0, R > 0 and C > 0. For each ϵ > 0, we compute�
|x|≥ϵ

Θ(x)ψ(x) dx =

�
|x|≥ϵ

Θ(x̂)

|x|n
ψ(x) dx (positive homogeneous of degree − n)

=

� ∞

ϵ

ψ(r)

r

( =0︷ ︸︸ ︷�
Sn−1

Θ(x̂) ds(x̂)

)
dr = 0.

Then we have�
|x|≥ϵ

Θ(x)φ(x) dx =

�
|x|≥ϵ

Θ(x)
(
φ(x)− φ(0)ψ(x)

)
dx =

�
|x|≥ϵ

Θ(x̂)
φ(x)− φ(0)ψ(x)

|x|n
dx

Since Θ ∈ C0(Rn \ {0}) and using Exercise 2.16.5, then we see that for each φ ∈ S (Rn) we
know that

the mapping x 7→ Θ(x)
(
φ(x)− φ(0)ψ(x)

)
= Θ(x̂)

φ(x)− φ(0)ψ(x)

|x|n
is in L1(Rn).

Therefore using Lebesgue dominated convergence theorem, we have

(2.16.6) (pvΘ)(φ) =

�
Rn

Θ(x)
(
φ(x)− φ(0)ψ(x)

)
dx for all φ ∈ S (Rn).

Using mean value theorem on the mapping t 7→ φ(tx)ψ((1− t)x), it is easy to see that

|(pvΘ)(φ)| ≤ C sup
|α|≤1,|β|≤1

[φ]α,β,
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where [·]α,β is given by (2.2.2), which shows that pvΘ ∈ S ′(Rn). The fact (2.16.5) is
immediate from de�nitions. □

Remark 2.16.7 (Representation). By choosing ψ = 1 in B1(0) in (2.16.6), we can com-
pute that

(2.16.7) (pvΘ)(φ) =

�
|x|≤1

Θ(x)
(
φ(x)− φ(0)

)
dx+

�
|x|>1

Θ(x)φ(x) dx for all φ ∈ S (Rn).

Example 2.16.8. If j ∈ {1, · · · , n}, the function Θ de�ned by Θ(x) :=
xj

|x|n+1 for each

x ∈ Rn \ {0} satis�es (2.16.3). By Proposition 2.16.6, we have

pv
xj

|x|n+1
belongs to S ′(Rn).

From (2.16.7), we have the representation(
pv

xj
|x|n+1

)
(φ) = lim

ϵ→0+

�
|x|≥ϵ

xjφ(x)

|x|n+1
dx

=

�
|x|≤1

xj(φ(x)− φ(0))

|x|n+1
dx+

�
|x|>1

xjφ(x)

|x|n+1
dx.

From Proposition 2.16.6, we know that whenever Θ is a function satisfying the conditions
in (2.16.3), the principal value distribution pvΘ ∈ S ′(Rn). As such, its Fourier transform
makes sense in S ′(Rn), see Theorem 2.5.4. Here we do not walk through all the computations
(they are quite technical). The results following are adopted from [Mit18, Section 4.5].

Before discussing the Fourier transform of principal value distributions pvΘ, we �rst
introduce an auxiliary function as in [Mit18, Therem 4.74]:

Proposition 2.16.9 (Theorem 4.74 in [Mit18]). Let Θ be a function satisfying the con-
ditions in (2.16.3). Then the function given by the formula

mΘ(ξ) := −
�
Sn−1

Θ(ω) log(iξ · ω) ds(ω) for all ξ ∈ Rn \ {0},

where we choose the branch

log(iξ · ω) = ln |ξ · ω|+ i
π

2
sgn (ξ · ω),

is well-de�ned, positive homogeneous of degree zero, satis�es�
Sn−1

mΘ(ξ) ds(ξ) = 0, ∥mΘ∥L∞(Rn) ≤ Cn∥Θ∥L∞(Sn−1)

with positive constant Cn := π|Sn−1|
2

+
�
Sn−1 | ln | ξ|ξ| · ω|| ds(ω) and F−1(mΘ) = mF−1pvΘ. In

addition, if Θ ∈ Ck(Rn \ {0}) for some k ∈ Z≥0 ∪ {∞}, then

mΘ

∣∣∣∣
Rn\{0}

∈ Ck(Rn \ {0}).

If Θ is an even function in the sense of Θ(ω) = Θ(−ω) for all ω ∈ Sn−1, then mΘ = mΘ.

In fact, the function introduce above is the Fourier transform of the tempered distribution
pvΘ:
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Theorem 2.16.10 (Theorem 4.74 in [Mit18]). Let Θ be a function satisfying the con-
ditions in (2.16.3). Then the Fourier transform of the tempered distribution pvΘ is given
by

F (pvΘ) = mΘ in S ′(Rn).

The next proposition elaborates on the manner in which principal value tempered distri-
butions convoluted with Schwartz functions.

Proposition 2.16.11. Let Θ be a function satis�es (2.16.3). Then for each φ ∈ S (Rn)
one has that (pvΘ) ∗ φ ∈ OM(Rn) and(

(pvΘ) ∗ φ
)
(x) = lim

ϵ→0+

�
|x−y|≥ϵ

Θ(x− y)φ(y) dy for all x ∈ Rn.

Proof. Using Proposition 2.16.6, we know that pvΘ ∈ S ′(Rn). For each φ ∈ S (Rn),
using Theorem 2.14.6, we know that (pvΘ)∗φ ∈ OM(Rn). On the other hand, using (2.12.1),
we compute that

((pvΘ) ∗ φ)(x) = (pvΘ)(φ(x− ·)) = lim
ϵ→0+

�
|z|≥ϵ

Θ(z)φ(x− z) dz,

which conclude our proposition. □

Let Θ1,Θ2 be functions satisfy (2.16.3). From Proposition 2.16.6, we know that pvΘj ∈
S ′(Rn) for j = 1, 2. We now want to de�ne the convolution (pvΘ1)∗(pvΘ2). Let ψ ∈ D(Rn)
such that ψ ≡ 1 near the origin, and we write

T00 :=
(
ψpvΘ1

)
∗
(
ψpvΘ2

)
,

T01 :=
(
ψpvΘ1

)
∗
(
(1− ψ)pvΘ2

)
,

T10 :=
(
(1− ψ)pvΘ1

)
∗
(
ψpvΘ2

)
,

T11 :=
(
(1− ψ)pvΘ1

)
∗
(
(1− ψ)pvΘ2

)
.

Note that T00, T01 and T10 are well-de�ned by Theorem 2.11.1. In particular, T11 is well-
de�ned as follows:

Exercise 2.16.12. Show that T11 = f1∗f2 where fj = (1−ψ)Θj for j = 1, 2, are functions
belonging in L2(Rn).

From this, we know that u11 is well-de�ned in S ′(Rn). Then it is make sense to de�ne

(pvΘ1) ∗ (pvΘ2) := T00 + T01 + T10 + T11 in S ′(Rn).

Since F : S ′(Rn) → S ′(Rn) is a continuous bijective, then F
(
(pvΘ1) ∗ (pvΘ2)

)
is make

sense. In fact, we have

F
(
(pvΘ1) ∗ (pvΘ2)

)
= mΘ1mΘ2 in S ′(Rn),

see [Mit18, Section 4.6] for more details.

Example 2.16.13. For each j ∈ {1, · · · , n}, the operators Rj de�ned by

Rjφ :=

(
pv

xj
|x|n+1

)
∗ φ for all φ ∈ S (Rn),
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are called the Riesz transform in Rn. In the particular case when n = 1 the corresponding
operator

Hφ :=

(
pv

1

x

)
∗ φ for all φ ∈ S (R),

is called the Hilbert transform. These operators play a fundamental role in harmonic analysis.
In particular, the Riesz transform can be extended as a bounded linear operator

Rj : L
2(Rn) → L2(Rn)

and its Fourier transform is given by

(Rjφ)
∧(ξ) = Cn

iξj
|ξ|
φ̂(ξ) in S ′(Rn) with Cn = − π

n+1
2

Γ(n+1
2
)
,

see e.g. [Mit18, Theorem 4.97] for more details. By writing ∇ = (∂1, · · · , ∂n) and R =
(R1, · · · , Rn), since (∂jφ)

∧(ξ) = iξjφ̂(ξ) and (−∆φ)∧(ξ) = |ξ|2φ̂(ξ), therefore sometimes we
simply denote

Rj = Cn∂j(−∆)−
1
2

or in vector notation R = Cn∇(−∆)−
1
2 .

Exercise 2.16.14. Show that if f ∈ C0(Rn \ {0}) is positive homogeneous of degree
k ∈ R with k > −n, then f ∈ S ′(Rn).

Exercise 2.16.15. Prove that if f ∈ C0(Rn\{0}) is positive homogeneous of degree 1−n
on Rn \ {0} and g ∈ C0(Sn−1), then�

∂BR(0)

g(x/R)f(x) ds(x) =

�
Sn−1

g(x)f(x) ds(x) for all R > 0.

Based on the above observation, we discusses a basic class of principal value tempered
distributions.

Example 2.16.16. Let Φ ∈ C1(Rn \ {0}) be positive homogeneous of degree 1− n (and
hence Φ ∈ S ′(Rn) by Exercise 2.16.14). Then for each j ∈ {1, · · · , n} it follows that
∂jΦ satis�es the conditions in (2.16.3). Consequently, pv (∂jΦ) is a well-de�ned tempered
distribution by Proposition 2.16.6. The condition

�
Sn−1(∂jΦ)(x̂) ds(x̂) = 0 can be veri�ed

using Exercise 2.16.15 as follows:

0 =

�
|x|=2

Φ(x)
xj
2
ds(x)−

�
|x|=1

Φ(x)xj ds(x) =

�
1<|x|<2

∂jΦ(x) dx

=

� 2

1

�
Sn−1

(∂jΦ)(rx̂)r
n−1ds(x̂) dr =

( � 2

1

1

r
dr

) �
Sn−1

(∂jΦ)(x̂) ds(x̂)

= ln 2

�
Sn−1

(∂jΦ)(x̂) ds(x̂).

Principal value tempered distributions often arise when di�erentiating certain types of
functions exhibiting a point singularity. Speci�cally, we have the following theorem:

Theorem 2.16.17. Let Φ ∈ C1(Rn \ {0}) be a function that is positive homogeneous of
degree 1− n. Then for each j ∈ {1, · · · , n}, the distributional derivative ∂jΦ satis�es

(2.16.8) ∂jΦ =

( �
Sn−1

Φ(x̂)x̂j ds(x̂)

)
δ0 + pv (∂jΦ) in S ′(Rn).
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Proof. Using Proposition 2.8.16, it is su�ce to prove (2.16.8) in D ′(Rn). Fixing any
φ ∈ D(Rn), we see that

(∂jΦ)(φ) = −
�
Rn

Φ(x)∂jφ(x) dx = − lim
ϵ→0+

�
|x|≥ϵ

Φ(x)∂jφ(x) dx

= lim
ϵ→0+

�
|x|≥ϵ

∂jΦ(x)φ(x) dx+ lim
ϵ→0+

�
|x|=ϵ

x̂jΦ(x)φ(x) ds(x)

=
(
pv (∂jΦ)

)
(φ) + lim

ϵ→0+

�
|x|=ϵ

xj
ϵ
Φ(x)φ(x) ds(x).

For each ϵ > 0, using Exercise 2.16.15 we see that�
|x|=ϵ

xj
ϵ
Φ(x)φ(x) ds(x)

=

�
|x|=ϵ

xj
ϵ
Φ(x)

(
φ(x)− φ(0)

)
ds(x) + φ(0)

�
|x|=ϵ

xj
ϵ
Φ(x) ds(x)

=

�
|x|=ϵ

xj
ϵ
Φ(x)

(
φ(x)− φ(0)

)
ds(x) + φ(0)

�
Sn−1

x̂Φ(x̂) ds(x̂).

In addition, using Exercise 2.16.5 we may estimate∣∣∣∣�
|x|=ϵ

xj
ϵ
Φ(x)

(
φ(x)− φ(0)

)
ds(x)

∣∣∣∣
≤ ϵ∥∇φ∥L∞(Rn)∥Φ∥L∞(Sn−1)

�
|x|=ϵ

1

|x|n−1
ds(x)

= ϵ∥∇φ∥L∞(Rn)∥Φ∥L∞(Sn−1)|Sn−1| → 0 as ϵ→ 0+.

Combining the equations above, we conclude our theorem. □
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