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Preface
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students from Department of Mathematical Sciences, this lecture note will focus on mathematical
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[DBC21]1 and we will also explain the mathematical principle based on [Dur19]2. One also
can take a look on supplementary materials [SD15]3 (Exercises with solutions can be found in
[HSPW14]4) as well as [LC98]5. One can download the above mentioned three monographs under
National Chengchi University’s IP. If it feels too difficult, you can consult some free materials in
MIT (Massachusetts Institute of Technology) Open Course Ware6 as well as some commercial
textbooks [LM21, WMS07], but unfortunately you have to pay for these two commercial
textbooks. The lecture note may updated during the course.
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PROBABILITY VERSUS STATISTICS 1

Probability versus statistics

Probability and statistics are two closely related fields in mathematics that are sometimes
combined for academic purposes. Despite both probability and statistics about random processes,
however they are two different subjects, see the following table:

Probability Statistics

a branch of pure mathematics a branch of applied mathematics

studies the consequences of mathematical

definitions

tries to make sense of observations in the

real world

a logically self contained theory to compute

probabilities

make probabilistic inferences/reasoning

based on samples (real/experimental data)

predicting the likelihood of future events analyzing the frequency of past events

TABLE 1. Probability versus Statistics

For example, if one tosses a given coin for 100 times, how many times of head/tail you expect
to get? It is possible that, says, I got 51 heads and 49 tails, but you may obtain 48 heads and 52
tails. After several experiments, we may expect that one should obtain 50 heads and 50 tails, and
believe that the coin is “fair” in the sense of “the probability of obtaining head/tail is 1/2”. What
we have done above is analyzing the frequency of past events, or quantify uncertainties, therefore
the statistics.

An a comparison, if you given a coin, and it was tosses for 100 times, how many heads/tails
you predicted? If we assume that the coin is “fair”, i.e. the probability of obtaining head/tail
is 1/2, then we predict that 50 heads will be obtained. If we assume that the coin is “biased”,
says, the probability of obtaining head is 3/4, then we predict that 75 heads will be obtained.
Some predictions are made, but the coin is not really tossed, therefore the probability. In summary,
probability theory enables us to find the consequences of a given ideal world (some believes), while
statistical enables us to quantify uncertainties in real world (no single correct answer).



CHAPTER 1

Review of differentiation

1.1. Limits and continuity

We also recall some fact in calculus, see e.g. my lecture note [Kow24] and the references
therein for more details.

DEFINITION 1.1.1. A subset Ω⊂RN is said to be open if for each x ∈Ω there exists ε = ε(x)>
0 such that Bε(x)⊂ Ω. Here and after, the open ball BR(x) is defined by

BR(x) :=
{
y = (y1, · · · ,yN) ∈ RN : |x−y|< ε

}
,

where |z|=
√

z2
1 + · · ·+ z2

N for all z = (z1, · · · ,zN) ∈ RN .

DEFINITION 1.1.2. Let Ω be an open set in RN with x0 ∈ Ω and we consider a function f :
Ω\{x0}→ R.

(1) We say that the limit limx→x0 f (x) = L exists if the following holds: Given any ε > 0,
there exists δ = δ (ε)> 0 such that

0 < |x−x0|< δ implies | f (x)−L|< ε.

In this case, we also say that the limit limx→x0 f (x) exists in R.
(2) We say that the limit limx→x0 f (x) = +∞ exists if the following holds: Given any M > 0,

there exists δ = δ (M)> 0 such that

0 < |x−x0|< δ implies f (x)> M.

(3) We say that the limit limx→x0 f (x) =−∞ exists if the following holds: Given any M > 0,
there exists δ = δ (M)> 0 such that

0 < |x−x0|< δ implies f (x)<−M.

We also unify the above notions by saying that the limit limx→x0 f (x) exists in [−∞,+∞].

The following are some basic properties of limits:

LEMMA 1.1.3. Let Ω be an open set in RN with x0 ∈ Ω and we consider functions g1 : Ω \
{x0}→R and g2 : Ω\{x0}→R. If both limits limx→x0 g1(x) and limx→x0 g2(x) exist in R, then
the following holds true:

2



1.2. FIRST ORDER DERIVATIVES 3

(1) for each c1 ∈R and c2 ∈R the limit limx→x0(c1g1(x)+c2g2(x)) exists in R and satisfies

lim
x→x0

(c1g1(x)+ c2g2(x)) = lim
x→x0

g1(x)+ lim
x→x0

g2(x) (linearity).

(2) if g1(x)≤ g2(x) for all x ∈ Bε(x0) for some ε > 0, then

lim
x→x0

g1(x)≤ lim
x→x0

g2(x) (monotonicity).

(3) the limit limx→x0(g1(x)g2(x)) exists in R and satisfies

lim
x→x0

(g1(x)g2(x)) =

(
lim

x→x0
g1(x)

)(
lim

x→x0
g2(x)

)
.

(4) if we additionally assume that limx→x0 g2(x) ̸= 0, then the limit limx→x0
g1(x)
g2(x)

exists in R
and satisfies

lim
x→x0

g1(x)

g2(x)
=

limx→x0 g1(x)

limx→x0 g2(x)
.

We now ready to introduce the following notion:

DEFINITION 1.1.4. Let Ω be an open set in RN and let f : Ω → R be a function. If

lim
x→x0

f (x) = f (x0) ∈ R for some x0 ∈ Ω,

then we say that f is continuous at x0.

(1) If there exists an open set x0 ∈ U ⊂ Ω such that f is continuous at all point x ∈ U , then
we say that f is continuous near x0.

(2) If f is continuous at all points in Ω, then we say that f is continuous on Ω.

1.2. First order derivatives

For the case when N = 1, the differentiation of the function f : Ω ⊂ R1 → R can be simply
define by the limit

(1.2.1) f ′(x) := lim
h→0

f (x+h)− f (x)
h

.

However, the above definition cannot be directly extended to higher dimensional case by simply
replace x and h by vectors x and h, since the division of vectors are not well-defined. Let’s us
observe the above equation holds if and only if

0 = lim
h→0

∣∣∣∣ f (x+h)− f (x)
h

− f ′(x)
∣∣∣∣

= lim
h→0

∣∣∣∣ f (x+h)− f (x)− f ′(x)h
h

∣∣∣∣= lim
h→0

| f (x+h)− f (x)− f ′(x)h|
|h|

.

Now it is natural to consider the differentiation of the function f : Ω ⊂ RN → R as follows:
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DEFINITION 1.2.1. Let Ω be an open set in RN and let f : Ω → R be a function. We say that f
is differentiable at x0 ∈ Ω if there exists a vector L ∈ RN such that

(1.2.2) lim
h→0

| f (x+h)− f (x)−L ·h|
|h|

= 0,

where L ·h= L1h1 + · · ·+LNhN . In this case, the total derivative D f (x0) of f at x0is defined by
the vector D f (x0) :=L.

(1) If there exists an open set x0 ∈U ⊂ Ω such that f is differentiable at all point x ∈U , then
we say that f is differentiable near x0.

(2) If f is differentiable at all points in Ω, then we say that f is differentiable on Ω.

It is not so obvious that whether the vector L in (1.2.2) is unique or not. Suppose that (1.2.2)
holds true for L=L1 and L=L2, then

|L1 −L2|=
|( f (x+h)− f (x)−L1 ·h)− ( f (x+h)− f (x)−L2 ·h)|

|h|

≤ | f (x+h)− f (x)−L1 ·h|− | f (x+h)− f (x)−L2 ·h|
|h|

→ 0 as |h| → 0+,

which concludes that L1 =L2.

EXERCISE 1.2.2. Show that each differentiable function is also continuous.

After exhibiting an abstract definition of differentiation of a function f , we are now asking how
to compute its total derivative D f (x) at each point x. Let ei be the ith column of the identity
matrix, that is,

e1 = (1,0,0, · · · ,0),

e2 = (0,1,0, · · · ,0),
...

eN = (0, · · · ,0,0,1).

If f is differentiable at x0 ∈ Ω, then we may restrict the limit (1.2.2) on the straight line {hei : h ∈
R} to see that

0 = lim
h→0

| f (x+h)− f (x)−L ·h|
|h|

= lim
h=hei→0

| f (x+h)− f (x)−L ·h|
|h|

= lim
h→0

| f (x+hei)− f (x)−Lih|
|h|

,

which implies

Li = lim
h→0

f (x+hei)− f (x)
h

,
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which is exactly identical to the definition of the differentiation of functions with only one variable
(1.2.1). Now it is natural to consider the following notion.

DEFINITION 1.2.3. Let Ω be an open set in RN and let f : Ω → R be a function. For each
i = 1, · · · ,N, the ith partial derivative of f at x0 = (x1, · · · ,xN) is defined by

∂

∂xi
f (x1, · · · ,xi−1,x,xi+1, · · · ,xN)

∣∣∣∣
x=xi

= ∂i f (x0) := lim
h→0

f (x0 +hei)− f (x0)

h
.

If all partial derivatives at x0 exist, then we define the gradient ∇ f (x0) :=
(∂1 f (x0), · · · ,∂N f (x0)) ∈ RN .

We now put the above discussions in the following lemma.

THEOREM 1.2.4. Let Ω be an open set in RN and let f : Ω → R be a function. If f is
differentiable at x0 ∈ Ω, then D f (x0) = ∇ f (x0).

REMARK 1.2.5. The existence of the gradient ∇ f (x0) does not guarantee the differentiability
of f at x0.

The following sufficient condition is often been used to check the differentiability of a function.

THEOREM 1.2.6 ([Apo74, Theorem 12.11]). Let Ω be an open set in RN and let f : Ω → R be
a function. If the point x0 ∈ Ω satisfies the following two conditions:

• there exists ε > 0 such that all partial derivatives ∂1 f , · · · ,∂N f exist on Bε(x0); and
• all partial derivatives ∂1 f , · · · ,∂N f are continuous at x0;

then f is differentiable at x0.

The above theorem suggested the following definition.

DEFINITION 1.2.7. Let Ω be an open set in RN . We denote C1(Ω) be the collection of
differentiable functions f : Ω → R such that all partial derivatives ∂1 f , · · · ,∂N f : Ω → R are
continuous.

We often use the following consequence of Theorem 1.2.6 since it is much easy to remember:

COROLLARY 1.2.8. Let Ω be an open set in RN . If f ∈C1(Ω), then f : Ω →R is differentiable
and hence D f (x) = ∇ f (x) for all x ∈ Ω.

The above corollary allows us to solve multidimensional case by using technique in 1-
dimensional case.

1.3. Differentiation rules

Here we only give some special cases which are often used in practical applications. One can
refer to the monographs [Apo74, Rud87] for the results which are much more optimal.
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LEMMA 1.3.1. Let Ω be an open set in RN and let f1, f2 : Ω → R.

(a) Linearity. If both f1, f2 ∈C1(Ω), then for each c1,c2 ∈ R, the function

c1 f1 + c2 f2 : Ω → R, (c1 f1 + c2 f2)(x) := c1 f1(x)+ c2 f2(x) for all x ∈ Ω

is also in C1(Ω), and satisfying

∇(c1 f1 + c2 f2)(x) = c1∇ f1(x)+ c2∇ f2(x) for all x ∈ Ω.

(b) Product rule. If both f1, f2 ∈C1(Ω), then the function

f1 f2 : Ω → R, ( f1 f2)(x) := f1(x) f2(x) for all x ∈ Ω

is also in C1(Ω), and satisfying

∇( f1 f2)(x) = f2(x)∇ f1(x)+ f1(x)∇ f2(x) for all x ∈ Ω.

LEMMA 1.3.2 (chain rule [Apo74, Theorem 12.7]). Let Ω be an open set in RN and let
f1, · · · , fm : Ω → R be functions which is differentiable at a point x0 ∈ Ω. We denote the vector
valued function

f : Ω → Rm, f (x) = ( f1(x), · · · , fm(x)) for all x ∈ Ω,

and its range is defined by f(Ω) := {f(x) ∈ Rm : x ∈ Ω}. Let U be an open set in Rm such that
U ⊃ f(Ω) and let g : U → R be a function which is differentiable at f(x0). Then the composition
of functions

g◦f : Ω → R, g◦f(x) := g(f(x)) for all x ∈ Ω

is also differentiable at x0 ∈ Ω and its partial derivatives are given by

∂

∂xi
(g◦f)(x) = ∇yg(y)|y= f (x) ·

∂

∂xi
f(x)

=
m

∑
j=1

∂

∂y j
g(y)

∣∣∣∣
y=f(x)

∂

∂xi
f j(x) for all x ∈ Ω.(1.3.1)

In practice, we often use the following corollary, which says that the composition of C1

functions is also in C1:

COROLLARY 1.3.3. Let Ω be an open set in RN and let f ∈ (C1(Ω))N . Let U be an open set in
Rm such that U ⊃ f(Ω) and let g ∈C1(U). Then the composition of functions g◦f ∈C1(Ω) and
satisfies (1.3.1).

1.4. Second order derivatives

Let Ω be an open set in RN . The first order derivative of f : Ω → R at each x ∈ Ω is given by
the vector

∇ f (x) = (∂1 f (x), · · · ,∂N f (x)) ∈ RN .
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We now further assume that ∂i f : Ω → R is differentiable for all i = 1, · · · ,N, then the first order
derivative of each ∂i f at each point x ∈ Ω is given by the vector

∇∂i f (x) = (∂1∂i f (x), · · · ,∂N∂i f (x)) ∈ RN .

This suggests that the second order derivative of f : Ω → R at each x ∈ Ω should be the following
2-tensor (i.e. matrix)

∇
⊗2 f (x)≡ ∇⊗∇ f (x) :=


∂1∂1 f (x) ∂1∂2 f (x) · · · ∂1∂N f (x)
∂2∂1 f (x) ∂2∂2 f (x) · · · ∂2∂N f (x)

...
... . . . ...

∂N∂1 f (x) ∂N∂2 f (x) · · · ∂N∂N f (x)

 ,

that is, (
∇
⊗2 f (x)

)
i j := ∂i∂ j f (x) for all i, j = 1, · · · ,N.

We call ∇⊗2 f (x) the Hessian matrix. The notation ⊗ comes from the juxtaposition u⊗v of vectors
u and v is defined by u⊗v := uv⊺, that is,

(u⊗v)i j := uiv j.

REMARK 1.4.1. Similarly, the third derivatives of f should be the 3-tensor ∇⊗3 f (x) given by(
∇
⊗3 f (x)

)
i jk ≡ (∇⊗∇⊗∇ f (x))i jk := ∂i∂ j∂k f (x) for all i, j,k = 1, · · · ,N.

Inductively, the mth derivatives of f should be the m-tensor ∇⊗m f (x) given by(
∇
⊗m f (x)

)
i1i2···im

:= ∂i1∂i2 · · ·∂im f (x) for all i1, i2, · · · , im = 1, · · · ,N.

In practice, it is not convenient to work with nonsymmetric Hessian matrix ∇⊗2 f (x). Luckily
this is not the usual case:

THEOREM 1.4.2 ([Apo74, Theorem 12.13]). Let Ω be an open set in RN and let f : Ω → R be
a differentiable function. If there exists x0 ∈ Ω and i, j ∈ {1, · · · ,N} such that both ∂i∂ j f : Ω → R
and ∂ j∂i f : Ω → R exist and continuous at x0, then

∂i∂ j f (x0) = ∂ j∂i f (x0).

This theorem suggested us to consider the following space:

DEFINITION 1.4.3. Let Ω be an open set in RN . We denote C2(Ω) be the collection of functions
f : Ω → R such that all partial derivatives

∂i f : Ω → R, ∂i∂ j f : Ω → R for all i, j = 1, · · · ,N

exist and continuous.

In practice, we often use the following corollary of Theorem 1.4.2.
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COROLLARY 1.4.4. Let Ω be an open set in RN . If f ∈C2(Ω), then for each x∈ Ω the Hessian
matrix ∇⊗2 f (x) is symmetric.

1.5. Extreme values

We first begin with some definitions.

DEFINITION 1.5.1. Let Ω be an open set in RN and let f : Ω→R be a differentiable function. If
∇ f (x0) is a zero vector for some x0 ∈ Ω, then we refer such point x0 a critical point or stationary
point.

DEFINITION 1.5.2. Let S be a set (not necessarily open) in RN , let f : S →R be a function and
let x0 ∈ S.

(1) If there exists ε > 0 such that f (x0)≤ f (x) for all x∈ S∩Bε(x0), then we call x0 a local
minimizer of f : S → R.

(2) If there exists ε > 0 such that f (x0)≥ f (x) for all x∈ S∩Bε(x0), then we call x0 a local
maximizer of f : S → R.

(3) If f (x0)≤ f (x) for all x ∈ S, then we call x0 a global minimizer of f : S → R.
(4) If f (x0)≥ f (x) for all x ∈ S, then we call x0 a global maximizer of f : S → R.

It is easy to prove the followings:

LEMMA 1.5.3. Let Ω be an open set in RN and let f : Ω → R be a differentiable function. If f
has a local maximum or local minimum at x0 ∈ Ω, then x0 is a critical point.

It is also possible to define the notion for “positive” symmetric matrices:

DEFINITION 1.5.4. Let A ∈ RN×N be a symmetric matrix.

(1) We say that A is positive definite, denoted as A ≻ 0, when ξ⊺Aξ > 0 for all ξ ∈ RN \{0}.
(2) We say that A is negative definite, denoted as A ≺ 0, when ξ⊺Aξ < 0 for all ξ ∈ RN \{0}.

REMARK 1.5.5. The above definition also make sense when N = 1 by simply identify R∼=R1×1

It is remarkable that the second derivative test also works for higher dimensional case as well:

THEOREM 1.5.6. Let Ω be an open set in RN and let f ∈C2(Ω).

(a) If ∇ f (x0) = 0 and ∇⊗2 f (x0) ≻ 0 hold for some x0 ∈ Ω, then x0 is a local minimizer of
f : Ω → R.

(b) If ∇ f (x0) = 0 and ∇⊗2 f (x0)≺ 0 hold for some x0 ∈ Ω, then x0 is a local maximizer of
f : Ω → R.



CHAPTER 2

Review of probability

2.1. Definition of probability and its properties

In probability, an experiment refers to any action or activity whose outcome is subject to
uncertainty.

DEFINITION 2.1.1. The sample space Ω of an experiment is the set which including all possible
outcomes of that experiment, and a outcome x is a point in Ω, which we denoted as x ∈ Ω. An event
A is a subset of Ω, which we denoted as A ⊂ Ω.

REMARK 2.1.2. Here Ω is not necessary exactly the set of all possible outcomes. Despite Ω

may larger than the set of all possible outcomes, we still refer all elements in Ω an outcome. For
example, if all possible outcome of an experiment is {1,2,4}, one may choose Ω = {1,2,3,4} and
we can intuitively set the probability of the outcome “3” as 0.

REMARK 2.1.3. One should not abuse the notation “∈” and “⊂”, for example, the Russell’s
paradox

{X : X is a set and X /∈ X}.

In practical, we usually refer the set consists of other sets as a collection. For example, let P be
the collection of all subsets in {a,b} means that

P = { /0,{a},{b},{a,b}}.

We intuitively view /0,{a},{b},{a,b} as “level-1” objects, and view P as “level-2” object. The
elements in sets also can be viewed as “level-0” objects. We usually refer the set consists of
collections (i.e. “level-2” objects) as a superset, which is natural to be labeled as “level-3” object.
We distinguish between “∈” and “⊂ as follows:

• We write x ∈ X for “level-0” object x (point) and for “level-1” object X (set); we write
X ∈ P for “level-1” object X (set) and for “level-2” object P (collection), and so on.

• We write X ⊂Y for two “level-1” objects X and Y (sets); we write P ⊂Q for two “level-
2” objects P and Q (collections).

Here we reserve the notation /0 for empty set (“level-1” object). According to this notation system,
we remind the readers that { /0} is a nonempty collection, which consists one element called /0.

The complement of an event A is defined by A∁ := Ω \A, which is the set of all outcomes in
Ω that are not contained in A. The intersection of two events A and B is defined by A∩ B :=

9
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{x ∈ Ω : x ∈ A and x ∈ B}, which is the event consisting of all outcomes that are in both A and B.
The union of two events A and B is defined by A∪B := {x ∈ Ω : x ∈ A or x ∈ B}, which is the event
consists of all outcomes that are either in A or in B or in both events. We say that the events A and
B are disjoint if A∩B = /0, where /0 denotes the event consisting of no outcomes whatsoever (i.e.
empty event).

A collection {Ai}i∈I is said to be finite if there exists a bijection between I and {1, · · · ,N} for
some N ∈ N. A collection {Ai}i∈I is said to be infinite countable if there exists a bijection between
I and N. A collection {Ai}i∈I is said to be countable if either I is finite or infinite countable. Let
{Ai}i∈I be a countable collection of sets, and similarly we denote⋃

i∈I

A := {x ∈ Ω : x ∈ Ai for some i ∈ I} ,

⋂
i∈I

A := {x ∈ Ω : x ∈ Ai for all i ∈ I} .

We say that {Ai}i∈I is a collection of disjoint events if Ai∩A j = /0 for all i ̸= j. Given an experiment
and its sample space Ω, we denote its power set 2Ω which consists of all events A ⊂ Ω. We want to
assign a number P(A) for each event A ⊂ Ω according to the following three axioms:

(1) P(A)≥ 0 for any event A ⊂ Ω;
(2) P(Ω) = 1;

(3) If {Ai}∞
i=1 is countable collection of disjoint events, then P

(⋃
i∈I

Ai

)
= ∑

i∈I
P(Ai).

However, in many cases, one may fail to assign P(A) for arbitrary event A ⊂ Ω. For example, if we
consider Ω = [0,1], it is natural to assign

P(A) := the Lebesgue measure of A (i.e. the area of A).

However there exists a set V ⊂ [0,1], called the Vitali set, which is not measurable (i.e. the Lebesgue
measure of V is not well-defined). Therefore we need to restrict the probability on some suitable
collection F ⊂ 2Ω, which is σ -field (also known as σ -algebra) on Ω, i.e. a nonempty collection
of subsets of Ω that satisfy

(1) A∁ ∈ F if and only if A ∈ F ;
(2) if {Ai}i∈I ⊂ F is countable, then

⋃
i∈I Ai ∈ F .

DEFINITION 2.1.4 (Axioms for probability). Given an experiment and its sample space Ω, and
let F be a σ -field on Ω. We now assign a number P(A) for each event A ∈ F according to the
following three axioms:

(1) P(A)≥ 0 for any event A ∈ F ;
(2) P(Ω) = 1;

(3) If {Ai}∞
i=1 ⊂ F is countable collection of disjoint events, then P

(⋃
i∈I

Ai

)
= ∑

i∈I
P(Ai).
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We called the triple (Ω,F ,P) a probability space, F the set of events and the mapping P : F →
[0,1] the probability.

If there is no ambiguity, we shall not explicitly mention the sample space Ω and the set of events
F if there is no any ambiguity.

LEMMA 2.1.5. The probability P defined by Definition 2.1.4 satisfies the following properties:

(1) P( /0) = 0.
(2) P(A) = 1−P(A∁) for any event A.
(3) P(A)≤ 1 for any event A.
(4) P(A∪B) = P(A)+P(B)−P(A∩B) for any events A and B.

EXERCISE 2.1.6 (Inclusion-exclusion formula). Given any N ∈N and events A1, · · · ,AN , show
that

P

(
N⋃

i=1

Ai

)
=

N

∑
k=1

(−1)k+1

(
∑

1≤i1<···<ik≤N
P(Ai1 ∩·· ·∩Aik)

)
.

2.2. Conditional probability and independence

In many cases, we are interested to the probability of events provided some apriori information
is known. Given that B has occurred, the relevant sample space is no longer Ω but consists of just
outcomes in B, and A has occurred if and only if one of the outcomes in the intersection A∩B. So
the conditional probability of A given B should, logically, be the ratio of the likelihood of these two
events. This leads the following definition.

DEFINITION 2.2.1. For any two events A and B with P(B) > 0, the conditional probability
P(A|B) of A given that B has occurred is defined by

P(A|B) :=
P(A∩B)
P(B)

.

REMARK 2.2.2. Here we shall point out that Definition (2.2.1) is actually not good enough
in practical applications. For example, we consider the collection F of measurable sets in Ω =

[0,1]× [0,1] with probability

P(A) := Lebesgue measure of A (i.e. the area of A).

We shall believe that the conditional probability of A = [0,1/2]×{0} given that B = [0,1]×{0}
has occurred, should be 1/2, but however it is not possible to formulate this phenomena using
Definition (2.2.1) because P(B) = 0. One may refer to [Dur19] for a more general framework.

Frequently the nature of an experiment suggests that two events A and B should be assumed
independent, in other words, we may expect the outcome of second experiment should not affected
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by the first experiment. This suggests us to say that A and B is independent if P(A|B) = P(A)
provided P(B)> 0. In fact, one has the followings:

P(A|B) = P(A) if and only if P(A∩B) = P(A) ·P(B).

This fact suggests us to consider the following definition:

DEFINITION 2.2.3. We say that two events A and B are independent if P(A∩B) = P(A) ·P(B),
and are dependent otherwise.

The notion of independence of two events can be extended to collections of more than two
events.

DEFINITION 2.2.4. The events A1, · · · ,Am are independent if whenever I ⊂ {1, · · · ,m} we have

(2.2.1) P

(⋂
i∈I

Ai

)
= ∏

i∈I
P(Ai).

The infinitely countably many events A1,A2, · · · are independent if whenever finite set I ⊂ N we
have (2.2.1).

2.3. Random variable

Given an (abstract) probability space (Ω,F ,P), given a function X : Ω → R (or a
“mechanism”), we want to study the event of the form

{X ∈ B} := {x ∈ Ω : X(x) ∈ B}

which is called the preimage of B with respect to X . However, as we mentioned above (before
Definition 2.1.4), not all subsets in R is measurable, and the preimage of non-measurable sets are
not “meaningful”. Let B be the collection of Borel sets in R, that is,

B :=

{
B ⊂ R :

B can be constructed by countable union, countable intersection
or complenents of open sets in R

}
.

All elements in B are Lebesgue measurable, that is, the Lebesgue measure (or simply “volume”)
of each elements in B ∈ B is well-defined. Despite there exists Lebesgue measurable set which is
not in B, we usually consider Borel sets B in practical applications. Let X : Ω → R be a given
function, and we are now interesting in the sets of the form

{X ∈ B} := {x ∈ Ω : X(x) ∈ B} for B ∈ B,

Now it is natural to quantify abstract probability space (Ω,F ,P) via the following definition.

DEFINITION 2.3.1. Let (Ω,F ,P) be a probability space and let X : Ω →R be a given function.
If {X ∈ B} ∈ F (that is, the probability of all sets {X ∈ B} are well-defined), then we refer such
function X : Ω → R a random variable.
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It is also natural to mention the convergence of a sequence of random variables.

DEFINITION 2.3.2. Let {Xk}k∈N be a sequence of random variables, and we consider the event
Ω0 := {x ∈ Ω : limk→∞ Xk(x) exists in [−∞,∞]}. If P(Ω0) = 1, then we say that {Xk}k∈N converges
almost surely (later we use the abbreviation “a.s.”).

In view of Definition 2.2.4, now it is natural to introduce the following definition as well.

DEFINITION 2.3.3. Let (Ω,F ,P) be a probability space. We say that the random variables
X1, · · · ,XN : Ω → R are independent if

P

(
N⋂

i=1

{Xi ∈ Bi}

)
=

N

∏
i=1

P(Xi ∈ Bi) for all B1, · · · ,BN ∈ B.

We say that X1, · · · ,XN : Ω → R are pairwise independent if for each i ̸= j the random variables Xi

and X j are independent.

REMARK 2.3.4. If X1, · · · ,XN are independent (resp. pairwise independent), then
f1(X1), · · · , fN(XN) are independent (resp. pairwise independent).

DEFINITION 2.3.5. We say that the infinitely countably many random variables X1,X2, · · · :
Ω → R are independent if whenever finite set I ⊂ N we have

P

(⋂
i∈I

{Xi ∈ Bi}

)
= ∏

i∈I
P(Xi ∈ Bi) for all Bi ∈ B with i ∈ I.

We say that X1,X2, · · · : Ω → R are pairwise independent if for each i ̸= j the random variables Xi

and X j are independent.

We first exhibit a trivial, but useful, type of random variable.

EXAMPLE 2.3.6. Let (Ω,F ,P) be a probability space. Fixing A∈F and we consider a random
variable X : Ω →{0,1} defined by

1A(x) :=

1 ,x ∈ A,

0 ,x /∈ A.

DEFINITION 2.3.7. The random variable 1A is called the indicator function or test function on
A. Analysts call this object the characteristic function on A.

We now restrict ourselves for the case when n = 1. For each x ∈ R, we define x+ := max{x,0}
and x− := −min{x,0}. One sees that x = x+ − x− and |x| = x+ + x−. We first introduce the
following definition.

DEFINITION 2.3.8. Given a random variable X : (Ω,F ,P)→ [0,∞), we define its expectation
by

EX :=
∫

Ω

X dP,
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which is always exist in [0,∞]. For general random variable X : (Ω,F ,P)→ [0,∞], if either EX+ <

+∞ or EX− <+∞, then we say that the expectation/mean EX of X exists with values

µ ≡ EX := EX+−EX−.

If EX2 < ∞, then the variance of X is defined to be

var(X) := E(X −µ)2 = EX2 −µ
2.

The following are some basic properties:

LEMMA 2.3.9. If either one of the followings hold:

• X ≥ 0 and Y ≥ 0; or
• E|X |< ∞ and E|Y |< ∞;

then

(1) E(aX +bY + c) = aEX +bEY + c for all a,b,c ∈ R;
(2) If X ≥ Y , then EX ≥ EY .

REMARK 2.3.10. If EX2 < ∞, then for each a,b ∈ R one can compute that

var(aX +b) = E(aX +b−E(aX +b))2

= E(aX −aE(X))2 = a2E(X −E(X))2 = a2var(X).

The expectation operator E immediate suggests the following definition:

DEFINITION 2.3.11. We say that a sequence of random variables {Xk}k∈N converges to a
random variable X in mean square/in quadratic mean if

lim
k→∞

E
(
(Xk −X)2)= 0.

By using Chebyshev’s inequality [Dur19, (1.6.1)], which is a special case of Markov inequality
[Dur19, Theorem 1.6.4], one sees that

P(|Xk −X |> ε)≤ 1
ε2E

(
(Xk −X)2) .

This strongly suggests the following definition:

DEFINITION 2.3.12. We say that a sequence of random variables {Xk}k∈N converges to a
random variable X in probability if the following holds: Given any ε > 0, one has

lim
k→∞

P(|Xk −X |> ε) = 0.

By using Fatou’s lemma [Dur19, Theorem 1.6.5], one sees the following important theorem.

THEOREM 2.3.13. If Xk → X a.e. (Definition 2.3.2), then Xk → X in probability
(Definition 2.3.12).
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DEFINITION 2.3.14. The cumulative distribution function (later we use the abbreviation
“c.d.f.”) F : R→ [0,1] of a random variable X (not necessarily discrete or continuous) is defined
for every number x by

F(x) := P
(
(X−1((−∞,x])

)
≡ P({y ∈ Ω : X(y)≤ x}) ,

and we usually simply denote as F(x) = P(X ≤ x). In other words, F(x) is the probability that the
observed value of X will be at most X .

EXAMPLE 2.3.15. One can compute that E(1A ◦X) =
∫

Ω
1A ◦X dP= P(X ∈ A) for any A ∈B.

By choosing A = (−∞,x] for any x ∈ R, one also sees that

E(1(−∞,x] ◦X) = P(X ≤ x) = F(x).

THEOREM 2.3.16 ([Dur19, Theorem 1.2.1]). Each c.d.f. F : R → [0,1] described in
Definition 2.3.14 has the following properties:

(1) F is nondecreasing;
(2) limx→∞ F(x) = 1 and limx→−∞ F(x) = 0;
(3) F is right continuous, i.e. limx→x0+F(x) = F(x0) for each x0 ∈ R;
(4) If we denote F(x0−) := limx→x0−F(x), then F(x0−) = P(X < x);
(5) P(X = x) = F(x)−F(x−) for all x ∈ R.

The next result shows that we have found more than enough properties to characterize
distribution functions.

THEOREM 2.3.17 ([Dur19, Theorem 1.2.2]). If F : R → [0,1] satisfies properties (1)–(3) in
Theorem 2.3.16, then it is the distribution function of some random variable.

The following lemma shows that the moments of nonnegative random variables can be
expressed in terms of its distribution functions.

LEMMA 2.3.18 ([Dur19, Lemma 2.2.13]). If X ≥ 0 and p > 0 (not necessarily an integer), then

EY p =
∫

∞

0
pyp−1P(Y > y)dy.

REMARK 2.3.19. In the case when F(y) := P(Y ≤ y) is differentiable, by using integration by
parts one sees that

EY p =
∫

∞

0

d
dy

(yp)(1−P(Y ≤ y))dy =−
∫

∞

0
yp d

dy
(1−P(Y ≤ y))dy

=
∫

∞

0
yp d

dy
(P(Y ≤ y))dy.

Despite the random variable mentioned in Theorem 2.3.17 may differ (depending on the
probability space chosen), Theorem 2.3.16 and Theorem 2.3.17 strongly suggests us to study the
probability distributions of random variables. This leads the following definition:
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DEFINITION 2.3.20. Let X : (Ω1,F1,P1)→R and Y : (Ω2,F2,P2)→R be random variables.
We say that X and Y have the same distribution if

P1(X ≤ x) = P2(Y ≤ x) for all x ∈ R.

In this case, we denote X d
= Y .

In other words, this means that X and Y are basically “identical” with just different
“representations/labels/notations”. This gives a reason which we can simply omit the notation
(Ω,F ,P) if there is no confusion. In view of Definition 2.3.2, we need the following notion:

DEFINITION 2.3.21. A sequence of random variables {Xk}k∈N is said to be converge in
distribution to a limit X∞ if their distribution functions Fk(x) = P(Xk ≤ x) converges weakly to
a limit F∞, that is, Fk(x)→ F∞(x) for all x that are continuity points1 of F∞.

In practical application, it is quite often to see the following definitions.

DEFINITION 2.3.22. Given random variables X1, · · · ,XN . If X1, · · · ,XN are independent
(Definition 2.3.3) and Xi

d
= X j for all i, j ∈ {1, · · · ,N}, then we say that X1, · · · ,XN are independent

and identically distributed random variables (later we use the abbreviation “i.i.d.”).

DEFINITION 2.3.23. Given infinitely countably many random variables X1,X2, · · · . If X1,X2, · · ·
are independent (Definition 2.3.3) and Xi

d
= X j for all i, j ∈ N, then we say that X1,X2, · · · are

independent and identically distributed random variables (later we use the abbreviation “i.i.d.”).

The following theorem was proved by Etemadi in 1981 [Ete81]:

THEOREM 2.3.24 (Strong law of large numbers [Dur19, Theorem 2.4.1]). Let X1,X2, · · · be
pairwise independent identically distributed random variables with E|Xi| < ∞. Let EXi = µ and
XN = X1+···+XN

N . Then XN → µ a.s. (Definition 2.3.2).

It is also possible to state the law of large numbers for random variables without the existence
of expectations :

THEOREM 2.3.25 (Weak law of large numbers [Dur19, Theorem 2.2.12]). Let X1,X2, · · · be
i.i.d. random variables with

xP(|Xi|> x)→ 0 as x → ∞.

Let XN := X1+···+XN
N and let µN := E(X11(|X1|≤N)). Then XN − µN → 0 in probability

(Definition 2.3.12).

We now recall the following result:

1In fact, F∞ is right continuous and the discontinuities of F∞ are at most a countable set.
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THEOREM 2.3.26 ([Dur19, Theorem 2.1.13]). If X1, · · · ,XN are independent and if either one
of the following holds: (a) Xi ≥ 0 for all i; or (b) E|Xi|< ∞ for all i; then E

(
∏

N
i=1 Xi

)
exists and

E

(
N

∏
i=1

Xi

)
=

N

∏
i=1

EXi.

The above theorem strongly suggests the following concept which is related to independence:

DEFINITION 2.3.27. Two random variables X and Y with EX2 < ∞ and EY 2 < ∞ that have
E(XY ) = (EX)(EY ) are said to be uncorrelated.

REMARK 2.3.28. The expectation E(XY ) is well-defined by the Cauchy-Schwartz inequality:

E|XY | ≤ (EX2)1/2(EY 2)1/2 < ∞.

EXAMPLE 2.3.29. If X and Y are independent, then Theorem 2.3.26 says that X and Y are
uncorrelated. However, the converse may not true, one can see [Dur19, Example 2.1.14] for a
simple counterexample.

EXERCISE 2.3.30. Let X1, · · · ,XN are independent random variables such that EX2
i < ∞ for all

i = 1, · · · ,N. Show that

var(a1X1 + · · ·+aNXN) = a2
1var(X1)+ · · ·+a2

Nvar(XN)

for any a1, · · · ,aN ∈ R.

We also recall the following fact (see e.g. [Goo60]):

LEMMA 2.3.31. Let X and Y are two independent random variables with EX2 < ∞ and EY 2 <

∞. The variance of their product is

var(XY ) = (EX)2var(Y )+(EY )2var(X)+var(X)var(Y )

= E
(
X2)E(Y 2)+(EX)2(EY )2.

In particular, if EX = EY = µ and var(X) = var(Y ) = σ2, then

var(XY ) = σ
2 (2µ

2 +σ
2) .

2.4. Conditional expectation

Let X be a random variable. The conditional expectation of X given a σ -algebra F is any
random variable X̃ which is measurable with respect to F and∫

A
X dP=

∫
A

X̃ dP for all A ∈ F .

By using Radon-Nikodym theorem and [Dur19, Theorem 4.1.2], there exists a conditional
expectation of X given F which is unique a.e., and therefore we may denote

E(X |F ) := X̃ ,
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which is well-defined a.s. (here and after, we will not explicitly denote “a.s.”). If F1 ⊂ F2, from
[Dur19, Theorem 4.1.12] we know that

E(E(X |F1)|F2) = E(X |F1) = E(E(X |F2)|F1) .

In the case when EX2 < ∞, we define var(X |F ) := E(X2|F )−E(X |F )2. It was showed in
[Dur19, Exercise 4.1.7] the following total variance formula holds:

var(X) = E(var(X |F ))+var (E(X |F )) .

The definition of conditional expectation given a σ -field contains conditioning on a random variable
as a special case: Let X and Y are random variables. The conditional expectation of X on Y is
defined by

E(X |Y ) := E(X |σ(Y )),

where σ(Y ) is the σ -field generated by Y , i.e. the smallest σ -field for which Y is measurable with
respect to σ(Y ). This definition immediately gives us the conditional expectation formula:

(2.4.1) EX = E(E(X |Y )) ,

and we now have the conditional variance formula:

(2.4.2) var(X) = E(var(X |Y ))+var (E(X |Y )) .

Suppose that X and Y have joint density f (x,y) (can be p.d.f. or p.m.f.). Given any function g, it
was showed in [Dur19, Example 4.1.6] that E(g(X)|Y ) is a random variable satisfying

E(g(X)|Y = y) =
∫

g(x)P(X = x|Y = y)dx,

where P(X = x|Y = y) is the conditional probability given by

P(X = x|Y = y) =
P(X = x,Y = y)

P(Y = y)
=

f (x,y)∫
f (x,y)dy

.

2.5. Discrete random variable

We now introduce discrete random variables, which will be helpful to construct some examples
to let us have a better understanding while learning statistics.

EXAMPLE 2.5.1. Let Ω be a countable set in R and let F := 2Ω be the collections of all subsets
of Ω. Let p : Ω → [0,1] be any function satisfies

∑
x∈Ω

p(x) = 1.

If we define P(A) := ∑x∈A p(x) for all A ∈ F , then (Ω,F ,P) forms a probability space. In this
case, any function X : Ω → R is a random variable.
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DEFINITION 2.5.2. The probability space (Ω,F ,P) in Example 2.5.1 is called a discrete
probability space. The random variable X : Ω → R in Example 2.5.1 is called a discrete random
variable. The function p = pX : Ω → [0,1] in Example 2.5.1 is called a probability mass function
(later we use the abbreviation “p.m.f.”). The support of p(x) is the subset of Ω defined by

supp(p) := {x ∈ Ω : p(x)> 0} .

We will display a p.m.f. for the values in its support, and it always understood that p(x) = 0
otherwise.

REMARK 2.5.3. In fact, each discrete random variable X has a unique p.m.f. p.

THEOREM 2.5.4 (change of variable formula, a special case of [Dur19, Theorem 1.6.9]). Let X
be a discrete random variable with p.m.f. f and let φ : R→R satisfies either one of the followings:

φ ≥ 0 or ∑
x∈Ω

|φ(x)|p(x)< ∞.

Then
E(φ(X)) = ∑

x∈Ω

φ(x)p(x).

REMARK 2.5.5. One can check that E|φ(X)| = ∑x∈Ω |φ(x)|p(x). Similar as above, one can
easily compute kth moment EXk = ∑x∈Ω xk p(x).

EXAMPLE 2.5.6 (Bernuolli random variable). The Bernuolli random vaviable (with parameter
0 < α < 1) is a discrete random variable with density

p(x) =

1−α if x = 0,

α if x = 1.

Its kth moment is

∑
x∈{0,1}

xk p(x) = p(1) = α.

From this, one can easily see that its mean (first moment) is α and its variance is

∑
x∈{0,1}

x2 p(x)−

(
∑

x∈{0,1}
xp(x)

)2

= α −α
2 = α(1−α).

For example, the Bernuolli random variable can be used to described the probability of getting a
head (x = 1) with probability α while tossing a coin.

EXAMPLE 2.5.7 (geometric random variable). Given a coin described in Example 2.5.6. The
probability of getting the first head at the nth-attempt (providing obtaining (n− 1) tails before),
assuming that each trial is independent, is

(2.5.1) p(n) := (1−α)n−1
α.



2.5. DISCRETE RANDOM VARIABLE 20

Note that the function p : N→ [0,1] satisfies
∞

∑
n=1

p(n) = α

∞

∑
n=1

(1−α)n−1 = 1,

therefore a p.m.f.. The geometric random variable (with parameter 0 < α < 1) X is a discrete
random variable with density p : N→ [0,1] given in (2.5.1), see also [LM21, Section 4.4]. Since
the mapping α 7→ ∑

∞
n=1(1−α)n−1 is a power series centered at 1 with radius of converge 1 (see

e.g. my other lecture notes [Kow23, Kow24]), then we may differentiate “term-by-term” to see
that

∞

∑
n=1

n(1−α)n−1 =− d
dα

(
∞

∑
n=0

(1−α)n

)
=− d

dα

(
(1−α)

∞

∑
n=1

(1−α)n−1

)

=− d
dα

(
1
α
−1
)
=

1
α2 .(2.5.2)

From this, we now can compute the mean of the geometric random variable:

EX =
∞

∑
n=1

np(n) = α

∞

∑
n=1

n(1−α)n−1 =
1
α
.

By acting the differential operator − d
dα

on (2.5.2), we now see that

∞

∑
n=2

n(n−1)(1−α)n−2 =− d
dα

(
∞

∑
n=1

n(1−α)n−1

)
=− d

dα

(
1

α2

)
=

2
α3 ,

then we see that

EX(X −1) =
∞

∑
n=2

n(n−1)p(n) = α(1−α)
∞

∑
n=2

n(n−1)(1−α)n−2 =
2(1−α)

α2 ,

therefore its variance is

var(X) = EX2 − (EX)2 = EX(X −1)+EX − (EX)2

=
2(1−α)

α2 +
1
α
− 1

α2 =
2(1−α)+α −1

α2 =
1−α

α2 .

EXAMPLE 2.5.8 (binomial random variable). Given a coin described in Example 2.5.6. Given
n ∈ N, the probability of getting exactly k heads in n independent of trials is

(2.5.3) p(k) =

(
n
k

)
(1−α)n−k

α
k, where

(
n
k

)
=

n!
k!(n− k)!

.

One can use binomial theorem to see that
n

∑
k=1

p(k) = 1,
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therefore a p.m.f.. The binomial random variable (with parameter n,α) is a discrete random
variable X with density p : N→ [0,1] given in (2.5.3). We usually denoted as X ∼ B(n,α). Note
that B(1,α) is exactly the Bernuolli random variable in Example 2.5.6.

EXERCISE 2.5.9. Let X ∼ B(n,α). Prove that EX = nα .

EXAMPLE 2.5.10 (Poisson random variable). Let X ∼ B(n,α). In fact, for each fixed λ > 0,
one can show that

lim
n→∞
α→0
nα=λ

P(X = k) = lim
n→∞
α→0
nα=λ

(
n
k

)
(1−α)n−k

α
k =

e−λ λ k

k!
,

which is the well-known Poisson limit [LM21, Theorem 4.2.1]. But then, in 1898, von Bortkiewicz
[vB98] transform Poisson’s limit into Poisson random variable: The random variable Y is said to
be Poisson distribution if

p(k) = P(Y = k) =
e−λ λ k

k!
for k = 0,1,2, · · · ,

where λ is a positive constant. One can check that
∞

∑
k=0

p(k) = 1,

and thus such Y is a discrete random variable with p.m.f. p : Z≥0 → [0,1]. In this case, we write
Y ∼ P(λ ).

EXERCISE 2.5.11. Let Y ∼ P(λ ). Prove that EY = λ .

2.6. Continuous random variable

It is now natural to introduce the following definition.

DEFINITION 2.6.1. A random variable is said to be continuous if its c.d.f. (Definition 2.3.14)
is continuous.

By using a well-known theorem from measure theory [WZ15, Theorem 7.29], one has the
following fact.

THEOREM 2.6.2. Let X be a continuous random variable and denote F : R→ [0,1] be its c.d.f.
(Definition 2.3.14). Then the following are equivalent:

(1) F is absolutely continuous;
(2) The fundamental theorem of calculus holds true for F, more precisely, its derivative2 f ≡

F ′ exists a.e. in R, f ∈ L1
loc(R) and

F(x) =
∫ x

∞

f (t)dt for all x ∈ R.

2also known as the Radon-Nikodym derivative.
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REMARK 2.6.3 (Cantor-Lebesgue function). In fact, there exists a nondecreasing continuous
function φ : [0,1]→ [0,1] with φ(0) = 0, φ(1) = 1 and φ ′ = 0 a.e. in [0,1]. In this case, one sees
that

φ(1)−φ(0) = 1 ̸= 0 =
∫ 1

0
φ
′(t)dt.

DEFINITION 2.6.4. Let X be a continuous random variable. If its c.d.f. (Definition 2.3.14) is
absolutely continuous, then we call its derivative f the probability density function (later we use
the abbreviation “p.d.f.”). In this case, we say that X is a continuous random variable with p.d.f. f .

THEOREM 2.6.5 (change of variable formula, a special case of [Dur19, Theorem 1.6.9]). Let
X be a continuous random variable with p.d.f. f and let φ : R → R satisfies either one of the
followings:

φ ≥ 0 or
∫
R
|φ(t)| f (t)dt < ∞.

Then
E(φ(X)) =

∫
R

φ(t) f (t)dt.

REMARK 2.6.6. One can check that E|φ(X)|=
∫
R |φ(t)| f (t)dt.

EXAMPLE 2.6.7. Let k ∈ N. By choosing φ(t) = tk for all t ∈ R, one sees that the expectation
can be easily computed by the kth moment of a random variable X by

EXk =
∫
R

tk f (t)dt.

Note that mean EX is exactly the first moment of X . The variance can be expressed as

var(X) = EX2 − (EX)2 =
∫
R

t2 f (t)dt −
(∫

R
t f (t)dt

)2

.

2.6.1. Exponential distribution. Since∫
∞

0
e−t dt =−e−t

∣∣∣∣t→∞

t=0
= 1,

then we see that f (t) = χt≥0e−t is a p.d.f. (Definition 2.6.4). By using Theorem 2.3.17, there exists
a continuous random variable X with p.d.f. f (t) = χt≥0e−t .

EXERCISE 2.6.8. Let X be a continuous random variable with p.d.f. f (t) = χt≥0e−t . Use
Example 2.6.7 and mathematical induction to check that

EXk =
∫

∞

0
tke−t dt = k!

for all k ∈ N.
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For each λ > 0, we see that the random variable Y = X/λ has kth moment (i.e. choose φ(t) =
(t/λ )k in Theorem 2.6.5)

(2.6.1) EY k = E(Xk/λ
k) =

1
λ kEXk =

k!
λ k

without explicitly computed the p.d.f. (Definition 2.6.4) of Y . From this, it is easy to see that

EY =
1
λ
, var(Y ) = EY 2 − (EY )2 =

2
λ 2 −

1
λ 2 =

1
λ 2 .

Indeed, one can easily compute the p.d.f. of Y as follows:

P(Y ≤ x) = P(X ≤ λx) =


∫

λx
0 e−t dt =

∫ x
0 λe−λ s ds ,x > 0,

0 ,x ≤ 0,

=
∫ x

−∞

χt≥0λe−λ t dt,

which shows that Y = X/λ is a continuous random variable with p.d.f. f (t) = χt≥0λe−λ t .

DEFINITION 2.6.9. The above mentioned random variable Y is called the exponential
distribution with parameter λ > 0, and we denote Y ∼ E (λ ).

2.6.2. Normal distribution. By using the Fubini’s theorem for Lebesgue integral3, one sees
that (∫

R

1√
2π

e−
t2
2 dt
)2

=

(
1√
2π

∫
R

e−
t2
2 dt
)(

1√
2π

∫
R

e−
s2
2 ds
)

=
1

2π

∫
R2

e−
t2+s2

2 dt ds =
1

2π

∫ 2π

0

=1︷ ︸︸ ︷(∫
∞

0
e−

r2
2 r dr

)
dθ = 1,

which shows that f (t) = 1√
2π

e−
t2
2 is a p.d.f. (Definition 2.6.4). By using Theorem 2.3.17, there

exists a continuous random variable X with p.d.f. f (t) = 1√
2π

e−
t2
2 . Since f is an even function,

then
EX =

∫
R

t f (t)dt = 0.

EXERCISE 2.6.10. Let X be a continuous random variable with p.d.f. f (t) = 1√
2π

e−
t2
2 . Prove

that var(X) = 1.

For each µ ∈ R and σ > 0, let Y = σX +µ . Then one can easily compute

EY = σEX +µ = µ, var(Y ) = var(σX +µ) = σ
2var(X) = σ

2

3Lebesgue integral has many properties that holds true on unbounded region, which is better than Riemann integral,
which only can be well-defined on bounded region with sufficient smooth boundary.
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without explicitly computed the p.d.f. (Definition 2.6.4) of Y . Indeed, one can easily compute the
p.d.f. of Y as follows:

P(Y ≤ x) = P
(

X ≤ x−µ

σ

)
=
∫ x−µ

σ

−∞

1√
2π

e−
t2
2 dt =

∫ x

−∞

1√
2πσ2

e−
(s−µ)2

2σ2 ds,

which shows that Y = σX +µ is a continuous random variable with p.d.f. f (t) = 1√
2πσ2 e−

(t−µ)2

2σ2 .

DEFINITION 2.6.11. The above mentioned random variable Y is called the normal distribution
with mean µ and variance σ2, and we denote Y ∼ N (µ,σ2). We often refer Z ∼ N (0,1) the
standard normal distribution.

We now ready to state an important theorem, which can be found in [Dur19, Theorem 3.4.1].

THEOREM 2.6.12 (central limit theorem for i.i.d. sequences). Let X1,X2, · · · be i.i.d. random
variables with EXi = µ and var(Xi) = σ2 ∈ (0,∞). If XN = X1+···+XN

N then

σ
−1N1/2(XN −µ) converges in distribution to the standard normal distribution as N → ∞.

In other words,

lim
N→∞

P
(

σ
−1N1/2(XN −µ)≤ x

)
= P(Z ≤ x) for all x ∈ R.

EXERCISE 2.6.13. Let X1,X2, · · · be i.i.d. random variables in N (µ,σ2). Show that X ∼
N (µ, σ2

N ) and

Z =
X −µ

σ/
√

N
∼ N (0,1).

It is also possible to establish central limit theorem for some non-i.i.d. sequences, see e.g. the
Lindeberg-Feller theorem [Dur19, Theorem 3.4.10].

2.6.3. Chi-squared (χ2) distributions , t distributions and F distributions. Central limit
theorem shows the importance of normal distribution, therefore we now also introduce three
distributions closely related to normal: the chi-squared (χ2) distributions, t distributions and F
distributions. These distributions will then be used to describe the sampling variability of several
statistics on which important inferential procedures are based.

EXAMPLE 2.6.14. For a positive integer ν , let Z1, · · · ,Zν are i.i.d. N (0,1). Then the chi-
squared distribution with ν degree of freedom (later we use the abbreviation “d.f.”) is defined to be
the distribution of the random variable

X = Z2
1 + · · ·+Z2

ν .

This will sometimes be denoted by X ∼ χ2
ν . Its p.d.f. is

f (x) =
1

2ν/2Γ(ν/2)
x

ν

2 −1e−
x
2 for all x > 0,
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with expectation EX = ν and variance var(X) = 2ν . It is also worth to mention that

X1 +X2 ∼ χ
2
ν1+ν2

if X1 ∼ χ
2
ν1

and X2 ∼ χ
2
ν2

are independent

as well as

X1 −X2 ∼ χ
2
ν1−ν2

if X1 ∼ χ
2
ν1

and X2 ∼ χ
2
ν2

are independent provided ν1 > ν2.

EXAMPLE 2.6.15 (Gosset’s theorem [Gos08]). Let Z ∼N (0,1) and let Y ∼ χ2
ν be independent

random variables. Then the t distribution with ν d.f. is defined to be the distribution of the ratio

T =
Z√
Y/ν

.

We will sometimes abbreviate this distribution by T ∼ tν . Its p.d.f. is

f (t) =
1√
πν

Γ(ν+1
2 )

Γ(ν/2)
1

(1+ t2/ν)
ν+1

2
for all t ∈ R.

In view of the (strong) law of large number (Theorem 2.3.24), it make sense that the t distribution
would be “close” to the standard normal for large ν . In addition,

(1) ET = 0 for ν > 1, otherwise undefined;
(2) var(T ) = ν

ν−2 for ν > 2, var(T ) = +∞ for 1 < ν ≤ 2, and otherwise undefined.

EXAMPLE 2.6.16. Let Y1 ∼ χ2
ν1

and Y2 ∼ χ2
ν2

are independent random variables. The F
distribution with ν1 numerator d.f. and ν2 denominator d.f. is defined to be the distribution of
the ratio

F =
Y1/ν1

Y2/ν2
.

We will sometimes abbreviate this distribution by F ∼Fν1,ν2 . It is not difficult to see that t2
ν =F1,ν .

Its p.d.f. is

f (x) =
Γ(ν1+ν2

2 )

Γ(ν1
2 )Γ(

ν2
2 )

(
ν1

ν2

) ν1
2 x

ν1
2

(1+ ν1
ν2

x)
ν1+ν2

2

for all x > 0.

In addition,

(1) EF = ν2
ν2−2 for ν2 > 2, otherwise undefined;

(2) var(F) =
2ν2

2 (ν1+ν2−2)
ν1(ν2−2)2(ν2−4) for ν2 > 4, otherwise undefined.

2.6.4. Gamma distributions. We now introduce a versatile two-parameter family of
continuous probability distributions. The exponential distributions and the χ2 distributions are
special cases of the gamma distributions. To define the family of gamma distributions, we first
need to introduce a function that plays an important role in many branches of mathematics.

EXERCISE 2.6.17. Show that
∫

∞

0 xα−1e−x dx < ∞ if and only if α > 0.

Suggested by the above exercise, it is natural to consider the following definition.
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DEFINITION 2.6.18. For α > 0, the gamma function Γ(α) is defined by

Γ(α) =
∫

∞

0
xα−1e−x dx.

In fact, Γ(1/2) =
√

π . The most important properties of the gamma function are the followings:

EXERCISE 2.6.19. Show that Γ(α) = (α − 1)Γ(α − 1) for all α > 1. In addition, show that
Γ(n) = (n−1)! for all n ∈ N.

It is possible to extend Γ : C \Z≤0 → C as an analytic function, with pole of order 1 at each
point of Z≤0, see e.g. my lecture note on complex analysis [Kow23]. The following fact will prove
useful for several computations that follow.

EXERCISE 2.6.20. Show that4 ∫
∞

0
xα−1e−x/β dx = β

α
Γ(α)

for all α,β > 0.

Now it is natural to consider the following definition.

DEFINITION 2.6.21. A continuous random variable X is said to have a gamma distribution if
the p.d.f. of X is

f (x) =
1

β αΓ(α)
xα−1e−x/β for all x > 0,

with parameters α > 0 (shape parameter) and β > 0 (scale parameter). In this case, we denote
X ∼ Gamma(α,β ). When β = 1, X is said to have a standard gamma distribution.

We see that the χ2 distributions are special cases of the Γ distribution via the formula
χ2

ν = Gamma(ν

2 ,2), and the exponential distributions are special cases of the Γ distribution via
the formula E (λ ) = Gamma(1,1/λ ).

EXERCISE 2.6.22. Let X ∼ Gamma(α,β ). Show that

EXk = β
k Γ(α + k)

Γ(α)
for all k ∈ N.

Therefore, EX = αβ and var(X) = αβ 2.

EXERCISE 2.6.23. The c.d.f. of X ∼ Gamma(α,1) is

G(x) =
∫ x

0

yα−1e−y

Γ(α)
dy for all x > 0,

which is called the incomplete gamma function. Suppose that Y ∼ Gamma(α,β ), show that its
c.d.f. is

P(Y ≤ x) = G(x/β ).

4It is natural to define the fractional Laplacian (−∆)α := 1
Γ(α)

∫
∞

0 xα−1e−x(−∆)−1
dx. In fact, such definition of fractional

Laplacian is equivalent (in some sense) to the one defined using Fourier transform.
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2.7. Joint probability distribution

The joint probability distribution is the probability distribution of all possible pairs of outputs of
two random variables that are defined on the same probability space. In other words, given random
variables X1, · · · ,XN and Y , we are now interested in the event of the form

{(X1, · · · ,XN) ∈ B} :=
{
(x1, · · · ,xN) ∈ Ω

N : (X1(x1), · · · ,XN(xN)) ∈ B
}

for Borel sets B in RN .

Accordingly, the joint c.d.f. F of random variables X1, · · · ,XN is given by

(2.7.1) F(x1, · · · ,xN) := P(X1 ≤ x1, · · · ,XN ≤ xN)≡ P

(
N⋂

i=1

{Xi ≤ xi}

)
.

If X1, · · · ,XN are independent, then we see that F(x1, · · · ,xN) = ∏
N
i=1P(Xi ≤ xi).

(1) If X1, · · · ,XN are all discrete random variables, the joint p.m.f. of the variables is the
function

p(x1, · · · ,xN) = P

(
N⋂

i=1

{Xi = xi}

)
.

(2) Let X1, · · · ,XN be continuous random variables. If there exists f ∈ L1(Rn) with
∫
Rn f = 1

such that

P((X1, · · · ,XN) ∈ B) =
∫

B
f (x1, · · · ,xN)d(x1, · · · ,xN)

for all Borel sets B in RN . Then we call such f the joint p.d.f. of X1, · · · ,XN . If f ∈
C∞(RN), then it is also worth to mention that

f (x1, · · · ,xN) = ∂1 · · ·∂NF(x1, · · · ,xN) for all (x1, · · · ,xN) ∈ RN ,

where F is the joint c.d.f. of X1, · · · ,XN and ∂i =
∂

∂xi
is the ith partial derivative.

EXAMPLE 2.7.1. If X and Y have joint p.d.f. f (x,y), then

P(X < Y ) =
∫
{x<y}

f (x,y)d(x,y) =
∫

∞

−∞

∫ y

−∞

f (x,y)dxdy.

It is important to mention the following fact:

THEOREM 2.7.2 (Law of the unconcious statistician I). Let X1, · · · ,XN be jointly distribution
discrete random variables with joint p.m.f. p. Then the expected value of h(X1, · · · ,XN) is given by

Eh(X1, · · · ,XN) = ∑
x1

· · ·∑
xN

h(x1, · · · ,xN)p(x1, · · · ,xN).

THEOREM 2.7.3 (Law of the unconcious statistician II). Let X1, · · · ,XN be jointly distribution
continuous random variables with joint p.d.f. f . Then the expected value of h(X1, · · · ,XN) is given
by

Eh(X1, · · · ,XN) =
∫
RN

h(x1, · · · ,xN) f (x1, · · · ,xN)d(x1, · · · ,xN).
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DEFINITION 2.7.4. Let X and Y be discrete random variables with joint p.m.f. p. The marginal
p.m.f. of X and Y , denoted by pX(x) and pY (x), respectively, are given by

pX(x) = ∑
y

p(x,y), pY (y) = ∑
x

p(x,y).

DEFINITION 2.7.5. Let X and Y be continuous random variables with joint p.d.f. f . The
marginal p.d.f. of X and Y , denoted by fX(x) and fY (x), respectively, are given by

fX(x) =
∫
R

f (x,y)dy, fY (y) =
∫
R

f (x,y)dx.

REMARK 2.7.6. If X and Y have joint p.d.f., then both X and Y are absolutely continuous
random variables (see Theorem 2.6.2 above).

It is important to mention that X and Y are independent if and only if

P(X ≤ x,Y ≤ y) = P(X ≤ x)P(X ≤ y) for all x,y ∈ R.

Similarly,

THEOREM 2.7.7 ([HPS71, page 143]). Let X and Y be two discrete random variables with joint
p.m.f. p. The following are equivalent:

(1) X and Y are independent;
(2) p(x,y) = pX(x)pY (y) for all x,y, where pX and pY are p.m.f. of X and Y , respectively.
(3) there exist p.m.f. p1 and p2 such that p(x,y) = p1(x)p2(x) for all x,y.

THEOREM 2.7.8 ([HPS71, page 143]). Let X and Y be two absolutely continuous random
variables (see Theorem 2.6.2 above) with joint p.m.f. f . The following are equivalent:

(1) X and Y are independent;
(2) f (x,y) = fX(x) fY (y) for all x,y ∈ R, where fX and fY are p.d.f. of X and Y , respectively.
(3) there exist p.d.f. f1 and f2 such that f (x,y) = f1(x) f2(x) for all x,y ∈ R.



CHAPTER 3

Point estimation

3.1. Point Estimation and sample distribution

We now begin to make the transition between probability and inferential statistics. Given a
population, at least when then population is finite, in principle we believe that its mean, median,
standard deviation, and various other characteristics can be defined and computed. However, this
is not plausible in practical since the population may be very large, or even infinite. Therefore,
we take N samples from the population and study the sample, where N is much smaller than the
number of population. However, the values of the individual sample observations vary from sample
to sample, so in general the value of any quantity computed from sample data, and the value of
a sample characteristic used as an estimate of the corresponding population characteristics, will
virtually never coincide with what is being estimated. A statistic is any quantity whose value can
be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any
particular statistic will result. Therefore, we now introduce the following definition as in [DBC21,
Section 6.1]:

DEFINITION 3.1.1. A statistic is a random variable and will be denoted by an uppercase letter;
a lowercase letter is used to represent the calculated or observed value of the statistic.

EXAMPLE 3.1.2. For example, the sample mean, regarded as a statistic (before a sample has
been selected or an experiment has been carried out), is denoted by X (or XN to emphasize that there
are N samples), see (3.1.1) below; the calculated value of this statistic from a particular sample is
x.

Any statics, being a random variable, has a probability distribution. The probability distribution
of any particular statistic depends not only on the population distribution (e.g. normal, uniform,
etc.) and the sample size N but also on the method of sampling. Our next definition describes a
sampling method often encountered, at least approximately, in practice.

DEFINITION 3.1.3. The random variables X1,X2, · · · ,XN are said to form a (simple) random
sample of size N if they are i.i.d. (Definition 2.3.23).

Given a sample of N observations from a population, we will be calculating estimates of
the population mean, median, standard deviation, and various other population characteristics
(parameters). When discussing general concepts and methods of inference, it is convenient to
have a generic symbol for the parameter of interest. We will use the Greek letter θ for this purpose.

29
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A point estimate of a parameter θ is a single number that can be regarded as a sensible value of
θ . A point estimate is obtained by selecting a suitable statistic and determining its value from the
given sample data. The selected statistic θ̂ is called the point estimator of θ . For example, given
samples X1, · · · ,XN , in view of the law of large numbers (Theorem 2.3.24 and Theorem 2.3.25), it
is natural to select the sample mean

(3.1.1) θ̂ ≡ X :=
X1 + · · ·+XN

N
as a point estimator of the population mean. As the sample size N increases, according to the central
limit theorem (Theorem 2.6.12) the sampling distribution of X becomes increasingly normal,
irrespective of the population distribution from which values were samples.

3.1.1. Assessing Estimators: Accuracy and Precision. However, as we mentioned above, it
is not practical to take N → ∞; in practice the sample size N is much smaller than the population
size. We now want to give some “norms” to measure “how good” is a chosen point estimator θ̂ of
a parameter θ which we believe that is a characteristic of a population. First of all, we hope that
our estimators are “accurate” in the following sense:

DEFINITION 3.1.4 (unbiased estimator). Let θ̂ be a point estimator (a random variable) of a
parameter θ . The difference Eθ̂ − θ is called the bias of θ̂ . Accordingly, we say that a point
estimator θ̂ is said to be an unbiased estimator of θ if Eθ̂ = θ for every possible value of θ .

Let X1,X2, · · · ,XN are random sample with EXi = µ . Then the sample mean (3.1.1) is an
unbiased estimator:

(3.1.2) EX =
EX1 + · · ·+EXN

N
= µ,

regardless of the value of µ and the sample size N. This estimator may not good if the samples
Xi have large variance. In this case, it is possible that two statisticians conclude two very different
estimators even using the same estimator. Therefore, we also hope that our estimators are “precise”
in the following sense:

DEFINITION 3.1.5 (unbiased standard error). Let θ̂ be a point estimator (a random variable) of
a parameter θ . The standard error of θ̂ is its standard deviation:

σ
θ̂

:=
√

var(θ̂).

EXAMPLE 3.1.6. Let X ∼ B(N,θ) be the binomial random variable (Example 2.5.8). We
consider the sample proportion P̂ given by

P̂ :=
X
N
.

One sees that
EP̂ =

EX
N

= θ ,
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which shows that P̂ is an unbiased estimator (Definition 3.1.4) of the parameter θ , regardless of the
value of θ and the sample size N. The standard error of the estimator is

σP̂ =

√
var
(

X
N

)
=

√
1

N2 varX =

√
θ(1−θ)

N
.

Since θ is unknown (else why estimate?), we could substitute it by θ̃ = x/N, where x is an observed
value of X after performing experiments, yielding the estimated standard error

sP̂ =

√
θ̃(1− θ̃)

N
.

The above example suggests the following notation.

DEFINITION 3.1.7 (unbiased standard error, continued). If the standard error σ
θ̂

(Definition 3.1.5) itself involves unknown parameters whose values can be estimated, substitution
of these estimates into σ

θ̂
yields the estimated standard error of θ̂ , which can be denoted by s

θ̂
.

EXAMPLE 3.1.8. Let X1,X2, · · · ,XN are random sample with EXi = µ and var(Xi) = σ ,
provided that EX2

i < ∞ for all i = 1, · · · ,N. As demonstrated in (3.1.2), the sample mean X given
in (3.1.1) is an unbiased estimator of the parameter µ , regardless of the value of µ and the sample
size N. By using Exercise 2.3.30, one also sees that

σX =

√
var(X) =

√
var(X1)

N
=

σ√
N
,

which shows that the standard error of the sample mean decreases (its precision improves) with
increasing sample size. Again, since the value of σ is almost always unknown, we can estimate the
standard error of X by sX = s/

√
N, where s denotes the sample standard deviation.

For an unbiased estimator, some samples will yield estimates that exceed θ and other samples
will yield estimates smaller than θ , otherwise θ would not possibly be the “center” of the
estimator’s distribution. In practice, sometimes “natural” estimators also can “biased”.

EXAMPLE 3.1.9. Let X1,X2, · · · ,XN are random sample with P(0 ≤ Xi ≤ θ) = 1 for all i =
1, · · · ,N. We now want to estimate the unknown parameter θ . It is natural to consider the estimator

(3.1.3) θ̂b := max
1≤i≤N

Xi.

However, our proposed estimator θ̂b never overestimate θ since the largest sample value cannot
exceed the largest population value, and will underestimate θ unless the largest sample value equal
to θ (you are lucky). Since

P(θ̂b ≤ y) = P(X1 ≤ y, · · · ,XN ≤ y) =
N

∏
i=1

P(Xi ≤ y) = P(X1 ≤ y)N ,
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thus we sees that P(0 ≤ θ̂b ≤ θ) = 1, therefore from Lemma 2.3.18 we see that

Eθ̂b =
∫

θ

0

≤1︷ ︸︸ ︷
P(θ̂b > y) dy ≤ θ ,

which strongly suggests that θ̂b is a biased estimator (hence the subscript “b”). If we additionally
assume that

lim
N→∞

P(X1 ≤ y)N = 0 for all y ∈ (0,θ),

then by using the dominated convergence theorem one sees that

Eθ̂b =
∫

θ

0

(
1−P(X1 ≤ y)N) dy →

∫
θ

0
1dy = θ as N → ∞,

the bias approaches 0 as N increases and is negligible for large N. Given any ε > 0, by using the
Markov inequality [Dur19, Theorem 1.6.4], one has

P(|θ − θ̂b| ≥ ε)≤ 1
ε
E|θ − θ̂b|=

1
ε
E(θ − θ̂b)→ 0 as N → ∞

because θ − θ̂b ≥ 0 a.s., that is, θ̂b → θ in probability.

The above example strongly suggest the following definition.

DEFINITION 3.1.10. Let X1, · · · ,XN be random samples from a distribution that depends on a
parameter θ . Then an estimator θ̂ of θ is said to be consistent if θ̂b → θ in probability.

EXAMPLE 3.1.11. Let α > 0 and let X1,X2, · · · ,XN are random sample with (the case α = 1
corresponding to uniform distribution on (0,θ))

P(Xi ≤ y) =


0 ,y ≤ 0,

yα/θ α ,0 ≤ y ≤ θ ,

1 ,y ≥ θ ,

then the expectation of (3.1.3) is given by

Eθ̂b =
∫

θ

0

(
1−P(θ̂b ≤ y)

)
dy =

∫
θ

0

(
1−P(X1 ≤ y)N) dy

=
∫

θ

0

(
1− yαN

θ αN

)
dy =

αN
αN +1

θ ,

which means that the bias
Eθ̂b −θ =− 1

αN +1
θ is negative.

We say that such estimator θ̂b is biased low, meaning that it systematically underestimates the true
value of θ , but it is still consistent (Definition 3.1.10). As we mentioned above, in practice the
sample size N is much smaller than the population size, therefore taking N → ∞ may not plausible.



3.1. POINT ESTIMATION AND SAMPLE DISTRIBUTION 33

Therefore, we still interested to obtain an unbiased estimator of θ : this can be done by choosing

θ̂u :=
αN +1

αN
max

1≤i≤N
Xi,

which satisfies Eθ̂u = θ , regardless of the value of θ and the sample size N, that is, θ̂u is an unbiased
estimator of θ . This also demonstrates that the unbiased estimator of θ depends on the distributions
of random samples.

EXERCISE 3.1.12. Let θ̂b be the biased estimator in Example 3.1.11. Compute var(θ̂b).

EXAMPLE 3.1.13. Now we want to estimating population variance σ2 based on a random
sample X1, · · · ,XN with EX2

i < ∞ and varXi = σ2 for all i = 1, · · · ,N. In view of the definition of
variance, one may consider the sample variance estimator

S2
b =

1
N

N

∑
i=1

(Xi −X)2,

where X is the sample mean (3.1.2). Since (left as an exercise)

(3.1.4)
N

∑
i=1

(Xi −X)2 =
N

∑
i=1

X2
i − 1

N

(
N

∑
i=1

Xi

)2

and X1, · · · ,XN are i.i.d., one sees that

ES2
b =

1
N

N

∑
i=1

EX2
i − 1

N2E

(
N

∑
i=1

Xi

)2

=
1
N

N

∑
i=1

(
σ

2 +(EX1)
2)− 1

N2

var

(
N

∑
i=1

Xi

)
+

(
E

(
N

∑
i=1

Xi

))2


= σ
2 +(EX1)

2 − 1
N2

(
Nσ

2 +N2(EX1)
2) (using Exercise 2.3.30)

=
N −1

N
σ

2,

which means that it systematically underestimates the true value of σ2 since

ES2
b −σ

2 =− 1
N

σ
2 is negative.

Therefore, similar to Example 3.1.11, one sees that the estimator

(3.1.5) S2
u =

1
N −1

N

∑
i=1

(Xi −X)2

is unbiased in the sense of ES2
u =σ2, regardless of the value of σ2 and the sample size N. Therefore,

we called the estimator (3.1.5) an unbiased sample variance.
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Suppose that we have a random sample of M random samples X1, · · · ,XM from N (µ1,σ
2
1 ) and

independent random samples Y1, · · · ,YN from N (µ2,σ
2
2 ). We are now interested to estimate the

ratio of variance. In view of Example 3.1.13, it is natural to estimate σ2
1/σ2

2 by the consistent
estimator S2

1,u/S2
2,u (but may biased), where

S2
1,u =

1
M−1

M

∑
i=1

(Xi −X)2 and S2
2,u =

1
N −1

N

∑
i=1

(Xi −X)2.

In fact, we have the followings:

THEOREM 3.1.14. Let X1, · · · ,XN be random samples from N (µ,σ2). Then X ∼
N (µ,σ/

√
N) and N−1

σ2 S2
u ∼ χ2

N−1 are independent.

Therefore, according to the definition of the F distribution (Definition 2.6.16), we see that

S2
1,u/σ2

1

S2
2,u/σ2

2
=

(M−1)S2
1,u/σ2

1
M−1

(N−1)S2
2,u/σ2

2
N−1

∼ FM−1,N−1.

One sees that F distribution may be used to compare the variances from two independent group.

3.1.2. Assessing Estimators: Mean squared error. Another way to measure “how good” is
a chosen point estimator θ̂ of a parameter θ is we directly compute its error:

DEFINITION 3.1.15. The mean squared error (MSE) of an estimator θ̂ is E
(
(θ̂ −θ)2).

We see that

E
(
(θ̂ −θ)2)= E

((
(θ̂ −Eθ̂)+(Eθ̂ +θ)

)2
)

= E
(
(θ̂ −Eθ̂)2 +(Eθ̂ +θ)2 +2(θ̂ −Eθ̂)(Eθ̂ +θ)

)
= E

(
(θ̂ −Eθ̂)2)+(Eθ̂ +θ)2

= var(θ̂)+(Eθ̂ +θ)2.

In other words,

(3.1.6) MSE = variance of estimator+(bias)2.

In particular, for any unbiased estimator of θ , its MSE and variance are equal.

EXAMPLE 3.1.16. Let us return to the problem of estimating population variance σ2 based on
a random sample X1, · · · ,XN with EXi = µ and EXi = σ2 as in Example 3.1.13. We now consider
an estimate of the form

S2 = c
N

∑
i=1

(Xi −X)2,
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where c = c(N) is a constant. Note that S2
b corresponds to c = 1

N and S2
u corresponds to c = 1

N−1 .
As showed in Example 3.1.13, since X1, · · · ,XN are i.i.d., one can compute

E
(
S2)= c(N −1)σ2.

On the other hand, we also compute

var(S2) = c2var

(
N

∑
i=1

(Xi −X)2

)
= c2var

 N

∑
i=1

X2
i − 1

N

(
N

∑
i=1

Xi

)2


= c2var

(
N

∑
i=1

X2
i − 1

N

N

∑
i=1

X2
i − 1

N ∑
i ̸= j

XiX j

)

= c2var

(
N −1

N

N

∑
i=1

X2
i − 1

N ∑
i ̸= j

XiX j

)
.

The above expression is difficult to compute since the random variables XiX j may not uncorrelated
(Definition 2.3.27), therefore one cannot use Lemma 2.3.31 to compute var(S2). In this case, by
using Example 2.6.14, we see that var(S2) = 2c2σ4(N −1). By using (3.1.6), we see that

E
(
(S2 −σ

2)2)= 2c2
σ

4(N −1)+(c(N −1)−1)2
σ

4

=
(
2c2(N −1)+(c(N −1)−1)2)

σ
4.

By differentiating the mapping c 7→ 2c2(N −1)+(c(N −1)−1)2, one sees that the choice

c =
1

N +1

minimizes the MSE E
(
(S2 −σ2)2), which yields a rather unnatural estimator

S2
MSE =

1
N +1

N

∑
i=1

(Xi −X)2,

which has bias

ES2
MSE −σ

2 =− 2
N +1

σ
2 <− 1

N
σ

2 = ES2
b −σ

2 when sample size N ≥ 2.

In practice, we usually do not use the (unnatural) estimator S2
MSE.

3.1.3. Unbiased estimation. As demonstrated in Example 3.1.16, we would prefer an
unbiased rather than the biased one, even if the latter has a smaller MSE. This is sometimes
referred as the principle of unbiased estimation. If there were a unique unbiased estimator for
a parameter, then the situation is simple. However this is not the case in general. Finding an
estimator whose mean squared error is smaller than that of every other estimator for all values of
the parameter is sometimes not feasible. One common approach is to restrict the class of estimators
under consideration in some way, and then seek the estimator that is best in that restricted class.
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According to the principle of unbiased estimation, it is common to restrict ourselves on unbiased
estimator.

DEFINITION 3.1.17. Let θ̂1 and θ̂2 be two unbiased estimators for a parameter θ . If var(θ̂1)≤
var(θ̂2), then we say that θ̂1 is more efficient than θ̂2.

Among unbiased estimator, it is natural to consider the one with least variance.

DEFINITION 3.1.18. Let θ̂ be an unbiased estimator of θ . If var(θ̂)≤ var(θ̃) for all unbiased
estimators θ̃ of θ , then we say that θ̂ is the minimum variance unbiased estimator (later we use the
abbreviation “m.v.u.e.”) of θ .

In other words, m.v.u.e. is the accurate estimator with best precision.

EXAMPLE 3.1.19. Let X1,X2, · · · ,XN are random sample with uniform distribution on (0,θ),
that is, its c.d.f. is given by

P(Xi ≤ y) =


0 ,y ≤ 0,

y/θ ,0 ≤ y ≤ θ ,

1 ,y ≥ θ .

In Example 3.1.11 (with α = 1), we see that

θ̂u :=
N +1

N
max

1≤i≤N
Xi,

is an unbiased estimator of θ . However, this is not the unique unbiased estimator of θ . For example,
we can easily verify that

θ̂ := 2X =
2
N
(X1 + · · ·+XN)

is also an unbiased estimator of θ , but however,

var(θ̂) =
4

N2

N

∑
i=1

var(Xi) =
θ 2

3N
>

θ 2

N(N +2)
= var(θ̂u),

which shows that θ̂u is a better estimator in terms of “precision”. In fact, θ̂u is the m.v.u.e.
(Definition 3.1.18) of θ .

We now list some examples of m.v.u.e.:

THEOREM 3.1.20. Let X1,X2, · · · ,XN are random sample with N (µ,σ2), then

(1) the m.v.u.e. of the mean µ is X = X1+···+XN
N .

(2) the m.v.u.e. of variance σ is S2
u =

1
N−1 ∑

N
i=1(Xi −X)2.

In view of the unbiased estimator S2
u of the population variance σ2, one may estimate the

population standard error σ using the estimator

Su =

√
1

N −1

N

∑
i=1

(Xi −X)2.
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However, in general ESu does not equal to σ , i.e. the estimator may biased. In fact1, if Xi are
normal distributions with variance σ2, then one can check that KNSu is an unbiased of σ , in the
sense of E(KNSu) = σ regardless of the value of σ and the sample size N, with standard error

σKNSu =
√

var(KNSu) = σKN

√
VN

N −1
,

where Γ is the Gamma function,

KN =

√
N −1

2
Γ(N−1

2 )

Γ(N
2 )

=

more numerically stable for large N︷ ︸︸ ︷√
N −1

2
exp
(

lnΓ

(
N −1

2

)
− lnΓ

(
N
2

))
and

VN = 2

(
N −1

2
−

Γ2(N
2 )

Γ2(N−1
2 )

)
,

see [DBC21, Exercise 52 in Section 6.4] or [LC98, page 92]. In fact:

THEOREM 3.1.21. Let X1,X2, · · · ,XN are random sample with N (µ,σ2), then the MVUE of
standard error σ is KNSu.

The central limit theorem (Theorem 2.6.12) says that σ−1N1/2(XN −µ) would be “close” to the
standard normal for large N. Despite the estimator Su of σ is slightly biased, but it still consistent
(Definition 3.1.10), therefore it is natural to replace σ by Su in the expression X := σ−1N1/2(XN −
µ) to obtain the estimator T := X−µ

Su/
√

N
. If X1,X2, · · · ,XN are random sample with N (µ,σ2), since

X −µ

σ/
√

N
∼ N (0,1) and

(N −1)S2
u

σ2 ∼ χ
2
N−1 (see Example 2.6.14),

then, by writing
X −µ

Su/
√

N
=

(X −µ)/(σ/
√

N)√
(N −1)−1 (N−1)S2

u
σ2

,

we see (Example 2.6.15) the following result, which was originally discovered in 1908 by William
Sealy Gosset (known as “Student”), a statistician at the Guinness Brewery in Dublin, Ireland:

THEOREM 3.1.22 ([Gos08]). Let X1,X2, · · · ,XN are random sample with N (µ,σ2), then

T :=
X −µ

Su/
√

N
∼ tN−1.

We have showed in (3.1.2) that X is an unbiased estimator of µ , regardless the distribution of
each sample. In view of Theorem 3.1.20, it is natural to ask whether X is still a MVUE or not if we
sample according to other distributions rather than N (µ,σ2). In fact, if the random sample comes

1https://web.eecs.umich.edu/~fessler/papers/files/tr/stderr.pdf

https://web.eecs.umich.edu/~fessler/papers/files/tr/stderr.pdf
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from a Cauchy distribution with p.d.f.

f (x) =
1

π(1+(x−θ)2)
, x ∈ R,

then in fact X is a terrible estimator for µ , since it is very sensitive to outlying observations, and the
heavy tails of the Cauchy distribution make a few such observations likely to appear in any sample.
Given an integer 1 ≤ m < N/2, the truncated mean is defined by

X tr :=
1

N −2m+2

N−m+1

∑
i=m

max{X1, · · · ,Xi}.

Despite X tr is not the best estimator, but it produces (with truncated proportion m−1
N between 10

and 20%) reasonably behaved estimates over a very wide range of possible population models. For
this reason, such a truncated mean is said to be a robust estimator.

3.2. The method of moments

The estimator we mentioned above is obtained via guessing according to “common sense”. We
are now interested in some systematic methods to find an estimator. First of all, we introduce the
methods of moments, which basic idea is to equate certain simple characteristics, such as the sample
mean, to the corresponding population expected values. Then solving these equations for unknown
parameter values yields the estimators. Let m ∈ N and let X1, · · · ,XN be random samples (i.i.d.
random variables) with finite moments E|Xi|m < ∞ for all 1 ≤ k ≤ m. As mentioned above, we see
that

(3.2.1)
1
N

N

∑
i=1

Xk
i

is an unbiased estimator of the kth moment of the distribution E(Xk
i ), which also called the kth

population moment. Therefore it is natural to introduce the following definition.

DEFINITION 3.2.1. Let m ∈ N and let X1, · · · ,XN be random samples with finite moments
E|Xi|m < ∞ for all 1 ≤ k ≤ m. For each k ∈ N, the kth sample moment is the random variable
(3.2.1).

Thus, the first population moment is E(Xi) = µ and the first sample moment is 1
N ∑

N
i=1 Xi = X .

The second population and sample moments are E(X2
i ) and 1

N ∑
N
i=1 X2

i , respectively. The population
moments will be functions of any unknown parameters θ1,θ2, · · · .

DEFINITION 3.2.2. Let X1, · · · ,XN be a random sample from a distribution depending on
parameters θ1, · · · ,θm whose values are unknown. Then the method of moments estimators (later
we use the abbreviation “m.m.e.”) θ̂1, · · · , θ̂m are obtained by equating the first m sample moments
to the corresponding first m population moments and solving for θ1, · · · ,θm.
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By using the strong law of large number (Theorem 2.3.24), we see that for each k ∈ N that

1
N

N

∑
i=1

Xk
i → E(Xk

i ) a.s.

therefore the m.m.e. is always consistent (Definition 3.1.10).

EXAMPLE 3.2.3. Let X1, · · · ,XN are random samples from E (λ ) = Gamma(1,1/λ ). We first
want to estimate the parameter θ = 1/λ . Note that

θ = EXi.

By substituting EXi using X = 1
N ∑

N
i=1 Xi in the above equation, we see that the m.m.e. of θ is then

θ̂ = X . We see that
EX = EXi = 1/λ = θ ,

which shows that the m.m.e. of the parameter θ = 1/λ is an unbiased estimator.

EXAMPLE 3.2.4. Let X1, · · · ,XN are random samples from E (λ ) = Gamma(1,1/λ ). We now
want to estimate the parameter θ = λ . Note that

θ =
1

EXi
.

By substituting EXi using X = 1
N ∑

N
i=1 Xi in the above equation, we see that the m.m.e. of θ is then

θ̂ = 1/X . Since the mapping t 7→ 1/t is strictly convex, then Jensen’s inequality shows that

Eθ̂ = E(1/X)> 1/EX = λ ,

which shows that the estimator θ̂ is biased high. In fact, by using [DBC21, Exercise 13 in
Section 7.1] we have

Eθ̂ =
N

N −1
λ ,

which shows that θ̂u =
N−1

N θ̂ is an unbiased estimator of θ .

Example 3.2.3 and Example 3.2.4 demonstrate that the m.m.e. just suggest some estimators,
but may biased.

EXAMPLE 3.2.5. Let X1, · · · ,XNare random samples with variance var(Xi) = σ2. We now want
to estimate the parameter θ = σ2. Note that

θ = EX2
i − (EXi)

2.

By substituting EXi (resp. EX2
i ) using X = 1

N ∑
N
i=1 Xi (resp. EX2

i → 1
N ∑

N
i=1 X2

i ) in the above
equation, we see that the m.m.e. of θ is

1
N

N

∑
i=1

X2
i −

(
1
N

N

∑
i=1

Xi

)2
(3.1.4)
=

1
N

N

∑
i=1

(Xi −X)2 = S2
b,
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which is exactly the biased estimator mentioned in Example 3.1.13.

EXAMPLE 3.2.6. Let X1, · · · ,XN are random samples from Gamma(α,β ). By using
Exercise 2.6.22, one sees that

EXi = αβ and EX2
i = β

2(α +1)α.

We are now want to estimate the parameters θ1 = α and θ2 = β . A little straightforward algebra
gives

α =
(EXi)

2

EX2
i − (EXi)2 and β =

EX2
i − (EXi)

2

EXi
.

By substituting EXi → X = 1
N ∑

N
i=1 Xi and EX2

i → 1
N ∑

N
i=1 X2

i in the above equation, we see that the
m.m.e. of α and β are (3.1.4)

α̂ =
X2

1
N ∑

N
i=1 X2

i −X2
(3.1.4)
=

X2

S2
b

and β̂ =
1
N ∑

N
i=1 X2

i −X2

X
(3.1.4)
=

S2
b

X

where

S2
b =

1
N

N

∑
i=1

(Xi −X)2 (3.1.4)
=

1
N

N

∑
i=1

X2
i −X2

is the biased variance estimator in Example 3.1.13. By using the strong law of large number
(Theorem 2.3.24), one sees that α̂ (resp. β̂ ) is a consistent estimator of α (resp. β ).

EXAMPLE 3.2.7. Let X1,X2, · · · ,XN are random sample from uniform distribution on (0,θ), i.e.

P(Xi ≤ y) =


0 ,y ≤ 0,

y/θ ,0 ≤ y ≤ θ ,

1 ,y ≥ θ .

One sees that EXi =
θ

2 . By substituting EXi using X = 1
N ∑

N
i=1 Xi in the equation θ = 2EXi, we see

that the m.m.e. of θ is
θ̂ = 2X ,

which is an unbiased estimator of θ .

EXAMPLE 3.2.8. Let X1,X2, · · · ,XN are random sample from uniform distribution on (θ ,θ +1),
i.e.

P(Xi ≤ y) =


0 ,y ≤ θ ,

y−θ ,θ ≤ y ≤ θ +1,

1 ,y ≥ θ +1.

One sees that EXi = θ + 1
2 . By substituting EXi using X = 1

N ∑
N
i=1 Xi in the equation θ = EXi − 1

2 ,
we see that the m.m.e. of θ is

θ̂ = X − 1
2
,
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which is an unbiased estimator of θ .

3.3. The method of maximum likelihood

The method of maximum likelihood was first introduced by R. A. Fisher in 1922 [Fis22]. Most
statisticians recommend this method, at least when the sample size is large, since the resulting
estimators have certain desirable efficiency properties.

DEFINITION 3.3.1. Let X1, · · · ,XN be absolute continuous random variables (resp. discrete
random variables) with a joint p.d.f. (resp. joint p.m.f.) that depends on a parameter θ whose value
is unknown. This joint distribution, regarded as a function of θ , is called the likelihood function,
and is denoted by L(θ). The natural logarithm of the likelihood function ℓ(θ) := ln(L(θ)) is
commonly referred to as the log-likelihood function. The maximum likelihood estimator (later we
use the abbreviation “m.l.e.”) θ̂ is the value of θ that maximizes the likelihood function (or log-
likelihood function).

Maximizing the likelihood gives the parameter value for which the observed sample is most
likely to have been generated, that is, the parameter value that “agrees most closely” with the
observed data.

EXAMPLE 3.3.2. Let X1, · · · ,XN be random samples from E (λ ). Since X1, · · · ,XN are i.i.d.,
then the likelihood (i.e. their joint p.d.f.) is

L(λ ) =
N

∏
i=1

(λe−λXi) = λ
Ne−λ ∑

N
i=1 Xi = λ

Ne−λNX ,

then the log-likelihood is
ℓ(λ ) := lnL(λ ) = N lnλ −λNX .

By solving the equation ℓ′(λ ) = 0, one sees that λ̂ = 1/X maximizes ℓ, that is, ℓ(λ̂ )≥ ℓ(λ ) for all
ℓ > 0. In other words, λ̂ = 1/X is the m.l.e. of the parameter λ . Note that such λ̂ = 1/X is exactly
the m.m.e. that we found in Example 3.2.4, which is a consistent but biased estimator.

EXAMPLE 3.3.3. Let X1, · · · ,XN are random samples from N (µ,σ2). Since X1, · · · ,XN are
i.i.d., then the likelihood (i.e. their joint p.d.f.) is

L(µ,σ2) =
N

∏
i=1

(
1√

2πσ2
e−

(Xi−µ)2

2σ2

)
= (2πσ

2)−
N
2 e−

∑
N
i=1(Xi−µ)2

2σ2

then the log-likelihood is

ℓ(µ,σ2) := lnL(µ,σ2) =−N
2

ln(2π)− N
2

ln(σ2)− 1
2
(σ2)−1

N

∑
i=1

(Xi −µ)2.
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Note that its first partial derivatives are

∂µℓ(µ,σ
2) =−(σ2)−1

N

∑
i=1

(µ −Xi) =−(σ2)−1N(µ −X),

∂σ2ℓ(µ,σ2) =−N
2
(σ2)−1 +

1
2
(σ2)−2

N

∑
i=1

(Xi −µ)2 =−N
2
(σ2)−2

(
σ

2 − 1
N

N

∑
i=1

(Xi −µ)2

)
.

By solving the equation ∂µℓ(µ,σ
2) = ∂σ2ℓ(µ,σ2) = 0, we see that

(3.3.1) (µ̂, σ̂2) =

(
X ,

1
N

N

∑
i=1

(Xi −X)2

)
≡ (X ,Sb)

is the only critical point (Definition 1.5.1) of ℓ : R×R>0 → R. We also see that

∂
2
µℓ(µ,σ

2) =−(σ2)−1N,

∂µ∂σ2ℓ(µ,σ2) = ∂σ2∂µℓ(µ,σ
2) = (σ2)−2N(µ −X),

∂
2
σ2ℓ(µ,σ

2) =
N
2
(σ2)−2 − (σ2)−3

N

∑
i=1

(Xi −µ)2 =
N
2
(σ2)−3

(
σ

2 − 2
N

N

∑
i=1

(Xi −µ)2

)
,

then

∂
2
µℓ(µ̂, σ̂

2) =−(σ̂2)−1N,

∂µ∂σ2ℓ(µ̂, σ̂2) = 0,

∂
2
σ2ℓ(µ,σ

2) =
N
2
(σ̂2)−3 (

σ̂
2 −2σ̂

2)=−N
2
(σ̂2)−2,

which shows that

∇
⊗2
(µ,σ2)

ℓ(µ̂, σ̂2) =

(
−(σ̂2)−1N 0

0 −N
2 (σ̂

2)−2

)
≺ 0,

therefore the second derivative test (Theorem 1.5.6) shows that (3.3.1) is the local maximizer of
ℓ : R×R>0 → R. Since

lim
σ2→0+

ℓ(µ,σ2) = ln
(

lim
σ2→0+

L(µ,σ2)

)
=−∞,

this shows that the local maximizer (3.3.1) is indeed global, and we conclude that (3.3.1) is the
m.l.e. of parameters (µ,σ2), which is also the m.m.e. of (µ,σ2), see Example 3.2.5. We point
out that µ̂ = X is the m.v.u.e. of µ (Theorem 3.1.20), but however σ̂2 = Sb is a biased estimator
(Example 3.1.13).



3.3. THE METHOD OF MAXIMUM LIKELIHOOD 43

EXAMPLE 3.3.4. Let X1,X2, · · · ,XN are random sample from uniform distribution on (0,θ), i.e.

P(Xi ≤ y) =


0 ,y ≤ 0,

y/θ ,0 ≤ y ≤ θ ,

1 ,y ≥ θ .

One can easily see that the p.d.f. of each Xi is

f (x) =

θ−1 ,0 ≤ x ≤ θ ,

0 otherwise.

Since X1, · · · ,XN are i.i.d., then the likelihood (i.e. their joint p.d.f.) is

L(θ) =

θ−N ,0 ≤ Xi ≤ θ for all i = 1, · · · ,N,

0 otherwise,
=

θ−N θ ≥ maxi=1,··· ,N Xi,

0 θ < maxi=1,··· ,N Xi.

Since L(θ)> 0 if and only if θ ≥ maxi=1,··· ,N Xi, then we see that its global maximizer θ̂ (if exists)
must satisfies θ̂ ≥ maxi=1,··· ,N Xi. Now we see that θ−N is a monotone decreasing function, then
we see that

θ̂ = max
i=1,··· ,N

Xi

is the m.l.e. of the parameter θ , which is exactly the biased estimator θ̂b mentioned in
Example 3.1.9. In this case, the m.l.e. is different to the m.m.e. (Example 3.2.7).

The following example demonstrates that m.l.e. may not unique.

EXAMPLE 3.3.5. Let X1,X2, · · · ,XN are random sample from uniform distribution on (θ ,θ +1),
i.e.

P(Xi ≤ y) =


0 ,y ≤ θ ,

y−θ ,θ ≤ y ≤ θ +1,

1 ,y ≥ θ +1.

One can easily see that the p.d.f. if each Xi is

f (x) =

1 θ ≤ x ≤ θ +1,

0 otherwise.

Since X1, · · · ,XN are i.i.d., then the likelihood (i.e. their joint p.d.f.) is

L(θ)=

1 ,θ ≤ Xi ≤ θ +1 for all i = 1, · · · ,N,

0 otherwise,
=

1 maxi=1,··· ,N Xi −1 ≤ θ ≤ mini=1,··· ,N Xi,

0 otherwise.

Then we see any θ̂ with
max

i=1,··· ,N
Xi −1 ≤ θ̂ ≤ min

i=1,··· ,N
Xi
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maximizes L(θ). In other words, for each statistic 0 ≤ α = α(X1, · · · ,XN) ≤ 1, we see that the
convex combination

θ̂α := α

(
max

i=1,··· ,N
Xi −1

)
+(1−α) min

i=1,··· ,N
Xi

maximizes L(θ). In other words, any such of the estimator θ̂ is a m.l.e. of the parameter θ .

3.4. Sufficiency

Given random samples (i.i.d. random variables) X1, · · · ,XN and our goal is to make an inference
about some parameter θ . As a first point, we note that a statistic T = t(X1, · · · ,XN) will not be
useful for drawing conclusions about θ unless the distribution of T depends on θ . For example,
we consider random samples X1,X2 of size N = 2 from a normal distribution with mean µ and
variance σ2, and we consider the statistic T = X1 −X2, which is a normal distribution with mean 0
and variance 2σ2. Since this statistic does not depends on µ , then it cannot be used as a basis for
drawing any conclusion about µ .

We now want to make an inference about some parameter θ based on one or more statistics T ,
which depend(s) on such parameter θ . Among these statistics, we may expect that some of them
contain more information about θ than will others. The main theme of this section is to decide
which statics are most informative for making inferences.

DEFINITION 3.4.1. Suppose the joint distribution of X1, · · · ,XN involves an unknown parameter
θ . A statistic T = t(X1, · · · ,XN) is said to be sufficient for making inference about a parameter θ

if the joint distribution of X1, · · · ,XN given that T = t does not depend upon θ , for every possible
value t of the statistic T . Such statistic T is called a sufficient statistic.

We now exhibit some examples in [LM21] to explain the definition.

EXAMPLE 3.4.2 (An estimator that is sufficient). Let X1, · · · ,XN be random samples (i.i.d.
random variables) be taken from the Bernuolli distribution, with p.m.f.

p(k;θ) = θ
k(1−θ)1−k, k = 0,1,

where θ is an unknown parameter, which is the mean of Xi. We now consider the statistic T = X :=
1
n ∑

N
i=1 Xi, which is both m.m.e. and m.l.e. of θ . To show that T is a sufficient estimator for θ , it is

suffice to compute the conditional probability of X1 = k1, · · · ,XN = kN given that X = k := 1
N ∑

N
i=1 ki,

because
P(X1 = k1, · · · ,XN = kN |T = k) = 0 for all k ̸= k.

First of all, we see that

P
(
X1 = k1, · · · ,XN = kN |T = k

)
=

P
(
(X1 = k1, · · · ,XN = kN)∩ (T = k)

)
P(T = k)

=
P(X1 = k1, · · · ,XN = kN)

P(T = k)
.
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We see that

P(X1 = k1, · · · ,XN = kN) =
N

∏
i=1

P(Xi = ki) =
N

∏
i=1

θ
ki(1−θ)1−ki

= θ ∑
N
i=1 ki(1−θ)∑

N
i=1(1−ki) = θ

Nk(1−θ)N(1−k),

and

P(T = k) = P

(
N

∑
i=1

Xi = Nk

)
=

(
N
Nk

)
θ

Nk(1−θ)N(1−k)

since ∑
N
i=1 Xi has binomial distribution with parameters N and p (Example 2.5.8). Therefore, we

conclude that

P
(
X1 = k1, · · · ,XN = kN |T = k

)
=

(
N
Nk

)−1

,

which is independent of θ . Therefore, we conclude that the statistic T is sufficient for making
inference about the unknown parameter θ , in the sense of Definition 3.4.1.

EXAMPLE 3.4.3 (An estimator that is not sufficient). Let X1, · · · ,XN be random samples (i.i.d.
random variables) given in Example 3.4.2. We now consider the statistic T = 1

N−1 ∑
N−1
i=1 Xi. To

show that T is a sufficient estimator for θ , it is suffice to compute the conditional probability of
X1 = k1, · · · ,XN = kN given that T = 1

N−1 ∑
N−1
i=1 ki, because

P(X1 = k1, · · · ,XN = kN |T = k) = 0 for all k ̸= 1
N −1

N−1

∑
i=1

ki.

First of all, we compute that

P

(
X1 = k1, · · · ,XN = kN |T =

1
N −1

N−1

∑
i=1

ki

)

=
P
(
(X1 = k1, · · · ,XN = kN)∩ (T = 1

N−1 ∑
N−1
i=1 ki)

)
P(T = 1

N−1 ∑
N−1
i=1 ki)

=
P(X1 = k1, · · · ,XN = kN)

P(T = 1
N−1 ∑

N−1
i=1 ki)

.

We see that

P

(
T =

1
N −1

N−1

∑
i=1

ki

)
= P

(
N−1

∑
i=1

Xi =
N−1

∑
i=1

ki

)
=

(
N −1

∑
N−1
i=1 ki

)
θ ∑

N−1
i=1 ki(1−θ)(N−1)−∑

N−1
i=1 ki,

which gives

P

(
X1 = k1, · · · ,XN = kN |T =

1
N −1

N−1

∑
i=1

ki

)
=

(
N −1

∑
N−1
i=1 ki

)−1

θ
kN (1−θ)1−kN ,

which depends on θ . Therefore, we conclude that the statistic T is not sufficient for making
inference about the unknown parameter θ , in the sense of Definition 3.4.1.
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However, the above arguments only works for random samples taken from discrete probability
distributions. For random samples taken from continuous probability distribution, we need the
following factorization theorem.

THEOREM 3.4.4 (Fisher-Neyman factorization theorem). Let f (x1, · · · ,xN ;θ) denote the joint
p.m.f. or p.d.f. of random samples X1, · · · ,XN . Then T = t(X1, · · · ,XN) is a sufficient statistic for θ

if and only if there exist nonnegative functions g and h such that

f (x1, · · · ,xN ;θ) = g(t(x1, · · · ,xN);θ)h(x1, · · · ,xN).

The proof of the case when X1, · · · ,XN are discrete is exactly same as the procedure in
Example 3.4.2 and Example 3.4.3, here we shall not repeat the details here. A general proof when
X1, · · · ,XN are continuous is fraught with technical details that are beyond the level of our text, so
lets skip those details here.

REMARK 3.4.5. Let x1, · · · ,xN and y1, · · · ,yN be any two sets of observations, and let T =

t(X1, · · · ,XN) is a sufficient statistic for θ . If t(x1, · · · ,xN) = t(y1, · · · ,yN), then using the Fisher-
Neyman factorization theorem (Theorem 3.4.4) we see that the likelihood ratio

f (x1, · · · ,xN ;θ)

f (y1, · · · ,yN ;θ)
=

h(x1, · · · ,xN)

h(y1, · · · ,yN)

does not depend on θ .

We now introduce the following concept:

DEFINITION 3.4.6. Suppose the joint distribution of X1, · · · ,XN involves an unknown parameter
θ . A sufficient statistic is said to be minimal sufficient for θ if it can be represented as a function of
any other sufficient statistic for θ . In other words, the statistic Tmin = tmin(X1, · · · ,XN) is minimal
sufficient for θ if and only if the following two conditions hold:

(1) Tmin is sufficient for θ , and
(2) if T = t(X1, · · · ,XN) is sufficient for θ , then there exists a function f such that tmin = f ◦ t,

which means that

t(x1, · · · ,xN) = t(y1, · · · ,yN) =⇒ tmin(x1, · · · ,xN) = tmin(y1, · · · ,yN).

Intuitively, a minimal sufficient statistic most effectively captures all possible information about
the parameter θ . Here is a result that allows for easy identification of a minimal sufficient statistic:

THEOREM 3.4.7 ([DBC21, Exercise 74 in Chapter 7]). Let f (x1, · · · ,xN ;θ) denote the joint
p.m.f. or p.d.f. of random variables X1, · · · ,XN . Suppose that there is a function t(x1, · · · ,xN) such
that the following holds: for any two sets of observations x1, · · · ,xN and y1, · · · ,yN the likelihood
ratio

f (x1, · · · ,xN ;θ)

f (y1, · · · ,yN ;θ)
does not depend on θ ⇐⇒ t(x1, · · · ,xN) = t(y1, · · · ,yN),
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then T = t(X1, · · · ,XN) is a minimal sufficient statistic for θ .

PROOF. We first show that T = t(X1, · · · ,XN) is a sufficient statistic for θ . Define an
equivalence relation ∼ by setting

(x1, · · · ,xN)∼ (y1, · · · ,yN) ⇐⇒ t(x1, · · · ,xN) = t(y1, · · · ,yN).

Let τ ∈ range( f ) and let (x1, · · · ,xN) be a set of observation, and suppose that t(x1, · · · ,xN) =

τ . Then (x1, · · · ,xN) is in the equivalence class {(y1, · · · ,yN) : t(y1, · · · ,yN) = τ}, which has a
representative

xt(x1,··· ,xN) ≡ xτ := [x1, · · · ,xN ].

By the hypothesis, the ratio

f (x1, · · · ,xN ;θ)

f (xt(x1,··· ,xN);θ)
does not depend on θ ,

and we define

h(x1, · · · ,xN) :=
f (x1, · · · ,xN ;θ)

f (xt(x1,··· ,xN);θ)
.

Let g(t,θ) := f (xt ;θ), then

f (x1, · · · ,xN ;θ) = f (xt(x1,··· ,xN);θ)h(x1, · · · ,xN) = g(t(x1, · · · ,xN))h(x1, · · · ,xN),

and by using the Fisher-Neyman factorization theorem (Theorem 3.4.4) so we conclude that T =

t(X1, · · · ,XN) is a sufficient statistic for θ .
Next, we aim to show that T is minimal sufficient. Suppose that S = s(X1, · · · ,XN) is also

sufficient for θ , so that, by using the Fisher-Neyman factorization theorem (Theorem 3.4.4), there
exist functions gs and hs such that

f (x1, · · · ,xN ;θ) = gs(s(x1, · · · ,xN))hs(x1, · · · ,xN).

Suppose that s(x1, · · · ,xN) = s(y1, · · · ,yN), then

f (x1, · · · ,xN ;θ)

f (y1, · · · ,yN ;θ)
=

hs(x1, · · · ,xN)

hs(y1, · · · ,yN)
does not depend on θ ,

and this implies that t(x1, · · · ,xN) = t(y1, · · · ,yN) by hypothesis. In other words, we showed that

s(x1, · · · ,xN) = s(y1, · · · ,yN) =⇒ t(x1, · · · ,xN) = t(y1, · · · ,yN),

which means that t is a function of s. Hence we conclude that T = t(X1, · · · ,XN) is a minimal
sufficient statistic for θ . □

The following example demonstrates the standard argument to argue a statistic which is
sufficient by using the Fisher-Neyman factorization theorem (Theorem 3.4.4).
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EXAMPLE 3.4.8 (A m.l.e. that is minimal sufficient). Let X1, · · · ,XN be random samples (i.i.d.
random variables) drawn from the uniform distribution on [0,θ ], i.e. the p.d.f.

f (x;θ) =
1
θ
, 0 ≤ x ≤ θ ,

where θ is an unknown parameter. We have showed in Example 3.3.4 that the m.l.e. of θ is the
statistic Tmin ≡ tmin(X1, · · · ,XN) = max{X1, · · · ,XN}. The joint p.d.f. of X1, · · · ,XN is given by

f (x1, · · · ,xN ;θ) =
1

θ N ,0 ≤ x1 ≤ θ , · · · ,0 ≤ xN ≤ θ .

To obtain the desired factorization, we introduce notation for an indicator function: I(A) = 1 if the
statement A is true, and I(A) = 0 otherwise. By using this notations, we write

f (x1, · · · ,xN ;θ) =
1

θ N I (0 ≤ x1 ≤ θ , · · · ,0 ≤ xN ≤ θ)

=
1

θ N I (0 ≤ min{x1, · · · ,xN} and max{x1, · · · ,xN} ≤ θ)

=

=:g(t(x1,··· ,xN))︷ ︸︸ ︷(
1

θ N I (max{x1, · · · ,xN} ≤ θ)

) =:h(x1,··· ,xN)︷ ︸︸ ︷
I (0 ≤ min{x1, · · · ,xN}) .

By using the Fisher-Neyman factorization theorem (Theorem 3.4.4), we conclude that the statistic
T is sufficient for making inference about the unknown parameter θ , in the sense of Definition 3.4.1.
Finally, by using Theorem 3.4.7, we see that T is also minimal sufficient for θ .

The following example demonstrates that “natural” estimators may not be sufficient. However,
it is not easy to study a statistic, which is not sufficient, directly using the Fisher-Neyman
factorization theorem (Theorem 3.4.4). In many cases, the concept of minimal sufficient statistic
(Definition 3.4.6) is very helpful, as showed in the following example.

EXAMPLE 3.4.9 (A m.m.e. that is not sufficient). Let X1, · · · ,XN be random samples (i.i.d.
random variables) be given in Example 3.4.8. We have showed in Example 3.2.7 that the m.m.e. of
θ is the statistic

T = 2X :=
2
N

N

∑
i=1

Xi ≡ t(X1, · · · ,XN),

which is an unbiased estimator of θ . Let tmin be the function given in Example 3.4.8. We now want
to show that T is not sufficient for making inference about the unknown parameter θ . Otherwise,
since

t
(

θ

2
,
θ

2
,0, · · · ,0

)
=

2θ

N
= t (θ ,0,0, · · · ,0) ,

but

tmin

(
θ

2
,
θ

2
,0, · · · ,0

)
=

θ

2
̸= θ = tmin (θ ,0,0, · · · ,0) ,
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which contradicts with the fact that Tmin ≡ tmin(X1, · · · ,XN) = max{X1, · · · ,XN} is a minimal
sufficient statistic for θ .

EXAMPLE 3.4.10 (A m.l.e. that is not sufficient). Let X1, · · · ,XN be random samples (i.i.d.
random variables) drawn from the uniform distribution on [θ ,θ +1], i.e. the p.d.f.

f (x;θ) = 1, θ ≤ x ≤ θ +1,

where θ is an unknown parameter. We have showed in Example 3.3.5 sufficient that, each statistic
0 ≤ α = α(X1, · · · ,XN)≤ 1, the statistic

Tα := α

(
max

i=1,··· ,N
Xi −1

)
+(1−α) min

i=1,··· ,N
Xi

is a m.l.e. of θ . The joint p.d.f. of X1, · · · ,XN is given by

f (x1, · · · ,xN ;θ) = 1 ,θ ≤ x1 ≤ θ +1, · · · ,θ ≤ xN ≤ θ +1,

that is,

f (x1, · · · ,xN ;θ) = I (θ ≤ x1 ≤ θ +1, · · · ,θ ≤ xN ≤ θ +1)

= I (θ ≤ min{x1, · · · ,xN} and max{x1, · · · ,xN} ≤ θ +1)

= I (θ ≤ min{x1, · · · ,xN}) I (max{x1, · · · ,xN} ≤ θ +1) ,(3.4.1)

which is not possible to be expressed only through tα , which shows that any of the statistics Tα

above is not sufficient.

It is interesting to mention the following theorem regarding the sufficiency of the m.l.e., which
still strongly suggests us to consider m.l.e. in practical applications.

THEOREM 3.4.11 ([Moo71]). If there exists a unique m.l.e. θ̂ of θ , then θ̂ is a minimal sufficient
statistic for θ .

In view of the p.d.f. in (3.4.1), we see that the parameter θ can be inferred, given both of the
following statistics:

T1 = t1(X1, · · · ,XN) = min{X1, · · · ,XN},

T2 = t2(X1, · · · ,XN) = max{X1, · · · ,XN}.

This strongly suggests the following definition.

DEFINITION 3.4.12. Suppose the joint distribution of X1, · · · ,XN involves m unknown
parameters θ1, · · · ,θm. The k-dimensional statistic

T = (T1, · · · ,Tk) = (t1(X1, · · · ,XN), · · · , tk(X1, · · · ,XN)) = t(X1, · · · ,XN)
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is said to be (jointly) sufficient for making inference about the parameters θ1, · · · ,θm if the
conditional distribution of the Xi’s given that T=(t1, · · · , tk) does not depend on any of the unknown
parameters, and this is true for all possible values t1, · · · , tk of the statistic.

THEOREM 3.4.13. The Fisher-Neyman factorization theorem (Theorem 3.4.4) also holds true
for k-dimensional statistic.

EXAMPLE 3.4.14. Let X1, · · · ,XN be random samples (i.i.d. random variables) drawn from the
uniform distribution on [θ ,θ +1] as in Example 3.4.10. The Fisher-Neyman factorization theorem
(Theorem 3.4.13) shows that the 2-dimensional statistic

T = (min{X1, · · · ,XN},max{X1, · · · ,XN})

is sufficient for making inference about the parameter θ .

EXERCISE 3.4.15. Let X1, · · · ,XN be random sample from normal distribution N (µ,σ2).
Show that the 2-dimensional statistic

T =

(
N

∑
i=1

Xi,
N

∑
i=1

X2
i

)
is sufficient for making inference about the parameters µ and σ2.

An estimator (or any function) of a parameter θ should depend on the data only through the
sufficient statistic. A general result due to C.R. Rao and D. Blackwell shows that how to use an
unbiased statistic (this is not sufficient) to create an estimator that is both unbiased and sufficient.

THEOREM 3.4.16 (Rao-Blackwell Theorem). Suppose that the joint distribution of random
variables X1, · · · ,XN depends on some unknown parameter θ , and that T is sufficient for θ . If U is
an unbiased estimator of h(θ), where h is a given function, then the estimator U∗ :=E(U |T ) is also
an unbiased estimator of h(θ) and has variance no greater than the original unbiased estimator
U.

PROOF. By the conditional expectation formula (2.4.1), we have

EU = E(E(U |T )) = EU∗,

which shows that U∗ := E(U |T ) is also an unbiased estimator of h(θ). In the other hand, by using
the conditional variance formula (2.4.2), we have

var(U) = E(var(U |T ))+var (E(U |T )) = E(var(U |T ))+var(U∗)≥ var(U∗),

which conclude our theorem. □

REMARK 3.4.17. Since T is sufficient for θ , the joint distribution of X1, · · · ,XN given T = t
does not depend on θ , hence U∗ does not depend on the unknown parameter θ , and so is a bona
fide estimator. If U is already a function of T , then U =U∗.
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EXAMPLE 3.4.18. Let X1, · · · ,XN be random samples (i.i.d. random variables) be given in
Example 3.3.4. We have showed in Example 3.4.8 that the m.l.e. of θ is the statistic Tmin ≡
tmin(X1, · · · ,XN) = max{X1, · · · ,XN}, which is a minimal sufficient statistic for θ . We have showed
in Example 3.4.9 that the m.m.e. of θ is the statistic

θ̂ = 2X :=
2
N

N

∑
i=1

Xi,

which is an unbiased estimator of θ . We also showed in Example 3.4.9 that θ̂ is not a sufficient
statistic for θ , and thus it is not a function of Tmin. By using the Rao-Backwell theorem
(Theorem 3.4.16), we see that θ̂ ∗ = E(θ̂ |T ) is also an unbiased estimator of θ . We compute
that

E(θ̂ |T = t) =
2
N

N

∑
i=1

E(Xi|max{X1, · · · ,XN}= t)

=
2
N

N

∑
i=1

 = t︷ ︸︸ ︷
E(Xi|Xi = t)

= 1
N︷ ︸︸ ︷

P(Xi = max{X1, · · · ,XN})

+

= t/2︷ ︸︸ ︷
E(Xi|Xi < t)

= N−1
N︷ ︸︸ ︷

P(Xi < max{X1, · · · ,XN})


=

N +1
N

t for all t ∈ (0,θ),

that is,

θ̂
∗ = E(θ̂ |T ) = N +1

N
T =

N +1
N

max{X1, · · · ,XN},

which is an unbiased estimator of θ given in Example 3.1.19, and most important, it is independent
of the unknown parameter θ . The probability P(Xi = max{X1, · · · ,XN}) means that the probability
that the ith sample is the largest among all others, therefore it has probability 1

N . It is not difficult to
verify that E(Xi|Xi < t) is just the expectation of the uniform distribution on (0, t). It is not easy to
compute the variance of θ̂ ∗, but the Rao-Backwell theorem (Theorem 3.4.16) guarantees that it is
bounded from above by

var(θ̂) =
4

N2

N

∑
i=1

var(Xi) =
1

3N
θ

2.



CHAPTER 4

Statistical Intervals based on a single set of samples

Since each point estimator is just a single number, it provides no information about the precision
and reliability of estimation. For example, the sample mean X is a point estimator of the mean µ ,
which says nothing about how close it might be to µ . An alternative to report a single sensible
value for an unknown parameter θ being estimated is to calculate and report an entire interval of
plausible values, or a confidence interval. A confidence interval is calculated by first selecting a
confidence level, which is a measure of the degree of reliability of the interval. The higher the
confidence level, the more strongly we believe that the value of the parameter being estimated lies
within the interval. Information about the precision of an interval estimate is conveyed by the width
of the interval:

• If the confidence level is high and the resulting interval is quite narrow, our knowledge of
the value of the parameter is reasonably precise.

• A very wide confidence interval, however, gives the message that there is a great deal of
uncertainty concerning the value of what we are estimating.

4.1. Basic concept of confidence intervals

We first introduce the concept of confidence intervals by first focusing on a simple but
unrealistic problem situation: Suppose that the parameter of interest is a population mean µ and
that

(1) the population distribution is normal; and
(2) the value of the population standard deviation σ is known.

In some cases, the population normality is still reasonable, which can be checked by examined
a normal probability plot of the sample data X1, · · · ,XN of large sample size N. However, if the
value of µ is unknown, it is unlikely that the value of σ would be available. However, since we
assumed that the samples are dawned from normal distribution, then σ can be estimated by its
MVUE (Theorem 3.1.21):

(4.1.1) σ̂(X1, · · · ,XN) := KNSu = KN

√
1

N −1

N

∑
i=1

(Xi −X)2,

52
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where

KN =

√
N −1

2
Γ(N−1

2 )

Γ(N
2 )

=

more numerically stable for large N︷ ︸︸ ︷√
N −1

2
exp
(

lnΓ

(
N −1

2

)
− lnΓ

(
N
2

))
.

For simplicity, we can simply estimate σ by using the sample standard deviation

(4.1.2) s(X1, · · · ,XN) :=

√
1

N −1

N

∑
i=1

(Xi −X)2,

which is slightly biased but consistent as the sample size N increases, if the bias is not of primary
concern. In later sections, we will introduce some methods based on less restrictive assumptions
(especially for samples drawn from distribution which is not normal).

Let X1, · · · ,XN
iid∼ N (µ,σ2), we have showed in Exercise 2.6.13 that X ∼ N (µ, σ2

N ) and

(4.1.3) Z =
X −µ

σ/
√

N
∼ N (0,1).

Let α ∈ (0,1) be a given parameter (usually small), let zα/2 be the unique number (known as the
two-sided z-critical value) such that

(4.1.4) P
(

X − zα/2
σ√
N

< µ < X + zα/2
σ√
N

)
= P

(
−zα/2 < Z < zα/2

)
= 1−α.

EXERCISE 4.1.1. Show that zα/2 := Φ−1(1− α

2 ), where Φ is the c.d.f. (Definition 2.3.14) of
N (0,1).

This strongly suggests the following definition:

DEFINITION 4.1.2. Let x1, · · · ,xN be actual sample observations drawn from i.i.d. normal
distribution N (µ,σ2) and let α ∈ (0,1). A 100(1−α)% confidence interval for the mean µ

of a normal population when the value of σ is known is given by

(4.1.5)
(

x− zα/2
σ√
N
,x+ zα/2

σ√
N

)
.

The (two-sided) z critical values for the most commonly used confidence levels are displayed
in Table 1.

Confidence level (%) α α/2 approximation of zα/2

90 0.10 0.050 1.645

95 0.05 0.025 1.960

99 0.01 0.005 2.576

TABLE 1. Some approximations of zα/2 := Φ−1(1 − α

2 ) for 90, 95 and 99%
confidence
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In the case when σ is unknown, in view of Theorem 3.1.21, it is make sense to replace it by

σ̂(x1, · · · ,xN) := KN

√
1

N −1

N

∑
i=1

(xi − x)2,

or simply

s(x1, · · · ,xN) :=

√
1

N −1

N

∑
i=1

(xi − x)2,

which is slightly biased, if the bias is not of primary concern. In view of (4.1.3), we now consider
the random variable

(4.1.6) T =
X −µ

s(X1, · · · ,XN)/
√

N
∼ tN−1, (Gosset’s theorem, Example 2.6.15)

where s is the sample standard deviation. Let α ∈ (0,1) be a given parameter (usually small),
similar to (4.1.4), let tα/2,N−1 be the unique number (known as the two-sided t-critical value) such
that

P
(

X − tα/2,N−1
s(X1, · · · ,XN)√

N
< µ < X + tα/2,N−1

s(X1, · · · ,XN)√
N

)
= P

(
−tα/2,N−1 < T < tα/2,N−1

)
= 1−α.

EXERCISE 4.1.3. Show that tα/2,N−1 := F−1(1− α

2 ), where F is the c.d.f. (Definition 2.3.14)
of tN−1.

We then introduce a definition similar to Definition 4.1.2:

DEFINITION 4.1.4. Let x1, · · · ,xN be actual sample observations drawn from i.i.d. normal
distribution with mean µ and let α ∈ (0,1). A 100(1−α)% t-confidence interval for the mean
µ of a normal population is given by(

x− tα/2,N−1
s(x1, · · · ,xN)√

N
,x+ tα/2,N−1

s(x1, · · · ,xN)√
N

)
.

It is interesting to mention that the t-distribution with N − 1 degree of freedom tN−1 has a
symmetric, bell-shaped density curve centered at 0 that is wider than a standard normal N (0,1)
that is wider than a standard normal curve but converges to the standard normal curve as N → ∞ (so
that the standard normal N (0,1) may be formally understood as a “t-distribution with ∞ degree of
freedom”). There is a nice GeoGebra project (https://www.geogebra.org/m/y3UPKHuH), not
only plot the t-distribution with N −1 degree of freedom tN−1 and the standard normal N (0,1), it
also compute both two-sided z-critical value zα/2 and two-sided t-critical value tα/2,N−1.

However, the higher the desired degree of confidence, the wider the resulting interval, in other
words, the gain in reliability entails a loss in precision: In fact, the only 100% confidence interval
for µ is (−∞,+∞), which is not informative since we knew that this interval covers µ even before
sampling. Not only the “balance” between reliability and precision, another question is how many

https://www.geogebra.org/m/y3UPKHuH
https://www.geogebra.org/m/y3UPKHuH
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samples which we need? We first specify both the desired confidence level (equivalently, the z-
critical value zα/2) and interval width at most w, then from (4.1.5) we have w ≥ 2zα/2

σ√
N

, that
is,

(4.1.7) N ≥
(

zα/2σ

w/2

)2

.

This suggests us that an appealing strategy is to specify both the desired confidence level
(equivalently, the z-critical value zα/2) and interval width w, and then determine the necessary
sample size based on the formula (4.1.7). When σ is not known, it might seem like the natural
update to the formula (4.1.7) is

(4.1.8) N ≥
(

tα/2,N−1s(x1, · · · ,xN)

w/2

)2

.

However, this formula presents two practical problems. First, sample size determination typically
occurs before a study is carried out, in which case the researcher does not yet have a value for
s(x1, · · · ,xN). Second, N now appears on both sides of (4.1.8): we need to know N before finding
the two-sided t-critical value, which then determines the sample size N on the left-hand side of
(4.1.8). Therefore, it is not easy to find the minimal sample size.

Before summarize the ideas, we now introduce the following concept:

DEFINITION 4.1.5. Let X1, · · · ,XN are random samples drawn from a (continuous) probability
distribution depends on an unknown parameter θ . Suppose that there exists a random variable Z,
which is a function of X1, · · · ,XN ,θ , such that its distribution is independent of θ (but may depend
on other unknown parameters), then such a random variable is called a pivotal quantity.

EXAMPLE 4.1.6. The random variable Z in (4.1.3) is an example of pivotal quantity: it is a
function of X1, · · · ,XN ,µ,σ , but its distribution is N (0,1), which is independent of the target
parameter µ . The random variable T in (4.1.6) is also an example of pivotal quantity: it is a
function of X1, · · · ,XN ,µ , but its distribution is tN−1, which is independent of the target parameter
µ .

Let h(X1, · · · ,XN ,θ) denote a general pivotal quantity. For any α ∈ (0,1). constants a and b
can be found (but the pair may not unique) to satisfy

(4.1.9) P(a < h(X1, · · · ,XN ,θ)< b) = 1−α.

Since the distribution of h(X1, · · · ,XN ,θ) does not depend on θ , then the choice of a and b is
independent of θ .

EXAMPLE 4.1.7. In the normal example above, a =−zα/2 and b = zα/2.

Suppose that we can write (4.1.9) as

P(ℓ(X1, · · · ,XN)< θ < u(X1, · · · ,XN)) = 1−α.
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EXAMPLE 4.1.8. In the normal example above,

ℓ(X1, · · · ,XN) = X − zα/2
σ√
N
, u(X1, · · · ,XN) = X + zα/2

σ√
N

(if σ is known),
ℓ(X1, · · · ,XN) = X − tα/2,N−1

s(X1, · · · ,XN)√
N

u(X1, · · · ,XN) = X + tα/2,N−1
s(X1, · · · ,XN)√

N

(if σ is not known).

We now ready summarize the basic concept which we want to deliver.

DEFINITION 4.1.9. Let x1, · · · ,xN be actual sample observations, called the realizations of
random samples X1, · · · ,XN , and let α ∈ (0,1). Then the interval

(ℓ(x1, · · · ,xN),u(x1, · · · ,xN))

is called a 100(1−α)% confidence interval for the unknown parameter θ .

In view of the central limit theorem (Theorem 2.6.12), we may consider the case when
X1, · · · ,XN be random samples from any population having a mean µ and standard deviation σ

(square root of variance), provided that the second moment is finite, because

Z =
X −µ

σ/
√

N

has approximately a normal distribution N (0,1), when the sample size N is extremely large (but
itself may not a pivotal quantity in the sense of Definition 4.1.5). Here we remind the readers
that the assumption of extremely large sample size is not realistic in practical application. Let
x1, · · · ,xN are realizations of random samples X1, · · · ,XN , and let α ∈ (0,1). An argument parallel
with that given earlier in this section yields (4.1.5) as a large-sample confidence interval for µ with
a confidence level of approximately 100(1−α)%. In this case, we also can approximate σ by its
MVUE σ̂(x1, · · · ,xN) or sample standard deviation s(x1, · · · ,xN).

The confidence intervals discussed thus far give both a lower confidence bound and an upper
confidence bound for the parameter being estimated. In some circumsta\sigma^{2}nces, and
investigator will want only one of these two types of bounds. In general an upper confidence
bound for a parameter θ with confidence level 100(1−α)% based on a random sample X1, · · · ,XN

is a quantity u(X!, · · · ,XN) such that

(4.1.10) P(θ < u(X1, · · · ,XN)) = 1−α,

which corresponding to the choice a = −∞ in (4.1.9). In the normal example, by using
Exercise 4.1.1,

u(X1, · · · ,XN) = X + zα

σ√
N
.
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Similar, a lower confidence bound ℓ(X1, · · · ,XN) satisfies

(4.1.11) P(ℓ(X1, · · · ,XN)< θ) = 1−α,

which corresponding to the choice b = +∞ in (4.1.9). In the normal example, by using
Exercise 4.1.1,

ℓ(X1, · · · ,XN) = X + zα

σ√
N
.

We summarize the above in the following definition:

DEFINITION 4.1.10 (see also Definition 4.1.2). Let x1, · · · ,xN be actual sample observations
drawn from i.i.d. normal distribution N (µ,σ2) and let α ∈ (0,1). A 100(1−α)% lower and
upper confidence interval for the mean µ of a normal population when the value of σ is known is
given by (

x− zα

σ√
N
,∞

)
and

(
−∞,x+ zα

σ√
N

)
respectively.

If the standard deviation σ is unknown, similarly, by replacing Exercise 4.1.1 by Exercise 4.1.3,
the following definition is also natural:

DEFINITION 4.1.11 (see also Definition 4.1.4). Let x1, · · · ,xN be actual sample observations
drawn from i.i.d. normal distribution N (µ,σ2) and let α ∈ (0,1). A 100(1−α)% lower and
upper t-confidence interval for the mean µ of a normal population when the value of σ is known is
given by (

x− tα,N−1
s(x1, · · · ,xN)√

N
,∞

)
. and

(
−∞,x+ tα,N−1

s(x1, · · · ,xN)√
N

)
respectively.

4.2. Basic concept of prediction intervals

We wish to predict a single value of variable to be observed at some future time. For example,
we have available a set of random samples X1,X2, · · · ,XN from a normal population distribution
N (µ,σ2), says, and we wish to predict the value of XN+1, a single future observation. A natural
way to do this is to consider the sample mean X = 1

N ∑
N
i=1 Xi as a point predictor of XN+1, and the

resulting prediction error is X −XN+1, with expectation

E(X −XN+1) = EX −EXN+1 = µ −µ = 0.

Since XN+1 is independent of X1, · · · ,XN , then it is independent of X , so using Exercise 2.3.30 we
see that the variance of the prediction error is

var(X −XN+1) = var(X)+var(XN+1) =
σ2

N
+σ

2 = σ
2
(

1+
1
N

)
.
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The prediction error is a linear combination of independent normally distributed random variables,
so it self is normally distributed. Thus

Z =
X −XN+1 −E(X −XN+1)√

var(X −XN+1)
=

X −XN+1

σ

√
(1+ 1

N )
∼ N (0,1).

In general, the parameter σ is unknown, as above, it can be estimated by its MVUE (4.1.1), or
simply the sample standard deviation (4.1.2) if the bias is not of primary concern:

(4.2.1) T =
X −XN+1

s
√

1+ 1
N

.

EXERCISE 4.2.1. Show that the random variable T given in (4.2.1) obeys the distribution tN−1.
(Hint. Modifying the ideas in (4.1.6))

This leads the following definition:

DEFINITION 4.2.2. Let x1, · · · ,xN be actual sample observations drawn from i.i.d. normal
distribution with mean µ and let α ∈ (0,1). A 100(1 − α)% prediction interval for a single
observation to be selected from a normal population distribution is(

x− tα/2,N−1s(x1, · · · ,xN)

√
1+

1
N
,x+ tα/2,N−1s(x1, · · · ,xN)

√
1+

1
N

)
.

It is worth contrasting the behavior of the t-confidence interval (Definition 4.1.4) with the
prediction interval (Definition 4.2.2). The prediction interval (Definition 4.2.2) is wider than the
t-confidence interval (Definition 4.1.4). It is also interesting to see that , as N gets arbitrarily large,
the t-confidence interval (Definition 4.1.4) shrinks to the single value µ:⋂

N∈N

(
x− tα/2,N−1

s(x1, · · · ,xN)√
N

,x+ tα/2,N−1
s(x1, · · · ,xN)√

N

)
= {µ},

while the prediction interval (Definition 4.2.2) approaches to an interval with nonempty interior:

⋂
N∈N

(
x− tα/2,N−1s(x1, · · · ,xN)

√
1+

1
N
,x+ tα/2,N−1s(x1, · · · ,xN)

√
1+

1
N

)
=
[
x− zα/2σ ,x+ zα/2σ

]
,

which covers the middle 100(1 − α)% of a normal distribution N (µ,σ2). This demonstrates
that there is uncertainty about a single future value even when there is no need to estimate any
parameters. Here we also introduce a branch of statistics, called the uncertainty quantification,
which is the science of quantitative characterization and estimation of uncertainties in both
computational and real world applications. It tries to determine how likely certain outcomes are if
some aspects of the system are not exactly known.
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The t-confidence interval (Definition 4.1.4) for mean µ is robust to small sample size N (or even
moderate departures from normality). However, if the sample size N is small and the population
distribution is highly non-normal, they the actual confidence level may be considerably different
from the one we think we get from using a particular t critical value. We will later discuss the
bootstrap technique, which has been found to be quite sucessful at estimating parameters in a wide
variety of non-normal situations.

In contrast to the confidence interval, the validity of the prediction interval (Definition 4.2.2) is
closely tied to the normality assumption. The prediction interval (Definition 4.2.2) should not be
used in the absence of compelling evidence for normality.

4.3. Bootstrap confidence intervals

As mentioned in the very beginning of Chapter 3, in practice we always expect that the sample
size N is small. We now interested to construct/estimate a confidence interval for a statistic (for
example, mean) if the population distribution is unknown (which is not normal in general) and the
sample size N is small. The bootstrap, developed by Bradley Efron in the later 1970s [Efr79],
facilitates calculating estimates in situation where statistical theory does not produce a formula for
a confidence interval. In this section we are concerned with the case of an unknown distribution,
for which the nonparametric bootstrap is appropriate.

Traditional inference (e.g. the presentations in Section 4.1 and Section 4.2) relies on the
sampling distribution of a statistic. In contrast, the (nonparametric) bootstrap method considers
what would happen if we were to draw repeatedly from the sample at hand. According to [Efr79],
the (basic) bootstrap method for a set of sample is extremely simple, at least in principle:

Algorithm 1 Basic bootstrap method (see also Figure 4.3.1)
Require: Observed samples x1,x2, · · · ,xN , which are realizations of random samples (random

variables) X1,X2, · · · ,XN .
1: for b = 1, · · · ,B do
2: Construct the sample probability distribution Û by putting mass 1/N at each point

x1,x2, · · · ,xN .
3: With Û fixed, draw a random sample of size N from F̂ , say x∗1,x

∗
2, · · · ,x∗N . %

resample
4: Compute the value of the statistic from the bootstrap sample x∗1,x

∗
2, · · · ,x∗N , and label the

resulting value θ̂ ∗
b

5: end for
6: return The values µ∗

1 ,µ
∗
2 , · · · ,µ∗

B, which approximate the bootstrap distribution of θ̂ =

θ̂(X1, · · · ,XN).

EXAMPLE 4.3.1. In the case when we consider the sample mean θ̂ = X , the number θ̂ ∗
b is

simply the average of the bootstrap sample x∗1,x
∗
2, · · · ,x∗N .
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REMARK. In each iteration, we are not getting a permutation distribution distribution since the
values of x∗j are selected with replacement from the set {x1,x2, · · · ,xN}. Obviously, for that to make
sense, bootstrap sampling must occur with replacement, otherwise, we would get the same sample
over and over again.

population

original sample

draw with

resamples

replacement
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FIGURE 4.3.1. Graphical explaination of Algorithm 1 (Biggerj1, Marsupilami, CC BY-SA 4.0,

via Wikimedia Commons)

In practice, B = 1000 is often used. In view of sample standard deviation (4.1.2), we define the
bootstrap standard error to be the sample standard deviation of θ̂ ∗

b :

sboot :=

√√√√ 1
B−1

B

∑
b=1

(θ̂ ∗
b −θ

∗
),

where θ
∗
= 1

B ∑
B
b=1 θ̂ ∗

b is the average of the bootstrap values of the statistic θ̂ = θ̂(X1,X2, · · · ,XN).
Once we have the bootstrap distribution of a statistic, several different methods can be used to
obtain a confidence interval for the corresponding parameter. For example, in view of the t-
confidence interval (Definition 4.1.4):

DEFINITION 4.3.2. Let x1, · · · ,xN be actual sample observations drawn from i.i.d. normal
distribution with mean µ and let α ∈ (0,1). A bootstrap 100(1−α)% t-confidence interval for
the mean µ is given by (

x− tα/2,N−1sboot,x+ tα/2,N−1sboot
)
.

The bootstrap t confidence interval is appropriate when the bootstrap distribution of the statistic is
approximately normal and the bias of the bootstrap distribution is small.

A great advantage of bootstrap is its simplicity. Although for most problems it is impossible
to know the true confidence interval, bootstrap is asymptotically more accurate than the standard
intervals obtained using sample variance and assumptions of normality [DE96]. Bootstrapping
is also a convenient method that avoids the cost of repeating the experiment to get other groups
of sample data. According to the original developer of the bootstrapping method [ERT01], even
setting the number of samples at 50 is likely to lead to fairly good standard error estimates.

https://commons.wikimedia.org/wiki/File:Illustration_bootstrap.svg
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However, bootstrapping depends heavily on the estimator used and, though simple, naive use
of bootstrapping will not always yield asymptotically valid results and can lead to inconsistency
[Hin94]. Although bootstrapping is (under some conditions) asymptotically consistent, it does not
provide general finite-sample guarantees. The result may depend on the representative sample.
Therefore it is recommended to obtain more bootstrap samples as available computing power has
increased. Some recommendation on the bootstrap procedure also can be found in [AMH08].
However, Athreya has shown in [Ath87] that if one performs a naive bootstrap on the sample mean
when the underlying population lacks a finite variance (for example, a power law distribution),
then the bootstrap distribution will not converge to the same limit as the sample mean. As a result,
confidence intervals on the basis of a Monte Carlo simulation of the bootstrap could be misleading.
Athreya states that “Unless one is reasonably sure that the underlying distribution is not heavy
tailed, one should hesitate to use the naive bootstrap”.

Finally, we end this section by referring the monograph [ET93] for more details about this
topic.

4.4. Understanding the concept of Tests of Hypotheses

A parameter can be estimated from sample data either by a single number (i.e. a point estimator
in Chapter 3) or an entire interval of plausible values (i.e. a confidence interval mentioned above).
In this section, rather than estimate a parameter, we are now interested in the problem to decide
which of two contradictory claims about the parameter is correct, called the hypothesis testing. We
will discuss some of the basic concepts in hypothesis testing and then introduce some decision
procedures for the most frequently encountered testing problems.

DEFINITION 4.4.1. A (statistical) hypothesis is a claim of assertion either about the value of a
single/multiple parameter(s), or about the form of an entire probability distribution.

In this section, we will only concentrate on hypotheses about a single/multiple parameter(s). In
any hypothesis testing problem, there are two contradictory hypotheses under consideration. The
objective is to decide, based on sample information, which of the two hypotheses is correct. In
statistics, hypothesis testing problems are formulated so that one of the claims is initially assumed
to be true. This initial claim will not be rejected in favor of the alternative claim unless sample
evidence provides strong evidence for the latter.

DEFINITION 4.4.2. The null hypothesis H0 is the claim that is initially assumed to be true
(the “prior belief” claim). The alternative hypothesis, denoted by H1, is the assertion that is
contradictory to H0.

The null hypothesis will be rejected only if sample evidence suggests that H0 is false. If the
sample does not strongly contradict H0, we will continue to believe in the plausibility of the null
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hypothesis. The two possible conclusions from a hypothesis testing analysis are then1

(4.4.1) reject H0 or fail to reject H0.

The word “null” means “of no value, effect, or consequence”, which suggests that H0 should be
identified with the hypothesis of no change/no difference (from current opinion). In statistical
hypothesis testing there are two potential errors whose consequences must be considered when
reaching a conclusion:

• A type I error consists of rejecting the null hypothesis H0 when it is true.
• A type II error involves not rejection H0 when it is false (i.e. H1 is true).

EXAMPLE 4.4.3. The presumption of innocence is a legal principle that every person accused
of any crime is considered innocent until proven guilty. It is also an international human right under
the UN’s Universal Declaration of Human Rights, Article 11. Under the presumption of innocence,
the legal burden of proof is thus on the prosecution, which must present compelling evidence to the
trier of fact (a judge or a jury). If the prosecution does not prove the charges true, then the person is
acquitted of the charges. The prosecution must prove that the accused is guilty beyond a reasonable
doubt, otherwise the accused must be acquitted (i.e. let the accused go free) despite the presence of
reasonable doubt. This can be formulated in terms of hypothesis testing problems (from the trier of
fact point of view):

(4.4.2) H0 : the accused is innocence, H1 : the accused in guilty.

In this case,

• a type I error is convicting an innocent person, while
• a type II error is a false acquittal (i.e. letting a guilty person go free).

The opposite system is a presumption of guilt (contradict to UN’s Universal Declaration of Human
Rights, Article 11), which can be formulated in terms of hypothesis testing problems:

(4.4.3) H0 : the accused in guilty, H1 : the accused is innocence.

This example also illustrate that one should not interchanging H0 and H1, which may lead very
different outcomes.

We first consider the case when H0 is stated as an equality claim. If θ denotes the parameter of
interest, the null hypothesis will have the form

(4.4.4) H0 : θ ≤ θ0, H0 : θ ≥ θ0 or H0 : θ = θ0,

1Some authors use the term “accept” rather than “fail to reject” while stating a hypothesis testing problem (4.4.1),
which is misleading in my opinion.

https://www.un.org/en/about-us/universal-declaration-of-human-rights
https://www.un.org/en/about-us/universal-declaration-of-human-rights
https://www.un.org/en/about-us/universal-declaration-of-human-rights
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where θ0 is a specified number called the null value of parameter (i.e. the value claimed for θ by
the null hypothesis). The alternative to the null hypothesis (4.4.4) will look like:

H1 : θ > θ1, H1 : θ < θ0 or H1 : θ ̸= θ0,

respectively. A test procedure is a rule, based on sample data, for deciding whether to reject H0 or
not:

DEFINITION 4.4.4. A test procedure is specified by the following:

(1) A test statistic, a function of the sample data on which the decision is to be based
(2) A rejection region, the set of all test statistic values for which H0 will be rejected.

The null hypothesis will then be rejected if and only if the observed or computed test statistic value
falls in the rejection region.

EXAMPLE 4.4.5. Let’s take a look on the samples in Figure 4.4.1.

FIGURE 4.4.1. Histogram of 1000 samples (MM-Stat, CC BY-SA 3.0, via Wikimedia Commons)

Do you believe that the random samples are collected according to a certain distribution with
mean zero, even though the average of the samples are not zero? If yes, this means that we set the
null hypothesis (the “prior belief” claim)

H0 : µ = 0.

In this case, the alternative is H1 : µ ̸= 0. In this case, the test statistic is the average of the samples,
and the rejection region is R\ (−ε,ε) for some pre-chosen ε > 0.

Suppose a study and a sample size are fixed and a test statistic is chosen. We write

α = P(type I error) = P(H0 is rejected when it is true),

and

β (θ ′) = P(type II error occur when the ‘true’ value is = θ
′)

= P(H0 is not rejected when the ‘true’ value is = θ
′)

https://commons.wikimedia.org/wiki/File:Thist_german.png
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Note that we consider the same definition for β for all three cases in (4.4.4). We see that decreasing
the size of the rejection region to obtain a smaller value of α results in a larger value of β for any
particular parameter value consistent with H1, and vice versa. This says that once the test statistic
and the sample size N are fixed, there is no rejection region that will simultaneously make both α

and all β ’s small. A region must be chosen to effect a compromise between α and β . The approach
adhered to by most statistical practitioners is to specify the largest value of α that can be tolerated
and find a rejection region having that value of α . This makes β as small as possible subject to the
bound on α .

DEFINITION 4.4.6. The resulting value of α is often referred to as the significance level of the
test. The corresponding test procedure is called a level α test. A test with significance level α is
one for which the type I error probability is controlled at the specified level.

4.5. Tests about a population mean

Similar as in the introduction of confidence intervals for a population mean µ (Section 4.1 and
Section 4.2), we first consider the unrealistic scenario when:

(1) the population distribution is normal, and
(2) the value of the population standard deviation σ is known.

Let X1, · · · ,XN represent a set of random samples of size N from the normal population with
standard deviation σX = σ , then the sample mean X has a normal distribution with standard
deviation σX = σ/

√
N. The null hypothesis is

H0 : µ ≤ µ0, H0 : µ ≥ µ0 or H0 : µ = µ0 (so µ0 is the null value of the parameter),

which means that, we prior believe that the mean of the population is µ0. In practice, we usually
choose µ0 which is “somehow close” to the average of the samples x1, · · · ,xN (i.e. realizations of
X1, · · · ,XN). Consider now the statistic Z obtained by standardizing X under the assumption that
H0 is true:

Z =
X −µ0

σ/
√

N
.

We first consider the hypothesis testing problem

H0 : µ ≤ µ0, H1 : µ > µ0.

An x value less than µ0, which corresponds to a negative value of z, certainly does not provide
support for H1. If an x value exceeds µ0, then we need to divide the discuss into two cases:

(1) An x value that exceeds µ0 by only a small amount, in the sense that the corresponding z
value is positive but small, does not suggest that H0 should be rejected.

(2) The rejection of H0 is appropriate only when x considerably exceeds µ0, in the sense that
the corresponding z value is positive and large.
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In summary, the appropriate rejection region has the form z ≥ c for some relatively large positive
constant c. As discussed in previous section, the cutoff value c should be chosen to control the
probability of a type I error at the desired level α . This can be easily done in this case because the
statistic Z when H0 is true is the standard normal distribution:

α = P(type I error) = P(H0 is rejected when it is true)

= P(Z ≥ c when Z ∼ N (0,1)) = 1−Φ(c),

where Φ is the c.d.f. (Definition 2.3.14) of N (0,1). This shows that c = Φ−1(1−α) = zα (recall
Exercise 4.1.1), that is, if a level α test is desired, then H0 should be rejected if z≥ zα . For example:

• If a level .01 test is desired, then H0 should be rejected if z ≥ z.01 ≈ 2.33.
• If a level .10 test is desired, then H0 should be rejected if z ≥ z.10 ≈ 1.28.

This test procedure is upper-tailed because the rejection region consists only large values of the test
statistic. In this case, we reject H0 if and only if µ0 falls outside a 100(1−α)% lower confidence
interval (Definition 4.1.10) for µ .

Analogous reasoning for the hypothesis testing problem

H0 : µ ≥ µ0, H1 : µ < µ0.

If a level α test is desired, then H0 should be rejected if z ≤ zlow
α ≡−zup

α . This is a lower tailed test.
In this case, we reject H0 if and only if µ0 falls outside a 100(1−α)% upper confidence interval
(Definition 4.1.10) for µ .

We now consider the hypothesis testing problem

H0 : µ = µ0, H1 : µ ̸= µ0.

In this case, H0 should be rejected if the sample mean x is too far to either side of µ0. This is
equivalent to rejecting H0 if |z| ≥ c:

α = P(type I error) = P(H0 is rejected when it is true)

= P(|Z| ≥ c when Z ∼ N (0,1)) = 2(1−Φ(c)).

Solving the equation yields c = Φ−1(1− α

2 ) = z α

2
(recall Exercise 4.1.1), that is if a level α test

is desired, then H0 should be rejected if |z| ≥ z α

2
. Some approximation of z α

2
is shown in Table 1

above. In this case, we reject H0 if and only if µ0 falls outside a 100(1−α)% two tailed confidence
interval (Definition 4.1.2) for µ . We summarize the above discussions in the following table:
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testing Test statistic value Rejection region for level α test

H0 : µ ≤ µ0

H1 : µ > µ0

z =
x−µ0

σ/
√

N
z ≥ zα (upper tailed test)

H0 : µ ≥ µ0

H1 : µ < µ0

z =
x−µ0

σ/
√

N
z ≤−zα (lower tailed test)

H0 : µ = µ0

H1 : µ = µ0

z =
x−µ0

σ/
√

N
|z| ≥ z α

2
(two tailed test)

TABLE 2. z-test based on a set of random samples

In the z-test based on a set of random samples, there are simple formulas available for the
probability β of a type II error.

EXERCISE 4.5.1. Proof Φ−1(β ) =−zβ for all 0 < β < 1.

Consider first the upper tailed test with rejection region z ≥ zα , i.e. H0 : µ ≤ µ0. In this case,

H0 will not be rejected ⇐⇒ x < µ0 + zα

σ√
N
.

Now let µ ′ be any particular value of the parameter µ that exceeds the null value µ0 (i.e. the value
which we belief in prior). Then

β (µ ′) = P(H0 is not rejected when the ‘true’ value is = µ
′)

= P
(

X < µ0 + zα

σ√
N

when the ‘true’ value is = µ
′
)

= P
(

X −µ ′

σ/
√

N
< zα +

µ0 −µ ′

σ/
√

N
when the ‘true’ value is = µ

′
)
= Φ

(
zα +

µ0 −µ ′

σ/
√

N

)
.

If we consider two restrictions P(type I error) = α and β (µ ′) ≤ β for specified parameters α,µ ′

and β , then the sample size N should be chosen to satisfy

Φ

(
zα +

µ0 −µ ′

σ/
√

N

)
≤ β ⇐⇒ zα +

µ0 −µ ′

σ/
√

N
≤ Φ

−1(β ) =−zβ (Exercise 4.5.1)

which can be guaranteed by

(4.5.1) N ≥
(

σ(zα + zβ )

µ ′−µ0

)2

.

The power (defined as the probability that the test procedure will reject null hypothesis H0) of the
upper tailed z-test based on a set of random samples is then 1− β (µ ′). As the ‘true’ value µ ′
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increases, µ0 −µ ′ becomes more negative, so β (µ ′) will be small and power will be large when µ ′

greatly exceeds µ0.
Consider next the lower tailed test with rejection region z ≤−zα , i.e. H0 : µ ≥ µ0. In this case,

H0 will not be rejected ⇐⇒ x > µ0 − zα

σ√
N
.

Now let µ ′ be any particular value of the parameter µ that less the null value µ0 (i.e. the value
which we belief in prior). Then

β (µ ′) = P(H0 is not rejected when the ‘true’ value is = µ
′)

= P
(

X > µ0 − zα

σ√
N

when the ‘true’ value is = µ
′
)

= 1−Φ

(
−zα +

µ0 −µ ′

σ/
√

N

)
.

If we consider two restrictions P(type I error) = α and β (µ ′) ≤ β for specified parameters α,µ ′

and β , then the sample size N should be chosen to satisfy

1−Φ

(
−zα +

µ0 −µ ′

σ/
√

N

)
≤ β ⇐⇒ −zα +

µ0 −µ ′

σ/
√

N
≥ Φ

−1(1−β ) = zβ (Exercise 4.1.1)

which can be guaranteed by (4.5.1). The power (defined as the probability that the test procedure
will reject null hypothesis H0) of the upper tailed z-test based on a set of random samples is then
1− β (µ ′). As the ‘true’ value µ ′ decreasing, µ0 − µ ′ becomes more positive, so β (µ ′) will be
small and power will be large when µ ′ greatly lesser that µ0.

Consider also the two tailed test with rejection region |z| ≥ z α

2
, i.e. H0 : µ = µ0. In this case,

H0 will not be rejected ⇐⇒ |x−µ0|< z α

2

σ√
N
.

Now let µ ′ be any particular value of the parameter µ that not equal to the null value µ0 (i.e. the
value which we belief in prior). Then

β (µ ′) = P(H0 is not rejected when the ‘true’ value is = µ
′)

= P
(
|X −µ0|< z α

2

σ√
N

when the ‘true’ value is = µ
′
)

= P
(

X −µ0 < z α

2

σ√
N

when the ‘true’ value is = µ
′
)

−P
(

X −µ0 ≤−z α

2

σ√
N

when the ‘true’ value is = µ
′
)

= Φ

(
z α

2
+

µ0 −µ ′

σ/
√

N

)
−Φ

(
−z α

2
+

µ0 −µ ′

σ/
√

N

)
.
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If we consider two restrictions P(type I error) = α and β (µ ′) ≤ β for specified parameters α,µ ′

and β , then the sample size N should be chosen to satisfy

Φ

(
z α

2
+

µ0 −µ ′

σ/
√

N

)
−Φ

(
−z α

2
+

µ0 −µ ′

σ/
√

N

)
≤ β .

For simplicity, we consider a slightly stronger condition:

Φ

(
z α

2
+

µ0 −µ ′

σ/
√

N

)
≤ β , which can be guaranteed by N ≥

(
σ(z α

2
+ zβ )

µ ′−µ0

)2

.

We now summarize the above in the following table:

testing β (µ ′) Sufficient for β (µ ′)≤ β

H0 : µ ≤ µ0

H1 : µ > µ0

Φ

(
zα +

µ0 −µ ′

σ/
√

N

)
N ≥

(
σ(zα + zβ )

µ ′−µ0

)2

H0 : µ ≥ µ0

H1 : µ < µ0

1−Φ

(
−zα +

µ0 −µ ′

σ/
√

N

)
N ≥

(
σ(zα + zβ )

µ ′−µ0

)2

H0 : µ = µ0

H1 : µ = µ0

Φ

(
z α

2
+

µ0 −µ ′

σ/
√

N

)
−Φ

(
−z α

2
+

µ0 −µ ′

σ/
√

N

)
N ≥

(
σ(z α

2
+ zβ )

µ ′−µ0

)2

TABLE 3. Type II error probability β (µ ′) for a level α z-test based on a set of
random samples

We now modify the z-test based on a set of random samples to accommodate the more realistic
situation when σ is unknown, following a path similar to what was outlined in Section 4.1. Consider
the test statistic obtained by replacing σ by the sample standard deviation s(x1, · · · ,xN) similar as
in (4.1.6):

T =
X −µ0

s(X1, · · · ,XN)/
√

N
∼ tN−1. (Gosset’s theorem, Example 2.6.15)

The rejection region for the t test differs from that of the z test only in that a t-critical value tα,N−1

replaces the z-critical value zα :



4.5. TESTS ABOUT A POPULATION MEAN 69

testing Test statistic value Rejection region for level α test

H0 : µ ≤ µ0

H1 : µ > µ0

t =
x−µ0

s(x1, · · · ,xN)/
√

N
t ≥ tα,N−1 (upper tailed test)

H0 : µ ≥ µ0

H1 : µ < µ0

t =
x−µ0

s(x1, · · · ,xN)/
√

N
t ≤−tα,N−1 (lower tailed test)

H0 : µ = µ0

H1 : µ = µ0

t =
x−µ0

s(x1, · · · ,xN)/
√

N
|t| ≥ t α

2 ,N−1 (two tailed test)

TABLE 4. t-test based on a set of random samples (see Table 2)

When the sample size is large, power and sample size calculations (as in Table 3) for the t-test
based on a set of random samples can be approximated by the formulas provided in Table 3. In this
case, a plausible value of σ must be specified; the sample standard deviation s(x1, · · · ,xN) may be
used for this purpose. However, exact calculations of power and the type II error probability β (µ ′)

are much less straightforward. This is because the test statistic

(4.5.2) T =
X −µ0

s(X1, · · · ,XN)/
√

N

does not have a t distribution when H0 is false. This says that, when the true value of µ is anything
other than µ0, T has a much more complicated distribution, related to the following definition.

DEFINITION 4.5.2. Let Z ∼ N (0,1) and Y ∼ χ2
ν (Exercise 2.6.14) be independent random

variables. For any real number δ , the random variable

Z +δ√
Y/ν

is said to have a noncentral t-distribution with ν degrees of freedom and noncentrality parameter
δ . Note that when δ = 0, this random variable has a tν -distribution (Example 2.6.15).

The p.d.f. for the noncentral t-distribution with ν degrees of freedom and noncentrality
parameter δ can be expressed as [Sch91, page 177]:

f (x;ν ,δ ) =
ν

ν

2 exp(− νδ 2

2(x2+ν)
)

√
πΓ(ν

2 )2
ν−1

2 (x2 +ν)
ν+1

2

∫
∞

0
yν exp

(
−1

2

(
y− δx√

x2 +ν

)2
)

dy.

EXERCISE 4.5.3. Show that the test statistic T has a noncentral t-distribution with N−1 degree
of freedom and noncentrality parameter

δ =
µ ′−µ0

σ/N
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when EXi = µ ′.

Let F(x;ν ,δ ) denote the c.d.f. of the noncentral t-distribution mentioned above. The power
(defined as the probability that the test procedure will reject null hypothesis H0) of the lower tailed
t-test based on a set of random samples is

P(T ≤−tα,N−1 when the ‘true’ value is µ = µ
′)

= P(T ≤−tα,N−1 when T has the distribution given in Exercise 4.5.3)

= F
(
−tα,N−1;N −1,

µ ′−µ0

σ/N

)
.

Similarly, the power of the upper tailed t-test based on a set of random samples is

P(T ≥ tα,N−1 when the ‘true’ value is µ = µ
′)

= P(T ≥ tα,N−1 when T has the distribution given in Exercise 4.5.3)

= 1−F
(

tα,N−1;N −1,
µ ′−µ0

σ/N

)
,

and the power of the two tailed t-test based on a set of random samples is

P(|T | ≥ t α

2 ,N−1 when the ‘true’ value is µ = µ
′)

= P(|T | ≥ t α

2 ,N−1 when T has the distribution given in Exercise 4.5.3)

= 1−F
(

t α

2 ,N−1;N −1,
µ ′−µ0

σ/N

)
+F

(
−t α

2 ,N−1;N −1,
µ ′−µ0

σ/N

)
.

Here we remind the readers that the noncentral t-distribution is not symmetric.
As we noted in Section 4.1, the t distributions are “robust” against violations of normality when

the sample size N is reasonably large. That is, when using data from a large sample, the results
of applying the t-test based on a set of random samples should be reasonably accurate even if
the underlying population is not normal. We have also seen that, for large sample size N, the z
and tN−1 distributions are quite similar, so that using a z distribution to determine rejection region
cutoffs gives very similar results to the t-test procedure. In current practice, researchers typically
use the t test even for large samples.

The one situation in which inferences for µ cannot be based on a t procedure is when the
sample size is small and the data strongly suggests a non-normal population. In this case, it is
possible to use the bootstrap technique as in Section 4.3 for testing hypotheses about an unknown
parameter (here, the mean µ). The fundamental bootstrap concepts (Algorithm 1) may carry over
to the hypothesis testing situation:

(1) First, a sample of data x1, · · · ,xN is obtained.
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(2) To approximate the sampling distribution of a statistic (here, X), many resamples of size N
are randomly selected with replacement from x1, · · · ,xN , and the statistic of interest (here,
the average) is calculated for each resample.

(3) We bootstrap (i.e. repeat the above procedure) for B times, and we obtain B values of the
statistic of interest (here, the resample means x∗1,x

∗
2, · · · ,x∗B).

(4) We then approximate the distribution of X by the bootstrap distribution (here, the
distribution of the x∗1,x

∗
2, · · · ,x∗B), and inferences about the population mean µ can then

be made.

However, this approach has a minor shortcoming: the mean of the original samples x1, · · · ,xN

do not equal µ0. This indicates that the algorithm fails to satisfy a fundamental principle of
hypothesis testing: making decisions based on the distribution of X under the assumption that
the null hypothesis H0 : µ = µ0 is true. To address this issue, the bootstrap procedure must be
adjusted as follows:

Algorithm 2 Adjusted bootstrap method
Require: Observed samples x1,x2, · · · ,xN , which are realizations of random samples (random

variables) X1,X2, · · · ,XN .
Require: Specify a null value µ0 % We first guess the population mean is µ0

1: Compute {wi}N
i=1 according to the formula wi = xi − x + µ0, where x is the average of

x1,x2, · · · ,xN .
2: for b = 1, · · · ,B do
3: Construct the sample probability distribution Û by putting mass 1/N at each point

w1,w2, · · · ,wN .
4: With Û fixed, draw a random sample of size N from F̂ , say w∗

1,w
∗
2, · · · ,w∗

N . %

resample
5: Compute the average of the bootstrap sample w∗

1,w
∗
2, · · · ,w∗

N , and label the resulting value
w∗

b.
6: end for
7: return The values w∗

1,w
∗
2, · · · ,w∗

B, which approximate the bootstrap distribution of X .

Now the average of the original samples w1, · · · ,wN is µ0. This guarantees that the sample
probability distribution Û has expectation µ0 and then the resulting resample means w∗

1,w
∗
2, · · · ,w∗

B

provide a semblance of what the distribution of X would look like if the null hypothesis H0 : µ = µ0

is true.

4.6. p-value

Using the rejection region method to test hypothesis entails first selecting a significance level
α . Then after computing the value of the test statistic, the null hypothesis H0 is rejected if the value
falls in the rejection region and is otherwise not rejected. We now consider another way of reaching
a conclusion in a hypothesis-testing analysis. This alternative approach is based on calculation of a
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certain probability called a p-value. The p-value is the probability of obtaining “extreme” observed
sample result assuming the null hypothesis (“prior belief”) is true. A small p-value suggests that
such an extreme outcome is unlikely under the null hypothesis. If such an outcome does occur,
then according to the principle of rare events, we may believe that it is reasonable to reject the null
hypothesis. In other words, p-value provides an intuitive measure of the strength of evidence in the
data against the null hypothesis. Then it is natural to consider the following method:

• Select a significance level α (as before, the desired type I error probability), then reject H0

if p-value ≤ α (otherwise, do not reject H0 if p-value > α).

However, unlike optimistic statements made by many textbooks (including the textbook [DBC21]),
according to the statement made by American Statistical Association (ASA) [WL16], while the p-
value can be a useful statistical measure, it is commonly misused and misinterpreted. This has led
to some scientific journals discouraging the use of p-values, and some scientists and statisticians
recommending their abandonment, with some arguments essentially unchanged since p-values were
first introduced. Before further explaining this, let us first exhibit some examples.

EXAMPLE 4.6.1. Let Φ be the c.d.f. (Definition 2.3.14) of N (0,1). The p-value for an upper
tailed z-test (i.e. reject H0 if and only if z ≥ zα ) is just the area to the right of the computed value z
under the standard normal curve:

p-value = 1−Φ(z).

The p-value for an lower tailed z-test (i.e. reject H0 if and only if z ≤ −zα ) is just the area to the
left of the computed value z under the standard normal curve:

p-value = Φ(z).

More care must be exercised in the case of a two tailed test. Suppose first z is positive. We know to
reject H0 if and only if z ≥ z α

2
, which occurs precisely when 1−Φ(z) ≤ α

2 , i.e. 2(1−Φ(z)) ≤ α .
Comparing this to the earlier decision rule, we infer that the

p-value = 2(1−Φ(z)) = 2(1−Φ(|z|)).

If z is negative, a similar argument leads to

p-value = 2(1−Φ(−z)) = 2(1−Φ(|z|)).

Therefore, we conclude that:

p-value =


1−Φ(z) for an upper tailed test (i.e. reject H0 if and only if z ≥ zα),

Φ(z) for an lower tailed test (i.e. reject H0 if and only if z ≤−zα),

2(1−Φ(|z|)) for an two tailed test (i.e. reject H0 if and only if |z| ≥ z α

2
).
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EXAMPLE 4.6.2. Just a the p-value for a z-test is a z curve area, the p-value for a t-test will be
a t curve area:

p-value =


1−F(z) for an upper tailed test (i.e. reject H0 if and only if t ≥ tα,N−1),

F(z) for an lower tailed test (i.e. reject H0 if and only if t ≤−tα,N−1),

2(1−F(|z|)) for an two tailed test (i.e. reject H0 if and only if |t| ≥ t α

2 ,N−1).

where F is the c.d.f. (Definition 2.3.14) of tN−1.

EXAMPLE 4.6.3. From the bootstrap distribution of w∗
i obtained by Algorithm 2, a bootstrap

p-value can be obtained by determining what proportion of bootstrap means w∗
1,w

∗
2, · · · ,w∗

B are at
least as contradictory to H0 as the observed value of the test statistic x:

• If H0 : µ ≥ µ0 (i.e. we believe that the population mean is ≥ µ0), then the bootstrap p-value
is the proportion of values among w∗

1,w
∗
2, · · · ,w∗

B that are < x.
• If H0 : µ ≤ µ0 (i.e. we believe that the population mean is ≤ µ0), then the bootstrap p-value

is the proportion of values among w∗
1,w

∗
2, · · · ,w∗

B that are > x.

Even though reporting p-values of statistical tests is common practice in academic publications
of many quantitative fields, misinterpretation and misuse of p-values is widespread and has been a
major topic in mathematics and metascience. Lets us borrow some words from the statement made
by American Statistical Association (ASA) [WL16] in 2016: In February 2014, George Cobb2

posed these questions to an American Statistical Association (ASA) forum:

• Q. Why do so many colleges and graduate students teach p-value = 0.05?
• A. Because that’s still what the scientific community and journal editors use.
• Q. Why do so many people still use p-value = 0.05?
• A. Because that’s what they were taught in college or graduate school.

This concern was brought to the attention of the American Statistical Association (ASA) board.
Here are principles stated in [WL16]:

(1) p-values can indicate how incompatible the data are with a specified statistical model.
(2) p-values do not measure the probability that studied hypothesis is true, or the probability

that the data were produced by random chance alone.
(3) Scientific conclusions and business or policy decisions should not be based only on

whether a p-value passes a specific threshold.
(4) Proper inference requires full reporting and transparency (otherwise, it may lead to false

positives in published studies which should be strictly avoided).
(5) A p-value, or statistical significance, does not measure the size of an effect or the

importance of a result.

2Professor Emeritus of Mathematics and Statistics at Mount Holyoke College
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(6) By itself, a p-value does not provide a good measure of evidence regarding a model or
hypothesis.

The statement made by American Statistical Association (ASA) [WL16] also provide a brief p-
values and statistical significance reference list.

4.7. What to remember

We finally end this chapter by citing some words from the statement made by American
Statistical Association (ASA) [WL16]: Good statistical practice, as an essential component of good
scientific practice, emphasizes principles of good study design and conduct, a variety of numerical
and graphical summaries of data, understanding of the phenomenon under study, interpretation of
results in context, complete reporting and proper logical and quantitative understanding of what
data summaries mean.

“No single index should substitute for scientific reasoning”
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