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CHAPTER 1

Preliminaries

Throughout this course, we will use Lebesgue integral rather than Riemannian integral.
Here we only exhibit some important properties about di�erentiation and integration that
everyone must know, following the presentation in [Bre11, Chapter 4], one can refer e.g. the
monograph [WZ15] for a nice introduction about Lebesgue integral. In order to avoid too
much terminology, here we only exhibit the results for open sets Ω, but however they also
valid for more general domains. Throughout this lecture note, the abbreviation �a.e.� means
�almost everywhere�, and we usually omit this if there is no ambiguity.

In this lecture note, we will denote the vector1 by x := (x1, x2, · · · , xn), despite it means
the column vector

x =

x1...
xn

 .

Let Ω be any open set in Rn, and for each 1 ≤ p ≤ ∞ we de�ne

Lp(Ω) :=

{
f : Ω → R with ∥f∥Lp(Ω) :=

(∫
Ω

|f(x)|p dx
)1/p

<∞

}
when 1 ≤ p <∞,

L∞(Ω) :=

{
f : Ω → R with ∥f∥L∞(Ω) := sup

x∈Ω
|f(x)| <∞

}
.

For each 1 ≤ p < ∞, one sees that ∥|f |p∥L1(Ω) = ∥f∥pLp(Ω), therefore in many cases it is

su�ce to consider L1-functions. We �rst collect some properties of L1 spaces in the following
theorem.

Lemma 1.0.1 (Monotone convergence theorem, Beppo Levi). Let Ω be an open set in Rn,
and let {fk}k∈N be a sequence of functions in L1(Ω) satisfying

f1(x) ≤ f2(x) ≤ · · · ≤ fk(x) ≤ fk+1(x) ≤ · · · for a.e. x ∈ Ω, sup
k∈N

∫
Ω

fk <∞,

then fk(x) converges a.e. on Ω to a �nite limit, which we denote by f(x). In addition, such
limit function f(x) belongs to L1(Ω) and satis�es

fk → f in L1(Ω), that is, lim
k→∞

∥fk − f∥L1(Ω) = 0.

Lemma 1.0.2 (Lebesgue dominated convergence theorem [Bre11, Theorem 4.2]). Let Ω
be an open set in Rn and let {fk}k∈N ⊂ L1(Ω) be a sequence of functions satisfying

(1) fk(x) → f(x) a.e. in Ω;
(2) there is a function g ∈ L1(Ω) such that |fk(x)| ≤ g(x) a.e. in Ω for all k ∈ N.

Then f ∈ L1(Ω) and fk → f in L1(Ω).

1Some author also use the notation x⃗, or simply x.
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1. PRELIMINARIES 2

Lemma 1.0.3 (Fatou's lemma). Let Ω be an open set in Rn and let {fk}k∈N ⊂ L1(Ω) be
a sequence of functions satisfying

fk(x) ≥ 0 for a.e. x ∈ Ω and for all k ∈ N, sup
k∈N

∫
Ω

fk <∞.

We set f(x) := lim infk→∞ fk(x) ≤ +∞. Then f ∈ L1(Ω) and∫
Ω

f(x) dx ≤ lim inf
k→∞

∫
Ω

fk(x) dx.

It is also important to mention the following fact:

Theorem 1.0.4 (Fubini's theorem). Let Ω1 be an open set in Rn and let Ω2 be an open
set in Rm, and let F : Ω1 × Ω2 → R be a (measurable) function.

(1) If F ≥ 0 a.e. in Ω1 × Ω2, then

(1.0.1)

∫
Ω2

∫
Ω1

F (x,y) dx dy =

∫
Ω1

∫
Ω2

F (x,y) dy dx.

(2) If F ∈ L1(Ω1 × Ω2), i.e.
∫
Ω2

∫
Ω1

|F (x,y)| dx dy <∞, then (1.0.1) also holds.

We now collect some elementary properties of Lp spaces in the following theorem.

Theorem 1.0.5 ([Bre11, Theorems 4.6�4.8]). Let Ω be an open set in Rn. Assume that
f ∈ Lp(Ω) and g ∈ Lp

′
(Ω) with 1 ≤ p ≤ ∞ and 1

p′
+ 1

p
= 1. Then fg ∈ L1(Ω) and the

following Hölder's inequality holds:

(1.0.2)

∫
Ω

|f(x)g(x)| dx ≤ ∥f∥Lp(Ω)∥g∥Lp′ (Ω)

and the equality in (1.0.2) holds when there exists c ∈ R such that |g(x)| = c|f(x)|p−1 for a.e.
x ∈ Ω. In addition, the function ∥·∥Lp(Ω) : L

p(Ω) → R de�nes a norm, and (Lp(Ω), ∥·∥Lp(Ω))
is a Banach space for all 1 ≤ p ≤ ∞ (this is well-known as Fischer-Riesz Theorem).

Exercise 1.0.6. For each 1 < p <∞ and 1
p′
+ 1

p
= 1, show the following inequality:

ab ≤ 1

p
ap +

1

p′
bp

′
for all a ≥ 0 and b ≥ 0.

Use this to conclude the Hölder's inequality (1.0.2). [Hint: One way to show this is using the
concavity of the logarithmic function on (0,∞).]

Exercise 1.0.7. Let f ∈ Lp(Ω), g ∈ Lq(Ω) and h ∈ Lr(Ω) for some 1 ≤ p, q, r ≤ ∞ with
1
p
+ 1

q
+ 1

r
= 1. Then fgh ∈ L1(Ω) and∫

Ω

|f(x)g(x)h(x)| dx ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω)∥h∥Lr(Ω).

Exercise 1.0.8. Show that ∥ · ∥Lp(Ω) : Lp(Ω) → R de�nes a norm. [Hint: Use the
convexity of the mapping t 7→ tp for each 1 ≤ p <∞]

Exercise 1.0.9. Given any f ∈ Lp(Ω), show that

(1.0.3) ∥f∥Lp(Ω) = sup
∥g∥

Lp′ (Ω)
=1

∫
Ω

f(x)g(x) dx
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as well as

(1.0.4) ∥f∥Lp(Ω) = sup
∥g∥

Lp′ (Ω)
=1

∫
Ω

|f(x)g(x)| dx

Exercise 1.0.10 (Minkowski's integral inequality). In fact, (1.0.3) holds true for any
(measurable) f (not necessarly in Lp(Ω)). Using this fact to show(∫

Ω2

∣∣∣∣∫
Ω1

F (x,y) dx

∣∣∣∣p dy) 1
p

≤
∫
Ω1

(∫
Ω2

|F (x,y)|p dy
) 1

p

dx.

Exercise 1.0.11. Deduce that if f ∈ Lp(Ω) ∩ Lq(Ω) with 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞,
then f ∈ Lr(Ω) for every r between p and q. More precisely, write

1

r
=
α

p
+

1− α

q
with 0 ≤ α ≤ 1

and prove that

∥f∥Lr(Ω) ≤ ∥f∥αLp(Ω)∥f∥1−αLq(Ω).

In the context of PDE, the following notion plays a central role:

Definition 1.0.12. The convolution of two measurable functions f, g : Rn → R is the
function f ∗ g : Rn → R given by

(f ∗ g)(x) :=
∫
Rn

f(y)g(x− y) dy

provided that the integral exists a.e. A change of variable gives that f ∗ g = g ∗ f .

The convolution is well-de�ned in the following sense:

Lemma 1.0.13 (Young's inequality [Bre11, Exercise 4.30]). Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞
be such that 1

p
+ 1

q
≥ 1. Set 1

r
= 1

p
+ 1

q
−1 so that 1 ≤ r ≤ ∞. Let v ∈ Lp(Rn) and ρ ∈ Lq(Rn).

Then ρ ∗ v ∈ Lr(Rn) and

∥ρ ∗ v∥Lr(Rn) ≤ ∥v∥Lp(Rn)∥ρ∥Lq(Rn).

We now collect some de�nitions and facts about di�erentiation. For a one variable
function u, its derivative at t ∈ R is (at least formally) de�ned by

u′(t) := lim
h→0

u(t+ h)− u(t)

h
.

Let ej be the j
th-column of the n×n identity matrix, and the partial derivatives are (formally)

de�ned by

∂ju(x) := lim
h→0

u(x+ hej)− u(x)

h
.

We recall the following fundamental theorem:

Lemma 1.0.14 (see e.g. [Apo74, Theorem 12.13]). If both partial derivatives ∂i1u and
∂i2u exist near a point x0 and if both ∂i1∂i2u and ∂i2∂i1u are continuous at x0, then

∂i1∂i2u(x0) = ∂i2∂i1u(x0).
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Therefore, we usually denote ∂i1i2 = ∂i1∂i2 = ∂i2∂i1 , regardless the order of partial
derivatives. We also exhibit some notations which are helpful to express higher order
derivatives. For each multi-index α = (α1, · · · , αn) with non-negative integers αj, we de�ne

supp (α) := {j ∈ {1, · · · , n} : αj ̸= 0} , |α| := α1 + α2 + · · ·+ αn ≡
n∑
j=1

αj,

as well as

∂α :=
∏

j∈supp (α)

∂
αj

j with the convention ∂(0,··· ,0) := Id,

and the partial derivatives in ∂α are pairwise commute. In view of Lemma 1.0.14, for each
open set Ω and a non-negative integer k, we de�ne the spaces

Ck(Ω) := {u : Ω → C : ∂αu is continuous for all α with |α| ≤ k} ,
Ck(Ω) :=

{
u|Ω : u ∈ Ck(U) for some open set U ⊃ Ω

}
,

Ck
c (Ω) :=

{
u ∈ Ck(Ω) : supp (u) ⊂ Ω is compact

}
.

By considering the zero extension, one also sees that

(1.0.5) Ck
c (Ω) =

{
u ∈ Ck(Rn) : supp (u) ⊂ Ω is compact

}
.

Similarly, we also write

C∞
c (Ω) := {u ∈ C∞(Ω) : supp (u) ⊂ Ω is compact}

= {u ∈ C∞(Rn) : supp (u) ⊂ Ω is compact} .
The following density result is fundamental:

Lemma 1.0.15. Let Ω be an open set in Rn. Then C∞
c (Ω) is dense in Lp(Ω) for any

1 ≤ p < ∞, that is, given any f ∈ Lp(Ω), there exists a sequence of functions {fk}k∈N in
C∞
c (Ω) such that fk → f in Lp(Ω).

Exercise 1.0.16. Show that Lemma 1.0.15 does not hold true when p = ∞.

We now state the following proposition, which serves as the most important ingredient
in this course:

Proposition 1.0.17 (Divergence theorem, see e.g. [Str08, Appendix A.3]). Let Ω be a
bounded domain in Rn with a piecewise-C1 boundary ∂Ω. Let ν = (ν1, · · · , νn) be the unit
outward normal vector on ∂Ω, then

(1.0.6)

∫
Ω

∂if dx =

∫
∂Ω

νif dSx

for all f ∈ C1(Ω), where dSx is the surface element (can be characterized in terms of
Hausdor� measure) on ∂Ω.

Exercise 1.0.18. Suppose that all assumptions in Proposition 1.0.17 holds. Show that

(1.0.7)

∫
Ω

∇ · f dx =

∫
∂Ω

ν · f dSx

for all f = (f1, · · · , fn) ∈ (C1(Ω))n, where ∇ · f(x) := ∂1f1(x) + · · ·+ ∂nfn(x) is called the
divergence of f .
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Using product rule, it is easy to see that∫
∂Ω

νifg dSx =

∫
Ω

∂i(fg) dx =

∫
Ω

∂if(x)g(x) dx+

∫
Ω

f(x)∂ig(x) dx.

Hence we immediately reach the following useful corollary:

Corollary 1.0.19 (Integration by parts). Suppose that all assumptions in
Proposition 1.0.17 holds, then∫

Ω

∂if(x)g(x) dx =

∫
∂Ω

νi(x)f(x)g(x) dSx −
∫
Ω

f(x)∂ig(x) dx

for all f, g ∈ C1(Ω).

Remark. We now restrict ourselves when n = 1. When Ω = (a, b), the above identity
simply reads ∫ b

a

f ′(x)g(x) dx = f(x)g(x)|x=bx=a −
∫ b

a

f(x)g′(x) dx

which is just the usual integration by parts. In fact, each open set Ω can be written as
union of countably many disjoint open intervals [WZ15], and therefore the above formula
can be extended for arbitrary open sets in R1. The fundamental theorem of calculus is simply
a special case of divergence theorem. Indeed Corollary 1.0.19 can be extended for general
bounded Lipschitz domains and in weak sense (see Theorem 3.2.8 below).

Exercise 1.0.20 (Green's theorem as a special case of divergence theorem). Suppose
that all assumptions in Proposition 1.0.17 holds with n = 2. The Green's theorem stated
that ∫

Ω

(∂xq(x, y)− ∂yp(x, y)) dx dy =

∫
∂D

(p dx+ q dy),

for all p, q ∈ C1(Ω), where the right-hand-side is the line integral de�ned by∫
∂D

(p dx+ q dy) :=

∫
∂D

(p(γ(s)), q(γ(s))) · t(s) ds

where γ(s) is the arc-lengh parametrization of ∂D and t(s) is the unit tangent vector �eld
(usually chosen to be counterclockwise oriented). Show that Green's theorem is a special
case of the divergence theorem.



CHAPTER 2

Partial di�erential equation in classical sense

2.1. What is partial di�erential equations

In many cases, it is not convenient to write down the function explicitly. For example,
for the function u(t) := sin−1 t for −1 < t < −1, it is more convenient to write it as

sin(u(t)) = t.

Taking derivative on both sides of the above equation, or in some fancy words �performing
implicit di�erentiation�, we reach

cos(u(t))u′(t) = 1.

If we write F (t, u, u′) := cos(u(t))u′(t) − 1, then we see that the above equation is simply a
special case of the following �rst-order ordinary di�erential equation:

F (t, u, u′) = 0.

In general, for any k ∈ N, where N = {1, 2, 3, · · · }, the most general kth-order ordinary
di�erential equation (ODE ) takes the form

F (t, u, u′, · · · , .u(k)) = 0,

where u(k) is the kth-derivative of u. The key de�ning property of a partial di�erential
equation is that there is more than one independent variable x1, x2, · · · , xn (n ∈ N). Similar
as above, we now introduce the following de�nition.

Definition 2.1.1. The general kth-order partial di�erential equation (PDE ) takes the
form

(2.1.1) F
(
x, {∂αu}|α|≤k

)
≡ F

(
x, u, {∂αu}|α|=1, · · · , {∂αu}|α|=k

)
= 0.

A solution of (2.1.1) is a function u that satis�es the equation identically in some region
(open sets) in Rn.

In view of Theorem 1.0.14, the above de�nition is at least well-de�ned for Ck-solutions
u. It is convenient to write the PDE in operator form: We write

Lu := F
(
x, {∂αu}|α|≤k

)
,

where F is the function given in (2.1.1).

Definition 2.1.2. Given any function g, and we consider a PDE Lu = g. If g ≡ 0, then
we say that the PDE is homogeneous. We say that the PDE is:

(1) linear when (Lu)(x) =
∑
|α|≤k

cα(x)∂
αu(x) for some functions cα;

(2) semilinear when (Lu)(x) =
∑
|α|=k

cα(x)∂
αu(x) +G

(
x, {∂αu}|α|<k

)
;

6



2.2. FIRST ORDER PDE 7

(3) quasilinear when (Lu)(x) =
∑
|α|=k

cα
(
x, {∂αu}|α|<k

)
∂αu(x).

If L is semilinear, sometimes we refer

(Lprinu)(x) =
∑
|α|=k

cα(x)∂
αu(x)

the principal part of L. Here are some examples:

(1) The transport equation
∑

|α|=1 ∂
αu = 1 is a �rst order linear PDE.

(2) The shock wave equation ∂1u+ u∂2u = 0 is a �rst order quasilinear PDE.
(3) The Laplace equation ∂21u + · · · ∂2nu = 0 is a second order linear PDE. We often

denote the Laplace operator (or Laplacian) by ∆u = 0. Here �∆� is the capital-delta
in Greek.

(4) The di�usion/heat/caloric equation ∂tu−∆u = 0 is a second order linear PDE.
(5) The wave equation ∂2t u−∆u = 0 is a second order linear PDE.
(6) The Schrödinger equation ∂tu − i∆u = 0, with the imaginary number i =

√
−1

[BN10, FB09, Kow23], is a second order linear PDE.
(7) The dispersive wave equation ∂tu+u∂xu+ ∂3xu = 0 is a third order semilinear PDE.
(8) The Korteweg-deVries (KdV) equation ∂tu + ∂3xu + 6u∂xu = 0 is a third order

semilinear PDE.

Remark. It is still possible to generalize the PDE in De�nition 2.1.1, for example, from
the pseudodi�erential operator point of view. For example, the fractional Laplacian, see
e.g. [Kwa17] for (at least) ten equivalent de�nition for fractional Laplacian, or my PhD
dissertation [Kow21] for fractional order elliptic equations. Here we also refer to a monograph
[KRY20] for a nice introduction on Riemann-Liouville/Caputo derivatives in weak sense. We
will not cover these advance topics in this lecture note.

2.2. First order PDE

2.2.1. Transport equation. We begin our discussion of PDEs by solving some simple
ones. Given a horizontal pipe of �xed cross section in the (positive) x-direction. Suppose that
there is a �uid �owing at a constant rate c (c = 0 means the �uid is stationary; c > 0 means
�owing toward right, otherwise towards left). We now assume that there is a substance is
suspended in the water.

Fix a point at the pipe, and we set the point as the origin 0, and let u(t, x) be the
concentration of such substance. The amount of pollutant in the interval [0, y] at time t is
given by ∫ y

0

u(t, x) dx.

At the later time t+ τ , the same molecules of pollutant moved by the displacement cτ , and
this means ∫ y

0

u(t, x) dx =

∫ y+cτ

cτ

u(t+ τ, x) dx.

If u is continuous, by using the fundamental theorem of calculus, by di�erentiating the above
equation with respect to y, one sees that

(2.2.1) u(t, y) = u(t+ τ, y + cτ) for all y ∈ R.
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If we further assume u ∈ C1, then di�erentiating (2.2.1) with respect to τ , we reach the
following transport equation:

0 = u(t+ τ, y + cτ)|τ=0 = ∂tu(t, x) + c∂xu(t, x) for all (t, x) ∈ R× R.

2.2.2. The constant coe�cient equation. The simplest possible PDE is ∂tu(t, x) =
0. Its general solution is u(t, x) = f(x), where f is any function of one variables. Because the
solutions are independent of t, they are constant on the lines x = constant in the (t, x)-plane.
Let c = constant ̸= 0 and let us solve the transport equation

(2.2.2) ∂tu+ c∂xu = 0

for a function u = u(t, x) ∈ C1(R × R). Given any ξ ∈ R, we see that the set Lξ of points
(t, x) solving x− ct = ξ is a straight line in (t, x)-plane. Since we see that

∂t
(
u|Lξ

(t)
)
= ∂t (u(t, ct+ ξ)) = (∂tu+ c∂xu)|Lξ

(t) = 0 for all t ∈ R,

then by using chain rule we see that

u|Lξ
(t) = u(t, ct+ ξ) = u(0, ξ) = u(0, x− ct) for all t ∈ R.

Hence it is make sense to refer Lξ the characteristic line of (2.2.2). This means that the
general solution of (2.2.2) must takes the form

(2.2.3) u(t, x) = f(x− ct)

for some function f ∈ C1(R). Formula (2.2.3) represents the general solution u uniquely in
terms of its initial values

u(0, x) = f(x).

In other words, if u1 and u2 are C1(R) solutions of (2.2.2) with u1(0, x) = u2(0, x) = f(x),
then u1 ≡ u2 throughout the whole (t, x)-plane. Conversely, every u of the form (2.2.3) is
a solution of (2.2.2) with initial values f provided f is of class C1(R). We conclude the
following in the following theorem:

Theorem 2.2.1. Given any f ∈ C1(R), there exists a unique solution u ∈ C1(R2) of
(2.2.2). In addition, the solution is of the form (2.2.3).

Remark. Here we also exhibit another way to compute the solutions. By writing t′ =
t+ cx and x′ = ct− x, and abusing the notation u(t, x) and u(t′, x′), by using chain rule one
sees that

∂tu = ∂t′u∂tt
′ + ∂x′u∂tx

′ = ∂t′u+ c∂x′u,

∂xu = ∂t′u∂xt
′ + ∂x′u∂xx

′ = c∂t′u− ∂x′u.

Together with (2.2.2), one has

(1 + c2)∂t′u = ∂tu+ c∂xu = 0.

This means that u is independent of t′, thus the general solution is u(t, x) = f(−x′) =
f(x− ct).

Exercise 2.2.2. Solve ∂tu+ ∂xu = 1.

Exercise 2.2.3. Solve ∂tu+ c∂xu+ ku = 0, where c and k are constants.

Exercise 2.2.4. Solve ∂tu+ 2∂xu+ (2t− x)u = 2t2 + 3tx− 2x2.



2.2. FIRST ORDER PDE 9

We use this example with its explicit solution to bring out some of the notions connected
with the numerical solution of PDE by the method of �nite di�erences. In view of the
de�nition of the partial derivatives, it seems natural to approximate (2.2.2) by the forward
di�erence quotients:

(2.2.4)
v(t+ k, x)− v(t, x)

k
+ c

v(t, x+ h)− v(t, x)

h
= 0

for small positive parameters h, k. We now solve v with initial values v(0, x) = f(x) with a
�xed ratio λ = k/h. We hope that v approximate u as k → 0+ (i� h→ 0+).

We write (2.2.4) as a recursion formula

v(t+ k, x) = (1 + λc)v(t, x)− λcv(t, x+ h).

Introducing the shift operator E de�ned by Eg(x) = g(x+h), we can write the above identity
as

v(t+ k, x) = ((1 + λc)− λcE) v(t, x).
Since (1+λc) and −λcE are commute, by using a formal binomial theorem (which holds true
for any operator which are commute), one can easily compute that

v(t, x)|t=nk = v(nk, x) = ((1 + λc)− λcE)n v(0, x)

=
n∑

m=0

(
n
m

)
(1 + λc)m(−λcE)n−mf(x)

=
n∑

m=0

(
n
m

)
(1 + λc)m(−λc)n−mf(x+ (n−m)h),

which solves (2.2.4) with initial values v(x, 0) = f(x). The domain of dependence for
v(t, x)|t=nk is

(2.2.5)

{
x, x+ h, x+ 2h, · · · , x+ nh = x+

t

λ

}
.

Letting h, k → 0+ with a �xed ratio λ = k/h, the limit of the set (2.2.5) (in the topological
sense) is the interval [x, x + (t/λ)]. However, from (2.2.3), the domain of dependence of
the solution u(t, x) is x − ct, which lies completely outside [x, x + (t/λ)]. In plain words,
this scheme attempts to solve the PDE using some information which is totally irrelevant1,
therefore we do not expect the solution v converges to u as k → 0+ (i� h→ 0+).

A more appropriate di�erence scheme uses backward di�erence quotients:

(2.2.6)
w(t+ k, x)− w(t, x)

k
+ c

w(t, x)− w(t, x− h)

h
= 0.

Using similar computations, under a �xed ratio λ = k/h one can show that

w(t, x)|t=nk =
n∑

m=0

(
n
m

)
(1− λc)m(λc)n−mf(x− (n−m)h).

The domain of dependence for w(t, x)|t=nk is{
x, x− h, x− 2h, · · · , x− nh = x− t

λ

}
,

1To be precise, the scheme (2.2.4) does not satis�es the Courant-Friedrichs-Lewy test [Joh78].
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which is approximating the set [x, x − (t/λ)]. This scheme looks good, at least now useful
information x− ct (see (2.2.3)) is now included in the domain of dependence [x, x− (t/λ)] if
we choose λc ≤ 1 (even though it contains some redundant information).

In fact, one can prove that w converges to u as h→ 0+ with the �xed ratio λ = k/h with
λc ≤ 1:

|u(t, x)− w(t, x)| ≤ Kth

λ
with K =

1

2
(c2λ2 + cλ)∥f ′′∥L∞(R).

We will not going to go through all these details, see [Joh78] for more details. In general,
given a PDE (with a unique regular solution), the numerical scheme need to be carefully
chosen. One also can refer to the monograph [AH09] for detailed explanation about this
topic.

Exercise 2.2.5. Using computer software (Octave, MATLAB, SageMath (Python) etc.)
to verify the numerical schemes (2.2.4) and (2.2.6). One can choose, for example, f be the
bump function, which is C∞ and has compact support.

2.2.3. The variable coe�cient equation. Before we proceed, let us recall some
fundamental theorems. We now consider the following standard form of ODE:

(2.2.7) γ′(t) = c(t, γ(t)).

We recall the following two fundamental theorems of ODE (see Theorem 2.2.6 and
Theorem 2.2.9 below, both of them also hold true for system of equations as well):

Theorem 2.2.6 ([HS99, Theorem I-2-5]). Let t0, x0 ∈ R. Suppose that (t, x) 7→ c(t, x)
is real-valued and continuous on a rectangular region

R = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b}

for some positive numbers a and b. Let

α :=

{
a if ∥c∥L∞(R) = 0,

min{a, b∥c∥−1
L∞(R)} if ∥c∥L∞(R) > 0.

Then there exists a solution γ ∈ C1((t0 − α, t0 + α)) of the ODE (2.2.7) with γ(t0) = x0.

Example 2.2.7 ([HS99, Example I-2-6]). Theorem 2.2.6 applies to the ODE

(2.2.8) γ′(t) = t(γ(t))
1
5 , γ(3) = 0.

One sees that γ(t) = 0 is obviously a solution of the above ODE. In fact, one also veri�es
that

(2.2.9) γ(t) =


0 for t < 3,(
2(t2 − 9)

5

)5/4

for t ≥ 3,

is also a solution of (2.2.8). This shows that in general the solution of ODE (2.2.7) may not
unique.

Exercise 2.2.8. Verify the function γ given in (2.2.9) is C1(R) and it solves (2.2.8).

We need extra assumptions to guarantee uniqueness.
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Theorem 2.2.9 ([HS99, Theorem I-1-4]). Suppose that all assumptions in Theorem 2.2.6
hold. We additionally assume that there exists a positive constant L such that

(2.2.10) |c(t, x1)− c(t, x2)| ≤ L|x1 − x2|
whenever (t, x1) and (t, x2) are in the region R. Then there exists a unique solution γ ∈
C1((t0 − α, t0 + α)) of the ODE (2.2.7) with γ(t0) = x0.

We now consider the transport equation with variable coe�cient equation of the form

(2.2.11) ∂tu+ c(t, x)∂xu = 0, u(0, x) = f(x),

where f ∈ C1(R) and c satis�es all assumption in Theorem 2.2.9. Given any s ∈ R and we
consider a curve x = γs(t), where γ solves the ODE (2.2.7) with γs(0) = s. Similar to above,
we now restrict u on a curve x = γs(t), and one sees that

∂t (u|γs(t)) = ∂t (u(t, γs(t))) = (∂tu+ γ′(t)∂xu)|x=γs(t)
= (∂tu+ c(t, x)∂xu)|x=γs(t) = 0.

This means that u is constant along the characteristic curve γs. Hence

(2.2.12) u(t, γs(t)) = u(0, γs(0)) = f(γs(0)) = f(s).

For later convenience, we write γ(t, s) = γs(t). Fix x ∈ R and we now want to solve
the equation x = γ(t, s). From γ(0, x) = x, if ∂sγ(0, x) ̸= 0, then we can apply the implicit
function theorem [Apo74, Theorem 13.7] to guarantee that there exist an open neighborhood
Ux ⊂ R of 0 and gx ∈ C1(Ux) such that gx(0) = x and x = γ(t, s)|s=gx(t) for all t ∈ Ux. In
other words, we found a solution s = gx(t) ≡ g(x, t) of the equation x = γ(t, s) in Ux.
Plugging this solution into (2.2.12), we conclude

(2.2.13) u(t, x) = f(g(x, t)) for all x with ∂sγ(0, x) ̸= 0 and t ∈ Ux.

This completes the local existence proof. Uniqueness follows from the fact that u is constant
along the characteristic curve γ.

Example 2.2.10 (Revisit Section 2.2.2). Given any f ∈ C1(R), let us now consider
(2.2.11) with c = constant. In this case, (2.2.7) reads γ′(t) = c. For each s ∈ R, it is easy to
see that the solution of γ′s(t) = c with γs(0) = s is

γ(t, s) ≡ γs(t) = ct+ s.

For each x ∈ R, the solution of x = γ(t, s) is clearly given by s = g(x, t) ≡ x− ct, and thus
from (2.2.13) we conclude that

u(t, x) = f(x− ct),

which agrees with (2.2.3).

Example 2.2.11. Given any f ∈ C1(R), we now want to solve ∂tu + x∂xu = 0 with
u(0, x) = f(x) for all x ∈ R. Write c(t, x) = x, and for each s ∈ R we consider the ODE

γ′s(t) = c(t, γs(t)) ≡ γs(t), γs(0) = s.

By using the integrating factor, one can easily see that the solution of the ODE is

γs(t) = ets.

For each x ∈ R, the solution of x = γs(t) is given by s = g(x, t) ≡ e−tx, and thus from
(2.2.13) we conclude that

u(t, x) = f(g(x, t)) = f(e−tx).
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Example 2.2.12. Given any f ∈ C1(R), we now want to solve ∂tu + 2tx2∂xu = 0 with
u(0, x) = f(x) for all x ∈ R. Write c(t, x) = 2tx2, and for each s ̸= 0 we consider the ODE

γ′s(t) = 2t(γs(t))
2, γs(0) = s−1.

By using the method of separation of variables, one can easily see that the solution of the
ODE is

γs(t) = (s− t2)−1,

which is valid

(2.2.14)

{
for all t ∈ R when s < 0,

for all t2 < s when s > 0,

but the ODE is not solvable when s = 0. When s ̸= 0, the solution of x = γs(t) is given by
s = t2 + 1

x
, and thus from (2.2.13) we conclude that

u(t, x) = f(s−1) = f

(
x

1 + t2x

)
for all x ̸= −t−2.

Remark 2.2.13. Recall that the local existence proof for the solution of the PDE (2.2.11)
involving implicit function theorem, which requires c(0, x) ̸= 0. As we see in Example 2.2.10
and Example 2.2.11, the PDE also solvable for those x with c(0, x) = 0. However, in
Example 2.2.12, we see that the PDE is not solvable for those x with c(0, x) = 0. The
existence theorem guarantees the local solvable when x with c(0, x) ̸= 0 and inconclusive
when c(0, x) = 0: The implicit function theorem provided only su�cient condition, but not
necessary condition. In addition, the existence theorem does not guarantee the maximal
domain, the solution may global (i.e. valid for all t ∈ R) in some case.

We now summarize the above ideas in the following algorithm:

Algorithm 1 Solving ∂tu+ c(t, x)∂xu+ d(t, x)u = F (t, x) with u(0, x) = f(x)

1: Solve the ODE γ′s(t) = c(t, γs(t)) with given γs(0) for any suitable parameter s.
2: Compute ∂t(u(t, γs(t))).
3: Rewrite the identity x = γs(t) in the form of s = g(x, t).
4: Identify the domain for which u(t, x) = f(g(x, t)) solves ∂tu+ c(t, x)∂xu = 0.

Exercise 2.2.14. Given any f ∈ C1(R), solve the equation (1 + t2)∂tu + ∂xu = 0 with
u(0, x) = f(x) and identify the range of x.

Exercise 2.2.15. Given any f ∈ C1(R), solve the equation t∂tu+x∂xu = 0 with u(0, x) =
f(x) and identify the range of x.

Exercise 2.2.16. Solve the equation x∂tu+ t∂xu = 0 with u(0, x) = e−x
2
.

Remark (Generality of the ideas). The method of characteristic also works for fairly
general Cauchy problem of the (high dimensional) �rst order inhomogeneous quasilinear
equation (even works for some cases for fully nonlinear case), see [Joh78].
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2.3. Linear PDE of second order

We now move on to the linear second order PDE. We usually classify them by considering
its principal part (i.e. the term with highest order derivatives). For simplicity, let us consider
the principal part of the constant coe�cient case:

A : ∇⊗2u :=
n∑

i,j=1

aij∂i∂ju.

Suppose that the matrix A = (aij) is real symmetric. It is well-known that A is unitary
diagonalizable, i.e. there exists an invertible Q with Q−1 = Q⊺ such that A = QDQ⊺ for
some diagonal matrix D = diag (λ1, · · · , λn), where λj are called the eigenvalues of the
matrix A.

(1) If λj > 0 for all j = 1, · · · , n, then we say that second order linear PDE is elliptic.
(2) If λj0 = 0 and λj > 0 for all j ∈ {1, · · · , n} \ {j0}, then we say that the second order

linear PDE is parabolic.
(3) If λj0 < 0 and λj > 0 for all j ∈ {1, · · · , n} \ {j0}, then we say that the second order

linear PDE is hyperbolic.
(4) If n ≥ 4 and there exists 4 di�erent indices j0, j

′
0, j1, j

′
1 ∈ {1, · · · , n} such that

λj0 < 0, λj′0 < 0, λj1 > 0 and λj′1 > 0, then we say that the second order linear PDE
is ultrahyperbolic.

We have to emphasize that the above are not complete classi�cations of the second order
linear PDE.

Exercise 2.3.1. Let A = (aij) be a real symmetric matrix. Show that all its eigenvalue
are positive if and only if

Aξ · ξ ≡ ξ⊺Aξ > 0 for all ξ ∈ Rn.

Remark 2.3.2. If we consider the linear second order PDE with principal part

A(x) : ∇⊗2u ≡
n∑

i,j=1

aij(x)∂i∂ju, or(2.3.1a)

∇ · (A(x)∇u) ≡
n∑

i,j=1

∂i (aij(x)∂ju) ,(2.3.1b)

then we say that (2.3.1a) and (2.3.1b) is uniformly elliptic on a domain Ω if there exists a
constant c > 0 such that

A(x)ξ · ξ ≡ ξ⊺A(x)ξ ≥ c|ξ|2 for all x ∈ Ω and ξ ∈ Rn.

We usually call (2.3.1a) the second order elliptic operator of non-divergence form, while
(2.3.1b) the second order elliptic operator of divergence form. In many cases, it is more
convenient to consider the divergence form (2.3.1b) since it is symmetric with respect to the
integration by parts formula Corollary 1.0.19. In particular when A ≡ Id, then both (2.3.1a)
and (2.3.1b) reduce into the Laplace operator (or Laplacian):

∆ =
n∑
i=1

∂2i u.

Exercise 2.3.3. Let n = 2. Classify each of the equations:
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(1) ∂21u− 5∂1∂2u = 0;
(2) 4∂21u− 12∂1∂2u+ 9∂22u+ ∂2u = 0;
(3) 4∂21u+ 6∂1∂2u+ 9∂22u = 0.

Exercise 2.3.4 (Standard examples of second order linear PDE). Classify each of the
equations:

(1) −∆u + b · ∇u + cu = 0 with u = u(x), where ∇ = (∂1, · · · , ∂n) is the gradient
operator.

(2) Heat equation (or caloric equation, di�usion equation). ∂tu−∆u+b ·∇u+
cu = 0 with u = u(t,x).

(3) Wave equation. ∂2t u−∆u+ b · ∇u+ cu = 0 with u = u(t,x).
(4) Suppose that Lu = A : ∇⊗2u, where A = (aij) be a real symmetric positive de�nite

matrix (in the sense of Exercise 2.3.1). What can we say about the operator ∂t −L
as well as ∂2t − L?

Remark 2.3.5. Many authors (including myself) would prefer put a minus sign in front
of the Laplacian ∆ (or the elliptic operator (2.3.1b)) as indicated in Exercise 2.3.4, due to
the maximum principle (Lemma 3.5.5), eigenvalue decomposition (Theorem 3.6.4) as well
as Fourier transform (Exercise 4.2.8) below. This minus sign is actually come from the
integration by parts (Corollary 1.0.19).

2.4. Wave equation

2.4.1. 1-dimensional wave equation on the whole line R. We now begin our
discussions by studying the C2-solution of the one-dimensional wave equation

(2.4.1) ∂2t u(t, x) = c2∂2xu(t, x) for (t, x) ∈ R× R,
for some c > 0, which is also the simplest form of second order hyperbolic PDE. The above
wave equation can be written as (because the di�erential operators are linear and commute)

(2.4.2) (∂t − c∂x)(∂t + c∂x)u = 0 for (t, x) ∈ R× R,
in other words, the function v := (∂t + c∂x)u ≡ ∂tu + c∂xu satis�es the transport equation.
One may use the above method to solve the general solution of (2.4.1). Here we exhibit
another method to solve (2.4.1) using characteristic coordinate given by

ξ = x+ ct, η = x− ct.

For simplicity, here we slightly abuse the notation by identifying v(t, x) with v(ξ, η). By using
chain rule, one sees that ∂xv = ∂ξv + ∂ηv and ∂tv = c∂ξv + c∂ηv. Since these two identity
holds true for arbitrary v ∈ C1, we simply write

∂x = ∂ξ + ∂η, ∂t = c∂ξ + c∂η.

In view of (2.4.2), we write

∂t − c∂x = −2c∂η, ∂t + c∂x = 2c∂ξ

and hence this change of coordinate transform (2.4.2) in the simple form

∂η∂ξu = 0.

Then obviously the general solution is u(ξ, η) = f(ξ) + g(η) with f, g ∈ C2(R). In terms of
original coordinate, we reach

(2.4.3) u(t, x) = f(x+ ct) + g(x− ct) for all (t, x) ∈ R× R.
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Since there are two �unknowns� f and g in (2.4.3), to guarantee the existence and uniqueness
of solution of the PDE, one way is to impose the following initial conditions:

(2.4.4) u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x),

for any given ϕ ∈ C2(R) and ψ ∈ C1(R).
Choosing t = 0 in (2.4.3) yields

ϕ(x) = f(x) + g(x),

and hence

(2.4.5a) ϕ′(x) = f ′(x) + g′(x).

On the other hand, we �rst di�erentiate (2.4.3) and then take t = 0 to obtain

(2.4.5b) ψ(x) = cf ′(x)− cg′(x).

From (2.4.5a) and (2.4.5b), it is not di�cult to see that (for later convenience, we replace x
by s)

f ′(s) =
1

2
ϕ′(s) +

1

2c
ψ(s), g′(s) =

1

2
ϕ′(s)− 1

2c
ψ(s),

and thus integrating dx from 0 to y ∈ R, we reach

f(y)− f(0) =
1

2
ϕ(y)− 1

2
ϕ(0) +

1

2c

∫ y

0

ψ(s) ds,

g(y)− g(0) =
1

2
ϕ(y)− 1

2
ϕ(0)− 1

2c

∫ y

0

ψ(s) ds.

Plugging these anzats into the general solution (2.4.3), by using the fact ϕ(0) = f(0) + g(0)
we reach the d'Alembert formula:

(2.4.6) u(t, x) =
1

2
(ϕ(x+ ct) + ϕ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(s) ds.

Until this point, we have showed that:

Lemma. Let ϕ ∈ C2(R) and ψ ∈ C1(R). Let u ∈ C2(R× R) be a solution of the initial-
value problem of the 1-dimensional wave equation (2.4.1) and (2.4.4), then the solution must
takes the form (2.4.6).

If ϕ ∈ C2(R) and ψ ∈ C1(R), one can directly verify that (2.4.6) solves the initial-value
problem of the 1-dimensional wave equation (2.4.1) and (2.4.4), which shows the existence
of the solution. Putting the above together, we now conclude that:

Theorem 2.4.1 (d'Alembert). Let ϕ ∈ C2(R) and ψ ∈ C1(R). Then the function (2.4.6)
is the unique C2-solution of the initial-value problem of the 1-dimensional wave equation
(2.4.1) and (2.4.4).

It is interesting to mention that, despite that the wave equation (2.4.1) involving
second order derivatives, and the initial condition (2.4.4) involving �rst order derivatives,
but the d'Alembert formula formula (2.4.6) is actually well-de�ned without di�rentiability
assumption. In fact, in many practical situation (see Exercise 2.4.2 and Exercise 2.4.3 below),
we usually do not expect the wave to be C2. We will introduce in next chapter that the notion
of weak solutions in terms of weak derivatives.
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Exercise 2.4.2 (The plucked string). The solution of the 1-dimensional wave equation
(2.4.1) can be used to approximate the pointwise displacement of the vibrating of an (in�n-

itely) long string. The sound speed c is given by c =
√
T/ρ, where T is the tension of string

and ρ is the density of the string. Consider the string with initial position

ϕ(x) =

{
b− b|x|

a
for |x| < a,

0 for |x| ≥ a,

and initial velocity ψ(x) ≡ 0. This modeling the �three-�nger� pluck, with all three �ngers
removed at once. Note that ϕ ∈ C0(R) but not di�erentiable at x = 0,±a. Compute the
solution u from the d'Alembert formula (2.4.6). [Hint: Consider the cases t < a

c
, t = a

c
,

t > a
c
]

Exercise 2.4.3 (The hammer blow). Let ϕ(x) ≡ 0 and

ψ(x) =

{
1 for |x| < a,

0 for |x| ≥ a.

In this case, ψ is not di�erentiable at x = ±a. Compute the solution u from the d'Alembert
formula (2.4.6).

Let u be any C2 solution of the 1-dimensional wave equation (2.4.1), such that

(2.4.7) supp (u(t, ·)) := {x ∈ R : u(t, x) ̸= 0}
is compact for each t. In view of the d'Alembert's formula (Theorem 2.4.1), this assumption

make sense. Recall that c =
√
T/ρ, where T is the tension of string and ρ is the density of

the string. In this case, the quantity

(2.4.8) E(t) :=
1

2

∫ ∞

−∞

(
ρ|∂tu(t, x)|2 + T |∂xu(t, x)|2

)
dx

is well-de�ned. We have the following lemma (which is far away from optimal).

Lemma 2.4.4 (see e.g. [Str08, Appendix A.3]). Let f(t, x) and ∂tf(t, x) be continuous
functions in (c, d)× R. Assume that

sup
t∈(c,d)

∥f(t, ·)∥L1(R) ≡ sup
t∈(c,d)

∫ +∞

−∞
|f(t, x)| dx <∞,

sup
t∈(c,d)

∥∂tf(t, ·)∥L1(R) ≡ sup
t∈(c,d)

∫ +∞

−∞
|∂tf(t, x)| dx <∞.

Then

∂t

(∫ +∞

−∞
f(t, x) dx

)
=

∫ +∞

−∞
∂tf(t, x) dx.

Sketch of proof. For each t ∈ (c, d), one can �nd c < c′ < d′ < d such that t ∈ (c′, d′).
This is usual trick in real analysis since in general supremum/in�mum cannot be achieved
for original large domain. For each τ ̸= 0 with t+ τ ∈ (c′, d′), which can be achieved by small
|τ |, it is easy to see that

1

τ

(∫ +∞

−∞
f(t+ τ, x) dx−

∫ +∞

−∞
f(t, x) dx

)
=

∫ +∞

−∞

1

τ
(f(t+ τ, x)− f(t, x)) dx.
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The idea is to take τ → 0, which can be rigorously justify using the Lebesgue dominated
convergence theorem (Lemma 1.0.2), here we will skip the details. □

We di�erentiate (2.4.8) to obtain

E ′(t) :=
1

2

∫ ∞

−∞

(
ρ∂t
(
|∂tu(t, x)|2

)
+ T∂t

(
|∂xu(t, x)|2

))
dx

=
1

2

∫ ∞

−∞

(
ρ∂tu(t, x)∂

2
t u(t, x) + T∂x∂tu(t, x)∂xu(t, x)

)
dx

=
1

2

∫ ∞

−∞

(
ρ∂tu(t, x)∂

2
t u(t, x)− T∂tu(t, x)∂

2
xu(t, x)

)
dx = 0,

where the last identity follows from the integration by parts on the variable x together with
the support condition (2.4.7). This means that E ≡ constant, and we usually refer the
quantity E given in (2.4.8) the �energy� (in view of the energy conservation). Since

Ekinetic(t) :=
1

2

∫ ∞

−∞
ρ|∂tu(t, x)|2 dx

is the kinetic energy of the wave particles, then its potential energy can be approximate by

Epotential(t) :=
1

2

∫ ∞

−∞
T |∂xu(t, x)|2 dx.

This argument actually works in a fairly general framework, see e.g. [KK22, Appendix B].

2.4.2. 1-dimensional wave equation on the half-line (0,∞). We now consider the
following initial-boundary value problem:

(2.4.9)


∂2t u(t, x)− c2∂2xu(t, x) = 0 for all (t, x) ∈ (0,∞)× (0,∞),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x) for all x ∈ (0,∞),

u(t, 0) = 0 for all t ∈ (0,∞),

for ϕ ∈ C2((0,∞)) and ψ ∈ C1((0,∞)) with compatibility condition ϕ(0) = ϕ′(0) = ϕ′′(0) =
ψ(0) = ψ′(0) = 0. Here we restrict ourselves when t > 0, as the case t < 0 can be obtained
by the change of variable t 7→ −t. This modeling the vibrating (in�nitely) long string with
one end �xed. We now consider the odd extensions of ϕ and ψ de�ned by

(2.4.10) ϕodd(x) :=

{
ϕ(x) for x ≥ 0,

−ϕ(−x) for x < 0,
ψodd(x) :=

{
ψ(x) for x ≥ 0,

−ψ(−x) for x < 0,

equivalently, ϕodd(x) = sign (x)ϕ(|x|) and similar formula holds for ψodd. The compatibility
conditions guarantee that ϕodd ∈ C2(R) and ψodd ∈ C1(R), therefore the d'Alembert function
(2.4.6) given by

(2.4.11) u(t, x) :=
1

2
(ϕodd(x+ ct) + ϕodd(x− ct)) +

1

2c

∫ x+ct

x−ct
ψodd(s) ds

is well-de�ned and satis�es (2.4.9), which completes the proof of existence result (we do not
show uniqueness).
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Exercise 2.4.5. Show that (2.4.11) can be written as

u(t, x) =

{
1
2
(ϕ(x+ ct) + ϕ(x− ct)) + 1

2c

∫ x+ct
x−ct ψ(s) ds for x ≥ ct,

1
2
(ϕ(x+ ct)− ϕ(ct− x)) + 1

2c

∫ ct+x
ct−x ψ(s) ds for 0 < x < ct.

Similar as before, the function in Exercise 2.4.5 is well-de�ned without assuming the
di�erentiability of ϕ and ψ, and even well-de�ned without the compatibility condition ϕ(0) =
ψ(0) = 0. One can easily check that limx→0+ u(t, x) = 0 for all t > 0 (at least) when ϕ and ψ
are continuous. Therefore the solution in Exercise 2.4.5 can be interpreted as a weak solution
of the initial-boundary value problem (2.4.9).

Exercise 2.4.6 (Neumann boundary condition). Find a solution of the initial-boundary
value problem

∂2t u(t, x)− c2∂2xu(t, x) = 0 for all (t, x) ∈ (0,∞)× (0,∞),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x) for all x ∈ (0,∞),

∂xu(t, 0) = 0 for all t ∈ (0,∞),

for ϕ ∈ C2((0,∞)) and ψ ∈ C1((0,∞)) with compatibility condition ϕ(0) = ϕ′(0) = ϕ′′(0) =
ψ(0) = ψ′(0) = 0.

We now consider the following initial-boundary value problem:

(2.4.12)


∂2t u(t, x)− c2∂2xu(t, x) = 0 for all (t, x) ∈ (0,∞)× (0,∞),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x) for all x ∈ (0,∞),

u(t, 0) = h(t) for all t ∈ (0,∞),

for ϕ ∈ C2((0,∞)) and ψ ∈ C1((0,∞)) as well as h ∈ C2((0,∞)). By consider
∂2t v(t, x)− c2∂2xv(t, x) = 0 for all (t, x) ∈ (0,∞)× (0,∞),

v(0, x) = ϕ(x), ∂tv(0, x) = ψ(x) for all x ∈ (0,∞),

v(t, 0) = 0 for all t ∈ (0,∞),

which was discussed above (which can be done without assuming the compatibility
conditions), we see that the w = u− v solves

∂2tw(t, x)− c2∂2xw(t, x) = 0 for all (t, x) ∈ (0,∞)× (0,∞),

w(0, x) = ∂tw(0, x) = 0 for all x ∈ (0,∞),

w(t, 0) = h(t) for all t ∈ (0,∞).

It remains to solve w. If we have the compatibility conditions h(0) = h′(0) = h′′(0) = 0, one
sees that

w(t, x) = χ{x<ct}h
(
t− x

c

)
is our desired C2-solution. Hence we see that

u(t, x) := v(t, x) + χ{x<ct}h
(
t− x

c

)
is a solution of (2.4.12). Again, the above expression is well-de�ned without the
di�erentiability of h, as well as the compatibility conditions. This again induces a weak
solution of (2.4.12).
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Exercise 2.4.7. Find a weak solution of the initial-boundary value problem
∂2t u(t, x)− c∂2xu(t, x) = 0 for all (t, x) ∈ (0,∞)× (0,∞),

u(0, x) = 0, ∂tu(0, x) = V for all x ∈ (0,∞),

∂tu(t, 0) + a∂xu(t, 0) = 0 for all t ∈ (0,∞),

where V, a, c are positive constants with a > c.

2.4.3. 1-dimensional wave equation on the �nite interval (0, L). We now consider
the following initial-boundary value problem:

(2.4.13)


∂2t u(t, x)− c2∂2xu(t, x) = 0 for all (t, x) ∈ (0,∞)× (0, L),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x) for all x ∈ (0, L),

u(t, 0) = u(t, L) = 0 for all t ∈ (0,∞),

for ϕ ∈ C2((0,∞)) and ψ ∈ C1((0,∞)) with compatibility conditions

ϕ(0) = ϕ′(0) = ϕ′′(0) = ψ(0) = ψ′(0) = 0,

ϕ(L) = ϕ′(L) = ϕ′′(L) = ψ(L) = ψ′(L) = 0.

In this case, we consider the odd and periodic extension of ϕ as follows:

ϕext(x) =


ϕ(x) for 0 < x < L,

−ϕ(−x) for − L < x < 0,

ϕext(x+ 2kL) for all x ∈ R and k ∈ Z,
and similar extension ψext of ψ also de�ned.

Exercise 2.4.8. Show that ϕext(x) = ϕodd(x− 2L⌊x/2L⌋) and

ϕext(x) =

{
ϕ(x− ⌊x/L⌋L) if ⌊x/L⌋ is even,
−ϕ(x− ⌊x/L⌋L− L) if ⌊x/L⌋ is odd.

Of course, similar formula holds for ψ.

The compatibility conditions guarantee that ϕodd ∈ C2(R) and ψodd ∈ C1(R), therefore
the d'Alembert function (2.4.6) given by

(2.4.14) u(t, x) :=
1

2
(ϕext(x+ ct) + ϕext(x− ct)) +

1

2c

∫ x+ct

x−ct
ψext(s) ds

is well-de�ned and satis�es (2.4.13), which completes the proof of existence result. Similarly,
one can consider the weak solution without assuming the di�erentiability of ϕ and ψ, as well
as the compatibility conditions. The solution can be written down explicitly [Str08], and
hence we will not going to elaborate these computations here. In fact, the (weak) solution
of the initial-boundary value problem (2.4.13) is unique. We will explain this in the next
chapter.

Exercise 2.4.9 (Neumann boundary condition). Find a solution of the initial-boundary
value problem

∂2t u(t, x)− c2∂2xu(t, x) = 0 for all (t, x) ∈ (0,∞)× (0, L),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x) for all x ∈ (0, L),

∂xu(t, 0) = ∂xu(t, L) = 0 for all t ∈ (0,∞),
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for ϕ ∈ C2((0,∞)) and ψ ∈ C1((0,∞)) with compatibility conditions

ϕ(0) = ϕ′(0) = ϕ′′(0) = ψ(0) = ψ′(0) = 0,

ϕ(L) = ϕ′(L) = ϕ′′(L) = ψ(L) = ψ′(L) = 0.

Verify the conditions explicitly.

Exercise 2.4.10. Find a solution of the initial-boundary value problem
∂2t u(t, x)− c2∂2xu(t, x) = 0 for all (t, x) ∈ (0,∞)× (0, L),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x) for all x ∈ (0, L),

u(t, 0) = 0, ∂xu(t, L) = 0 for all t ∈ (0,∞),

for ϕ ∈ C2((0,∞)) and ψ ∈ C1((0,∞)) with compatibility conditions

ϕ(0) = ϕ′(0) = ϕ′′(0) = ψ(0) = ψ′(0) = 0,

ϕ(L) = ϕ′(L) = ϕ′′(L) = ψ(L) = ψ′(L) = 0.

Verify the conditions explicitly.

2.4.4. 1-dimensional wave with an external source: Duhamel's principle. We
now solve

(2.4.15)

{
∂2t u(t, x)− c2∂2xu(t, x) = f(t, x) for (t, x) ∈ (0,∞)× R,
u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x) for x ∈ R,

where f ∈ C1(R2), ϕ ∈ C2(R) and ψ ∈ C1(R). Let v be a C2-solution of the homogeneous
problem {

∂2t v(t, x)− c2∂2xv(t, x) = 0 for (t, x) ∈ (0,∞)× R,
v(0, x) = ϕ(x), ∂tv(0, x) = ψ(x) for x ∈ R,

then we see that the function w := u− v satis�es

(2.4.16)

{
∂2tw(t, x)− c2∂2xw(t, x) = f(t, x) for (t, x) ∈ (0,∞)× R,
w(0, x) = ∂tw(0, x) = 0 for x ∈ R.

The remaining task is to �nd a C2-solution w.
There are several ways to compute w. Here we will use Duhamel's principle to reduce the

inhomogeneous initial-value problem (2.4.16) into a homogeneous one. The reason we exhibit
this idea since it can be easily extended for higher order hyperbolic equations with constant
coe�cients. To clarify the ideas, here we only consider wave equation, see [Joh78] for more
details.

For each auxiliary parameter τ ≥ 0, we consider the homogeneous initial-value problem{
∂2tW (t, x; τ)− c2∂2xW (t, x; τ) = 0 for all t ≥ τ and x ∈ R,
W (τ, x, ; τ) = 0, ∂tW (τ, x; τ) = f(τ, x) for all x ∈ R.

Then we can solve the above equation via d'Alembert formula (2.4.6):

W (t, x; τ) =
1

2c

∫ x+c(t−τ)

x−c(t−τ)
f(τ, s) ds.
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We now de�ne

w(t, x) :=

∫ t

0

W (t, x; τ) dτ.

One can check that (the interchangability of integral and ∂t need to be justi�ed)

∂tw(t, x) =

=0︷ ︸︸ ︷
W (t, x; t)+

∫ t

0

∂tW (t, x; τ) dτ =

∫ t

0

∂tW (t, x; τ) dτ,

∂2tw(t, x) =

= f(t,x)︷ ︸︸ ︷
∂tW (t, x; t)+

= c2
∫ t
0 ∂

2
xW (t,x;τ) dτ︷ ︸︸ ︷∫ t

0

∂2tW (t, x; τ) dτ = f(t, x) + c2∂2xw(t, x),

which means that

w(t, x) :=
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
f(τ, s) ds dτ

is a solution of the inhomogeneous problem (2.4.16). Therefore, we found a C2-solution of
the inhomogeneous problem (2.4.15) given by the d'Alembert formula:

u(t, x) =
1

2
(ϕ(x+ ct) + ϕ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(s) ds+

1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
f(τ, s) ds dτ.

By considering the method of extensions, one also can solve the problem on half-space (0,∞)
as well as on the �nite interval (0, L).

2.4.5. n-dimensional wave equation in space time. We now consider the n-
dimensional Laplace operator ∆ = ∂21 + ∂22 + · · ·+ ∂2n in spatial variables. We are looking for
an (explicit) solution of

(2.4.17)

{
∂2t u(t,x)−∆u(t,x) = 0 for (t,x) ∈ (0,∞)× Rn,

u(0,x) = ϕ(x), ∂tu(0,x) = ψ(x) for x ∈ Rn,

where ϕ ∈ C3(Rn) and ψ ∈ C2(Rn) (here we impose slightly higher regularity than the
one-dimensional case).

Exercise 2.4.11 (Conservation of energy). Assume some suitable support conditions,
de�ne an energy functional for the n-dimensional wave equation ∂2t u − c∆u = 0 in Rn,
similar to (2.4.8), and show that such energy is conservative.

For each h ∈ C2(Rn), we de�ne an auxiliary function

(2.4.18) Mh(x, r) :=
1

H n−1(∂Br(x))

∫
∂Br(x)

h(y) dSy for all r > 0,

where H n−1 is the Hausdor� measure. By using a simple change of variable, one sees that

(2.4.19) Mh(x, r) =
1

ωn

∫
Sn−1

h(x+ rẑ) dẑ,

where Sn−1 := ∂B1(0) and ωn := H n−1(Sn−1). It is important to notice that (2.4.19) is
well-de�ned for all r ∈ R, and it is even with respect to r, i.e. Mh(x, r) =Mh(x,−r) for all
r ∈ R.
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In this case, H n−1(∂Br(x)) is just simply the surface area of ∂Br(x), and its formula is
given by

H n−1(∂Br(x)) =
2πn/2

Γ(n/2)
rn−1,

where Γ is the usual gamma function. By dominated convergence theorem (Lemma 1.0.2),
one sees that the di�erential operator is commute with the integral, and we see that Mh ∈
C2(Rn+1). In particular, we compute that

∂rMh(x, r) =
1

ωn

∫
Sn−1

∂r (h(x+ rẑ)) dẑ

=
1

ωn

∫
Sn−1

∇h(y)|y=x+rẑ · ẑ dẑ (chain rule)

=
1

ωnr

∫
Sn−1

ẑ · ∇z (h(x+ rz))|z=ẑ dẑ

Then using divergence theorem, we further compute that2

∂rMh(x, r) =
1

ωnr

∫
B1(0)

∆z (h(x+ rz)) dz (divergence theorem)

=
r

ωn

∫
B1(0)

∆xh(x+ rz) dz (chain rule)

=
r

ωn
∆x

(∫
B1(0)

h(x+ rz) dz

)
=
r1−n

ωn
∆x

(∫
Br(x)

h(y) dy

)
=
r1−n

ωn
∆x

(∫ r

0

∫
∂Bρ(x)

h(y) dSy dρ

)
(polar coordinate)

= r1−n∆x

(∫ r

0

ρn−1Mh(x, ρ) dρ

)
.

Therefore, we reach

∂r
(
rn−1∂rMh(x, r)

)
= ∆x∂r

(∫ r

0

ρn−1Mh(x, ρ) dρ

)
= ∆xr

n−1Mh(x, r).

Hence we reach the Darboux's equation:

(2.4.20) r1−n∂r
(
rn−1∂rMh(x, r)

)
= ∆xMh(x, r),

with �initial� conditions

Mh(x, 0) = h(x) (by de�nition of Mh and mean value theorem)(2.4.21a)

∂rMh(x, r)|r=0 =
r

ωn

∫
B1(0)

uniformly bounded︷ ︸︸ ︷
∆xh(x+ rz) dz

∣∣∣∣∣∣
r→0

= 0(2.4.21b)

2Polar coordinate is a very particular case of coarea formula [Cha06].
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Exercise 2.4.12. Suppose that g ∈ C2 is radially symmetric, i.e. g(y) = g(r) with
r = |y|. Show that

∆yg = r1−n∂r
(
rn−1∂rg

)
= ∂2rg +

n− 1

r
∂rg.

We now choose h = u(t, ·) and we write

Mu(t,x, r) :=Mu(t,·)(x, r) =
1

ωn

∫
Sn−1

u(t,x+ rẑ) dẑ.

From (2.4.21a), we have

Mu(t,x, 0) = u(t,x).

On the other hand, by using dominated convergence theorem (Lemma 1.0.2), one can verify
that

∆xMu(t,x, r) =
1

ωn

∫
Sn−1

∆xu(t,x+ rẑ) dẑ

=
1

c2
∂2t

1

ωn

∫
Sn−1

u(t,x+ rẑ) dẑ =
1

c2
∂2tMu(t,x, r).

Hence from Darboux's equation (2.4.20), we reach the Euler-Poisson-Darboux equation:

(2.4.22)
1

c2
∂2tMu(t,x, r) = ∂2rMu(t,x, r) +

n− 1

r
∂rMu(t,x, r).

Unlike the Darboux's equation (2.4.20), now the Euler-Poisson-Darboux equation (2.4.22)
does not involve any derivaties on x. Therefore we can refer x ∈ Rn simply as a parameter
here, and (2.4.22) is just a simple PDE involving only two variables (one time variable t and
one spatial variable r).

In the particular case when n = 3, the computations are extremely easy: We multiply
c2r on (2.4.22) to obtain

∂2t (rMu(t,x, r)) = c2
(
r∂2rMu(t,x, r) + 2∂rMu(t,x, r)

)
= c2∂2r (rMu(t,x, r)) ,

this means that, for each parameter x ∈ R3, (t, r) 7→ rMu(t,x, r) satis�es the 1-dimensional
wave equation. From (2.4.17), the initial conditions can be veri�ed as well:

rMu(0,x, r) = rMu(0,·)(x, r) = rMϕ(x, r),

∂t (rMu(t,x, r))|t=0 = rM∂tu(0,·)(x, r) = rMψ(x, r),

where the dominated convergence theorem (Lemma 1.0.2) involved in second identity.
Therefore the d'Alembert formula (2.4.6) gives

rMu(t,x, r) =
1

2
((r + ct)Mϕ(t,x, r + ct) + (r − ct)Mϕ(t,x, r − ct))

+
1

2c

∫ r+ct

r−ct
sMψ(x, s) ds.
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Since Mϕ(x, ·) and Mψ(x, ·) are both even for each �xed x ∈ R3, then one sees that

Mu(t,x, r)

=
1

2cr

∫ ct+r

ct−r
sMψ(x, s) ds+

1

2r
((ct+ r)Mϕ(t,x, ct+ r)− (ct− r)Mϕ(t,x, ct− r))

=
1

c
−
∫ ct+r

ct−r
sMψ(x, s) ds+

(τMϕ(t,x, τ))|τ=ct+r − (τMϕ(t,x, τ))|τ=ct−r
2r

.

Note that the �rst term is simply the di�erence quotient for di�erentiation, while the second
term is the mean value term. Therefore, by letting r → 0, we reach

u(t,x) =
1

c
τMψ(t,x, τ)|τ=ct + ∂τ (τMϕ(t,x, τ))|τ=ct

= tMψ(t,x, ct) + ∂t (tMϕ(t,x, ct))

=
t

H 2(∂Bct(x))

∫
∂Bct(x)

ψ(y) dSy + ∂t

(
t

t

H 2(∂Bct(x))

∫
∂Bct(x)

ϕ(y) dSy

)
=

1

4πc2t

∫
|y−x|=ct

ψ(y) dSy + ∂t

(
1

4πc2t

∫
|y−x|=ct

ϕ(y) dSy

)
(2.4.23a)

because H 2(∂Bct(x)) = 4π(ct)2. By using (2.4.19), we also can write (2.4.23a) as

u(t,x) = tMψ(t,x, ct) + ∂t (tMϕ(t,x, ct))

=
t

ωn

∫
Sn−1

ψ(x+ ctẑ) dẑ + ∂t

(
t

ωn

∫
Sn−1

ϕ(x+ ctẑ) dẑ

)
.(2.4.23b)

The solution (2.4.23a)., or equivalently (2.4.23b), is called the Kirchho�'s formula. We now
reach the following lemma.

Lemma (Uniqueness). Let n = 3, and let u ∈ C2(R3) be a solution of the initial-value
problem (2.4.17). Then u must in the Kirchho�'s formula (2.4.23a), or equivalently (2.4.23b).

On the other hand, by assuming higher regularity initial conditions ψ ∈ C2(R3) and
ϕ ∈ C3(R3), the dominated convergence theorem (Lemma 1.0.2) guarantees that u ∈ C2(R3)
and it satis�es (2.4.17) with n = 3. Therefore we conclude the following theorem:

Theorem 2.4.13. Let n = 3, and let ψ ∈ C2(R3) and ϕ ∈ C3(R3). Then the function
u given by the Kirchho�'s formula (2.4.23a), or equivalently (2.4.23b), is the unique C2-
solution of the initial-value problem (2.4.17).

Remark. The above theorem do not guarantee the initial data of C2-solution u of the
3-dimensional wave equation ∂2t u(t,x) − ∆u(t,x) = 0 in R3 must satis�es u(0, ·) ∈ C3(R3)
and ∂tu(0, ·) ∈ C2(R3).

Again, (2.4.23a), or equivalently (2.4.23b), de�nes a weak solution of the initial-value
problem, since they are well-de�ned for ψ ∈ C0(R3) and ϕ ∈ C1(R3).

Exercise 2.4.14 (Inhomogeneous 3D wave equation). Let f ∈ C2((0,∞) × R3), ψ ∈
C2(R3) and ϕ ∈ C3(R3). Find the unique C2-solution of the following initial-value problem:{

∂2t u(t,x)−∆u(t,x) = f(t,x) for (t,x) ∈ (0,∞)× R3,

u(0,x) = ϕ(x), ∂tu(0,x) = ψ(x) for x ∈ R3,

using Duhamel principle (Section 2.4.4).
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We now consider the case when n = 2. In this case, rather directly compute the solution
from the Euler-Poisson-Darboux equation (2.4.22), it is more easy to compute the solution
from the the Kirchho�'s formula (2.4.23a), or equivalently (2.4.23b). This method is called
the Hadamard's method of descent. Suppose that u is a solution of (2.4.17) with n = 2:{

∂2t u(t,x)−∆u(t,x) = 0 for (t,x) ∈ (0,∞)× R2,

u(0,x) = ϕ(x), ∂tu(0,x) = ψ(x) for x ∈ R2,

with ϕ ∈ C3(R2) and ψ ∈ C2(R2). We now introduce an arti�cial parameter x3, and write
x̃ = (x, x3) = (x1, x2, x3). Accordingly, we consider the extended operator ∆̃ = ∆ + ∂23 =
∂21 + ∂22 + ∂23 , and such u satis�es{

∂2t u(t, x̃)−∆u(t, x̃) = 0 for (t, x̃) ∈ (0,∞)× R3,

u(0, x̃) = ϕ(x), ∂tu(0, x̃) = ψ(x) for x ∈ R3,

therefore the unique C2-solution is given by the Kirchho�'s formula (2.4.23a):

u(t,x) =
1

4πc2t

∫
|ỹ−(x,0)|=ct

ψ(ỹ) dSỹ + ∂t

(
1

4πc2t

∫
|ỹ−(x,0)|=ct

ϕ(ỹ) dSỹ

)
=

1

4πc2t

∫
|ỹ−(x,0)|=ct

ψ(y) dSỹ + ∂t

(
1

4πc2t

∫
|ỹ−(x,0)|=ct

ϕ(y) dSỹ

)
.(2.4.24)

In order to simplify the above expression, we need the following well-known fact:

Lemma 2.4.15 (Surface integral). Let S be a surface in R3, which can be parameterized
as

r(s1, s2) = (r1(s1, s2), r2(s1, s2), r3(s1, s2))

where r1, r2, r3 ∈ C1(Ω) for some Jordan-measurable open set Ω ⊂ R2. Then one has∫
S

ϕ(x) dSx =

∫
Ω

ϕ(r(s1, s2))V (s1, s2) d(s1, s2),

where the volume form V is given by

V (s1, s2) =
√
g11g22 − g212 = |∂s1r(s1, s2)× ∂s2r(s1, s2)|

where gij = ∂sir(s1, s2) · ∂sjr(s1, s2) for i, j ∈ {1, 2}.

Remark 2.4.16. In fact, gij are the coe�cients of the �rst fundamental form. If we
choose r1(s1, s2) = s1, r2(s1, s2) = s2 and r3(s1, s2) = f(s1, s2), we compute that

∂s1r(s1, s2) = (1, 0, ∂s1f(s1, s2)), ∂s2r(s1, s2) = (0, 1, ∂s2f(s1, s2)),

and thus

g11 = 1 + |∂s1f(s1, s2)|2, g22 = 1 + |∂s2f(s1, s2)|2, g12 = ∂s1f(s1, s2)∂s2f(s1, s2).

Therefore the volume form is given by

V (s1, s2) =
√

1 + |∂s1f(s1, s2)|2 + |∂s2f(s1, s2)|2.

We now continue simplify (2.4.24). We now split the sphere {ỹ ∈ R3 : |ỹ − (x, 0)| = ct}
into two halfs, each can be parametrized as

f±(y1, y2) = ±
√
c2t2 − |y − x|2 = ±

√
c2t2 − (y1 − x1)2 − (y2 − x2)2.
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We compute

∂1f±(y1, y2) = ∓ y1 − x1√
c2t2 − |y − x|2

, ∂2f±(x1, x2) = ∓ y2 − x2√
c2t2 − |y − x|2

,

thus the volume form is given by

V±(y1, y2) =

√
1 +

(y1 − x1)2

c2t2 − |y − x|2
+

(y2 − x2)2

c2t2 − |y − x|2

=

√
c2t2

c2t2 − |y − x|2
=

ct√
c2t2 − |y − x|2

,

therefore (2.4.24) becomes
(2.4.25)

u(t,x) =
1

2πc

∫
|y−x|≤ct

ψ(y)√
c2t2 − |y − x|2

dy + ∂t

(
1

2πc

∫
|y−x|≤ct

ϕ(y)√
c2t2 − |y − x|2

dy

)
.

It is interesting to compact the 3D-wave (2.4.23a) and 2D-wave equation (2.4.25).

(1) 3D wave. In order to compute the value u(t, x1, x2, x3), we used the values{
(ψ(y1, y2, y3), ϕ(y1, y2, y3)) :

√
(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2 = ct

}
.

In other words, the domain of dependence of 3D wave is on the cone√
(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2 = ct,

this is called the Huygen's principle.
(2) 2D wave. In order to compute the value u(t, x1, x2), we used the values{

(ψ(y1, y2), ϕ(y1, y2)) :
√

(y1 − x1)2 + (y2 − x2)2 ≤ ct
}
.

In other words, the domain of dependence of 2D wave is in the cone√
(y1 − x1)2 + (y2 − x2)2 ≤ ct,

and thus the Huygen's principle fails.

Exercise 2.4.17 (Inhomogeneous 2D wave equation). Let f ∈ C2((0,∞) × R2), ψ ∈
C2(R2) and ϕ ∈ C3(R2). Find the unique C2-solution of the following initial-value problem:{

∂2t u(t,x)−∆u(t,x) = f(t,x) for (t,x) ∈ (0,∞)× R2,

u(0,x) = ϕ(x), ∂tu(0,x) = ψ(x) for x ∈ R2,

using Duhamel principle (Section 2.4.4).

Exercise 2.4.18 (5D wave equation, [Joh78, pages 109�110]). Consider the initial-value
problem (2.4.17) with n = 5. Let Mu(t,x, r) given in (2.4.19), which satis�es the Darboux
equation (2.4.20), set

Nu(t,x, r) = r2∂rMu(t,x, r) + 3rMu(t,x, r).

(a) Show that Nu(t,x, r) is a solution of ∂2tNu = c2∂2rNu and �nd Nu from its initial
data in terms of Mf (x, r) and Mg(x, r).
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(b) Show that

u(t,x) = lim
r→0

Nu(t,x, r)

3r
=

(
1

3
t2∂t + t

)
Mg(ct,x) + ∂t

(
1

3
t2∂t + t

)
Mf (ct,x).

Exercise 2.4.19 (4D wave equation, [Joh78, page 112]). Solve the initial-value problem
(2.4.17) with n = 4. [Hint: Hadamard's method of descent]

Remark 2.4.20. In fact, the Huygen's principle holds true for all odd dimension wave
equations, but fails for all even dimension wave equations.



CHAPTER 3

Partial di�erential equation in weak sense

3.1. Weak derivatives and distribution derivatives

In practical application, we should expect there are singularities in solution, for example:

(1) the general solution of transport equation (2.2.3), which in general need not to be
C1;

(2) the general solution of 1D wave equation, i.e. d'Alembert formula (2.4.6), which in
general need not to be C2;

(3) the general solution of 3D wave equation, i.e. Kirchho�'s formula (2.4.23a), which
in general need not to be C2.

One �simplest� way to interpret �weak solutions� is directly write down the explicit solution.
However, this idea is di�cult in general. Therefore we need some systematic way to interpret
the �weak solutions�.

We �rst recall some materials from my previous lecture notes on Fourier analysis
course [Kow22]. Let Ω be any open set in Rn. By using integration by parts formula
(Corollary 1.0.19), one has∫

Ω

(∂jf)φ dx = −
∫
Ω

f∂jφ dx for all f, φ ∈ C1
c (Ω),

where Ck
c (Ω) is given in (1.0.5). In fact, we have:

Exercise 3.1.1. Show that∫
Ω

(∂αf)φ dx = (−1)|α|
∫
Ω

f∂αφ dx for all φ ∈ C∞
c (Ω)

for all multi-indices α.

Therefore, it is quite natural to consider the following de�nition (and we can interpret
the PDE using the following weak derivatives):

Definition 3.1.2 (Weak derivatives). We de�ne the locally-L1 space by

L1
loc(Ω) :=

{
f de�ned on Ω : ∥f∥L1(K) :=

∫
K

|f(x)|dx <∞ for all compact set K ⊂ Ω

}
.

A function g ∈ L1
loc(Ω) (if exists) is called a weak derivative of f ∈ L1

loc(Ω) (of order α) if∫
Ω

gφ dx = (−1)|α|
∫
Ω

f∂αφ dx for all φ ∈ C∞
c (Ω).

and we often denote g as ∂αf .

The well-de�nedness of the weak derivatives (i.e. each function g ∈ L1
loc(Ω) produced

from f ∈ L1
loc(Ω) must be unique) is guaranteed by the following lemma:

28
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Lemma 3.1.3 (Uniqueness of weak derivatives [Mit18, Theorem 1.3]). If g ∈ L1
loc(Ω)

satisfying g = 0 in Ω in distribution sense, i.e.∫
Ω

gφ dx = 0 for all φ ∈ C∞
c (Ω),

then g = 0 a.e. in Ω.

Remark 3.1.4. The converse of Lemma 3.1.3 is trivial. Here and after, we shall omit the
notation �a.e.� if there is no any ambiguity. The above lemma only guarantee uniqueness,
but not existence.

We now give a �rst example of weak derivatives.

Example 3.1.5. We consider the Heaviside function

(3.1.1) H(x) :=

{
1 for all x > 0,

0 for all x ≤ 0.

It is easy to see that H ∈ L1
loc(R). We de�ne

f(x) :=

{
x for all x > 0,

0 for all x ≤ 0.

One can verify that

−
∫
R
f(x)φ′(x) dx = −

∫ ∞

0

xφ′(x) dx = −xφ(x)|x→∞
x=0 +

∫ ∞

0

φ(x) dx =

∫
R
H(x)φ(x) dx,

which shows that the Heaviside function (3.1.1) is the weak derivative of f (of order 1), and
we simply denote f ′ = H.

However, not all L1
loc(Ω) function admits weak derivatives:

Example 3.1.6. We now show that the weak derivative of the Heaviside function H given
in (3.1.1) of order 1 does not exist. Suppose the contrary, that H has a weak derivative of
order 1, says g ∈ L1

loc(R). By De�nition 3.1.2, we see that

(3.1.2)

∫ ∞

−∞
g(x)φ(x) dx = −

∫ ∞

−∞
H(x)φ′(x) dx = −

∫ ∞

0

φ′(x) dx = φ(0)

for all φ ∈ C∞
c (R). Hence we know that∫ ∞

−∞
g(x)φ(x) dx = 0 for all φ ∈ C∞

c (R \ {0}).

By using Lemma 3.1.3 with R \ {0}, we conclude that g = 0 a.e. in R, and from (3.1.2) we
have φ(0) = 0 for all φ ∈ C∞

c (R), which is an obvious contradiction.

Since the weak derivatives may not exist, it is much more convenient to consider a
generalization the weak derivatives, called the distribution derivatives. In order to do so,
we need to explain what is a distribution (or generalized functions). Here we just give an
introductory brie�ng, see e.g. my lecture note [Kow22] for more details. Fixing any compact
set K in Rn, we denote

DK := {φ ∈ C∞(Rn) : supp (φ) ⊂ K} .
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Definition 3.1.7. Given a vector space X over a sub�eld F of the complex numbers C,
a norm on X is a function ∥ · ∥ : X → R with the following properties:

(1) Positive de�niteness. ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 i� x = 0;
(2) Absolute homogeneity. ∥sx∥ = |s|∥x∥ for all x ∈ X and scalars s ∈ F ; and
(3) Subadditivity/Triangle inequality. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

In this case, we call the pair (X, ∥ · ∥) the normed space. If a sequence {xn}n∈N ⊂ X satis�es
the following: Given any ϵ > 0, there exists n0 ∈ N such that ∥xn−xm∥ < ϵ for all n,m ≥ n0,
then we call such sequence {xn} a Cauchy sequence. If each Cauchy sequence converges in
X (i.e. for each Cauchy sequence {xn} ⊂ X there exists x ∈ X such that ∥xn − x∥ → 0 as
n→ ∞), then we say that the normed space (X, ∥ · ∥) is complete or Banach.

For each �xed N ∈ Z≥0, it is easy to see that

∥φ∥N,K :=
∑
|α|≤N

∥∂αφ∥L∞(K)

is a norm de�ned on DK . However, the normed space (DK , ∥ · ∥N,K) is not complete, since
the norm does not involve derivatives of order > N . We can further generalize the notion
�norm� in the following de�nition:

Definition 3.1.8. Given a set M , a metric is a function d : M × M → R with the
following properties:

(1) Positive de�niteness. d(x, y) ≥ 0 for all x, y ∈M and d(x, y) = 0 i� x = y;
(2) Symmetry. d(x, y) = d(y, x) for all x, y ∈M ; and
(3) Subadditivity/Triangle inequality. d(x, z) ≤ d(x, y)+d(y, z) for all x, y, z ∈M .

In this case, we call the pair (M, d) the metric space. If a sequence {xn}n∈N ⊂ M satis�es
the following: Given any ϵ > 0, there exists n0 ∈ N such that d(xn, xm) < ϵ for all n,m ∈ n0,
then we call such sequence {xn} a Cauchy sequence. If each Cauchy sequence converges in
M (i.e. for each Cauchy sequence {xn} ⊂ M there exists x ∈ M such that d(xn, x) → 0 as
n→ ∞), then we say that the metric space (M, d) is complete or Fréchet.

Exercise 3.1.9. Show that each normed space (X, ∥ · ∥) is also a metric space.

Lemma 3.1.10. DK is Fréchet equipped with the metric

(3.1.3) dDK
(φ, ψ) :=

∞∑
N=0

2−N
∥φ− ψ∥N,K

1 + ∥φ− ψ∥N,K
.

Remark 3.1.11. Since DK is a (Grothedieck) nuclear space, then it is not possible to
�nd a norm which is complete. In other words, if we equipped DK by any norm ∥ · ∥, then
(DK , ∥ · ∥) cannot be Banach.

Exercise 3.1.12. Verify that dDK
(φ, ψ) is a metric.

Let Ω ⊂ Rn be an open set. We now de�ne the set of test functions by

D(Ω) :=
⋃

K⊂Ω compact

DK .
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If we view D(Ω) as a set, then it is easy to see that D(Ω) = C∞
c (Ω) given in (1.0.5). Of

course, one can equipped D(Ω) by the metric

dD(Ω)(φ, ψ) :=
∞∑
N=0

2−N
∥φ− ψ∥N,Ω

1 + ∥φ− ψ∥N,Ω
, ∥φ∥N,Ω :=

∑
|α|≤N

∥∂αφ∥L∞(Ω).

However, unlike Lemma 3.1.10, (D(Ω), dD(Ω)) is not complete, see the following exercise:

Exercise 3.1.13. Take n = 1 and Ω = R. Let ϕ ∈ D(R) with supp (ϕ) ⊂ [0, 1] and ϕ > 0
in (0, 1). De�ne

ψm(x) := ϕ(x− 1) +
1

2
ϕ(x− 2) + · · ·+ 1

m
ϕ(x−m).

Show that {ψm} is a Cauchy sequence in (D(R), dD(R)), but the limit limm→∞ ψm(x) does
not have compact support.

We now introduce the following general notion:

Definition 3.1.14. Given a set X, a topology τ is a collection of subsets of X with the
following properties:

(1) ∅, X ∈ τ ;
(2) Any union of elements of τ is also an element of τ ; and
(3) Any �nite intersection of elements of τ is also an element of τ .

If τ is a topology on X, then the pair (X, τ) is called a topology space. Each element in τ is
called an open set of X (with respect to τ).

We usually equip D(Ω) by another (locally convex) topology τ in which �Cauchy sequence�
do converge, i.e. �complete�. Here we will not go through these de�nitions as well as technical
details, here we refer to [Rud91, Chapter 6] or [Mit18, Appendix 14.1] for details.

Definition 3.1.15. We refer the linear mapping T : (D(Ω), τ) → (R, | · |) as the linear
functional on (D(Ω), τ). Let D be an open set in R, we de�ne the preimage by

T−1(D) := {f ∈ D(Ω) : T (f) ∈ D} .

We called such linear functional T is continuous (with respect to τ) if T−1(D) ∈ τ for each
open set D. The set of continuous linear functionals on (D(Ω), τ) is denoted by D ′(Ω) and
its elements are called distributions on Ω.

The following lemma, which is a special case of [Rud91, Chapter 6] or [Mit18, Appen-
dix 14.6], gives equivalent characterization of continuity of linear functionals on D(Ω):

Lemma 3.1.16. Let T be a linear functional on (D(Ω), τ), then the following are
equivalent:

(1) T is continuous with respect to τ ;
(2) limj→∞ T (φj) = 0 whenever φj → 0 in (D(Ω), τ);
(3) T |DK

is continuous for each compact set K ⊂ Ω with respect to the metric dK given
in (3.1.3).

For simplicity, we usually denote D(Ω), or even C∞
c (Ω), to represent the topological space

(D(Ω), τ), as we will not focus on its topological aspect in this lecture note.
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Example 3.1.17. Each element f ∈ L1
loc(Ω) can be identify with Tf ∈ D ′(Ω) de�ned by

Tf (φ) :=

∫
Rn

f(x)φ(x) dx for all φ ∈ C∞
c (Ω)

with the estimate

|Tf (φ)| ≤
∫
K

|f(x)φ(x)| dx ≤ ∥φ∥L∞(K)

∫
K

|f(x)| dx for all φ ∈ DK .

for all compact subset K ⊂ Ω. Therefore one can simply write L1
loc(Ω) ⊂ D ′(Ω).

Example 3.1.18 (Dirac measure). Fix a point x0 ∈ Ω and one can verify that the linear
functional

T (φ) := φ(x0)

is indeed continuous, i.e. T ∈ D ′(Ω). We usually denote such distribution T by δx0 .
However, δx0 /∈ L1

loc(Ω) if we consider the identi�cation given in Example (3.1.17): Suppose
the contrary, there exists f ∈ L1

loc(Ω) such that

φ(x0) = δx0(φ) =

∫
Ω

f(x)φ(x) dx for all φ ∈ C∞
c (Ω).

If we choose φ ∈ C∞
c (Ω \ {x0}), then we conclude that f = 0 a.e. in Ω, which is immediately

a contradiction.

In view of De�nition 3.1.2 and Example 3.1.17, we now able to de�ne the distirbution
derivatives:

Definition 3.1.19. For any T ∈ D ′(Ω), the distribution derivative ∂αT ∈ D ′(Ω) of T is
de�ned by

(∂αT )(φ) := (−1)|α|T (∂αφ) for all φ ∈ D(Ω).

Unlike weak derivatives (De�nition 3.1.2), distribution derivative always exist.

Example 3.1.20. Let H be the Heaviside function given in (3.1.1). Since H ∈ L1
loc(R),

then we can identify it with the distribution TH as in Example 3.1.17. By de�nition, one sees
that its distributional derivative of order 1, here we denoted by T ′

H , is given by

T ′
H(φ) = −TH(φ′) = −

∫
Rn

H(x)φ′(x) dx = −
∫ ∞

0

φ′(x) dx = φ(0) = δ0(φ)

for all φ ∈ C∞
c (Rn), which means that δ0 is its distributional derivative. It is interesting to

compare this with Example 3.1.6, which shows that the weak derivative of H does not exist.

From now on, we will denote ∂α the distribution derivative without explicitly
mentioning. In addition, we will use the term �derivative�, �di�erentiation�
without mention �distribution sense� explicitly.

Exercise 3.1.21. Prove that for every c ∈ R one has

(e−c|x|)′ = −ce−cxH(x) + cecxH(−x) in D ′(R).

Exercise 3.1.22. Let f : R → R be de�ned by

f(x) =

{
x ln |x| − x for x ̸= 0,

0 for x = 0.

Prove that f is a continuous function and compute its distributional derivative f ′.
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3.2. De�nition and elementary properties of the Sobolev spaces

We �rst recall the following de�nition, which appeared in Theorem 3.2.8 above:

Definition 3.2.1. Let Ω ⊂ Rn be an open set and let p ∈ R with 1 ≤ p ≤ ∞. For each
m ∈ N, we de�ne the Sobolev spaces

Wm,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) for all α with |α| ≤ m} .
In fact, Wm,p(Ω) is a normed space with respect to the norm ∥ · ∥Wm,p(Ω) given by

∥u∥Wm,p(Ω) =

∑
|α|≤m

∥∂αu∥pLp(Ω)

 1
p

for 1 ≤ p <∞,

∥u∥Wm,∞(Ω) = max
|α|≤m

∥∂αu∥L∞(Ω).

The elements in Wm,p(Ω) also called the Sobolev functions.

Lemma 3.2.2 ([AH09, Theorem 7.2.3]). Let 1 ≤ p ≤ ∞, let m ∈ N and let Ω be an open
set in Rn. Then the Sobolev space Wm,p(Ω) is Banach.

Similar to Lp-functions, Sobolev functions also can be approximated by smooth functions.

Lemma 3.2.3 ([AH09, Theorem 7.3.1]). Let Ω be an open set in Rn, let 1 ≤ p <∞ and
let m ∈ N. Given any f ∈ Wm,p(Ω), there exists a sequence {fk}k∈N in C∞(Ω) ∩Wm,p(Ω)
such that

fn → f in Wm,p(Ω), that is, lim
k→∞

∥fk − f∥Wm,p(Ω) = 0.

Note that in this lemma, the approximation functions {fk} are smooth only in the interior
of Ω. To have the smoothness up to the boundary of the approximation sequence, we need
to make a smoothness assumption on the boundary ∂Ω. For each k ∈ N ∪ {∞}, we de�ne

Ck(Ω) :=
{
f |Ω : f ∈ Ck(U) for some open set U ⊃ Ω

}
.

Lemma 3.2.4 ([AH09, Theorem 7.3.2]). Let Ω be a bounded Lipschitz domain in Rn, let
1 ≤ p < ∞ and let m ∈ N. Given any f ∈ Wm,p(Ω), there exists a sequence {fk}k∈N in
C∞(Ω) such that

fn → f in Wm,p(Ω), that is, lim
k→∞

∥fk − f∥Wm,p(Ω) = 0.

Before introducing the Sobolev embeddings, we �rst introducing the following concept:

Definition 3.2.5. Let X and Y be two Banach spaces. We say that the space X is
continuous embedded in Y if

(3.2.1) ∥v∥Y ≤ c∥v∥X for all v ∈ X.

We say that the space X is compactly embedded in Y if (3.2.1) holds and each bounded
sequence in X has a convergent subsequence in Y .

Many authors (including myself) simply denote X ⊂ Y if the Banach space X is
continuous embedded in another Banach space Y , despite that X is not necessarily a subset
of Y . We will also denote X ⋐ Y if X is compactly embedded in Y . Here and after (including
the next theorem), we will use these notations without mentioning explicitly. Let ⌊x⌋ denotes
the integer part of x, and we have the following theorem:
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Theorem 3.2.6 (Sobolev embedding theorems [AH09, Theorem 7.3.7 and
Theorem 7.3.8]). Let Ω be a bounded Lipschitz domain in Rn. Then the following statements
are valid:

(a) If k < n
p
, then W k,p(Ω) ⋐ Lq(Ω) for any q < p∗ and W k,p(Ω) ⊂ Lq(Ω) when q ≤ p∗,

where 1
p∗

= 1
p
− k

n
.

(b) If k = n
p
, then W k,p(Ω) ⋐ Lq(Ω) for any q <∞.

(c) If k > n
p
, then

W k,p(Ω) ⋐ Ck−⌊n
p
⌋−1,β(Ω) for all β ∈

[
0,

⌊
n

p

⌋
+ 1− n

p

)
W k,p(Ω) ⊂ Ck−⌊n

p
⌋−1,β(Ω) with β =

{
⌊n
p
⌋+ 1− n

p
if n

p
/∈ Z,

any positive number < 1 if n
p
∈ Z.

Remark 3.2.7. Theorem 3.2.6 is also valid for W k,p-spaces with k ∈ R, see e.g. [AH09,
McL00] for precise de�nitions. Here we will cover these topics in this lecture note. Part (c)
of Theorem 3.2.6 in particular gives some su�cient condition in terms of weak derivatives to
guarantee the well-de�nedness of the strong/classical derivatives.

In fact, the integration by parts also holds true for weak derivatives (which generalized
Corollary 1.0.19):

Theorem 3.2.8 (Integration by parts [EG15, Theorem 1 in Section 4.3]). Let Ω be a
bounded Lipschitz domain in Rn and given 1 ≤ p <∞. The mapping

(3.2.2) Tr : C∞(Ω) → C∞(∂Ω), Tr (f) = f |∂Ω
can be uniquely extended to a bounded surjective linear operator W 1,p(Ω) → Tr (W 1,p(Ω)) ⊂
Lp(∂Ω). Furthermore, for all φ ∈ (C1(Rn))n and f ∈ W 1,p(Ω), we have

(3.2.3)

∫
Ω

fdiv (φ) dx = −
∫
Ω

∇f ·φ dx+

∫
∂Ω

(ν ·φ)Tr (f) dH n−1,

where ν is the unit outer normal to ∂Ω.

Remark 3.2.9. Here we refer the advance monograph [EG15] for the precise meaning of
ν, which is well-de�ned for H n−1-a.e. on ∂Ω. The function Tr(f) given in (3.2.2) is called
the trace of f on ∂Ω. We usually still denote dH n−1 by dSx. If there is no ambituity, we
sometime omit the notation the trace operator (3.2.2) and simply write (3.2.3) as∫

Ω

fdiv (φ) dx = −
∫
Ω

∇f ·φ dx+

∫
∂Ω

(ν ·φ)f dSx.

We �nally end this section by giving some remarks on convolution. The following lemma
exhibit the (strong) di�erentiability of convolution:

Lemma 3.2.10 ([Bre11, Proposition 4.20]). Let g ∈ L1
loc(Rn) and let f ∈ Cm

c (Rn) for
some integer m ∈ Z≥0. Then f ∗ g ∈ Cm(Rn) and

∂α(f ∗ g) = (∂αf) ∗ g for all multiindices α with |α| ≤ m.

The following lemma exhibits the (weak) di�erentiability of convolution:

Lemma 3.2.11 ([Bre11, Lemma 9.1]). Let ρ ∈ L1(Rn) and let v ∈ Wm,p(Rn) with 1 ≤
p ≤ ∞ and m ∈ N. Then

ρ ∗ v ∈ Wm,p(Rn) and ∂α(ρ ∗ v) = ρ ∗ ∂αv for all α with |α| ≤ m.
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3.3. Hilbert spaces

We begin this section by introducing the following de�nition:

Definition 3.3.1. Let H be a vector space. We say that a mapping (·, ·) : H ×H → R
is a bilinear form if

(·, u) is linear for each �xed u ∈ H,

(v, ·) is linear for each �xed v ∈ H.

A scalar product or inner product is a bilinear form (·, ·) : H ×H → R such that

(1) Positive de�niteness. (u, u) ≥ 0 for all u ∈ H and (u, u) = 0 i� u = 0;
(2) Symmetry. (u, v) = (v, u) for all u, v ∈ H; and

In this case, we call the pair (H, (·, ·)) an inner product space.

Exercise 3.3.2. Show the following Cauchy-Schwartz inequality:

|(u, v)| ≤ (u, u)
1
2 (v, v)

1
2 for all u, v ∈ H.

In addition, show that the function ∥ · ∥ de�ned by ∥u∥ := (u, u)
1
2 for all u ∈ H is a norm,

which satis�es the parallelogram law:

(3.3.1)

∥∥∥∥u+ v

2

∥∥∥∥2 + ∥∥∥∥u− v

2

∥∥∥∥2 = 1

2
(∥u∥2 + ∥v∥2) for all u, v ∈ H.

Definition 3.3.3. Given an inner product space (H, (·, ·)), and induce a norm ∥ · ∥ as
above. If (H, ∥ · ∥) is complete, then we called H a Hilbert space.

Example 3.3.4. Let Ω be any open set in Rn, and we de�ne L2(Ω) :={
f : Ω → R with

∫
Ω
|f(x)|2 dx <∞

}
. The mapping

(·, ·)L2(Ω) : L
2(Ω)× L2(Ω) → R

(u, v)L2(Ω) :=

∫
Ω

u(x)v(x) dx for all u, v ∈ L2(Ω)

is a scalar product, and we denote ∥u∥L2(Ω) =
√
(u, u)L2(Ω) for all u ∈ L2(Ω) the corresponding

norm. In fact, L2(Ω) is complete with respect to the norm ∥ · ∥L2(Ω), see e.g. [WZ15].

Exercise 3.3.5 ([Bre11, Exercise 5.1]). Let (H, ∥ · ∥) be a normed space. Suppose that
the norm ∥ · ∥ satis�es the parallelogram law (3.3.1). De�ne

(u, v) :=
1

2
(∥u+ v∥2 − ∥u∥2 − ∥v∥2) for all u, v ∈ H.

(1) Check that (u, u) = ∥u∥2, (u, v) = (v, u), (−u, v) = − (u, v) and (u, 2v) = 2 (u, v)
for all u, v ∈ H.

(2) Prove that (u+ v, w) = (u,w) + (v, w) for all u, v, w ∈ H. [Hint: use the
parallelogram law successively with (i) u = ũ, v = ṽ; (ii) u = ũ+ w̃, v = ṽ + w̃; and
(iii) u = ũ+ ṽ + w̃, v = w̃]

(3) Prove that (λu, v) = λ (u, v) for all λ ∈ R and for all u, v ∈ H. [Hint: Consider �rst
the case λ ∈ N, then λ ∈ Q, and �nally λ ∈ R]

(4) Conclude that (·, ·) is a scalar product on H.
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Exercise 3.3.6 (Lp is not a Hilbert space for p ̸= 2 [Bre11, Exercise 5.2]). Show that
∥f∥Lp(Ω) satis�es the parallelogram law (3.3.1) if and only if p = 2. [Hint: Use functions with
disjoint supports]

The above exercise suggests us to denote the following notations:

Definition 3.3.7. Let Ω be any open set in Rn, then we denote Hm(Ω) := Wm,2(Ω) for
each m ∈ N. In this case, the norm reads

∥u∥Hm(Ω) =

∑
|α|≤m

∥∂αu∥2L2(Ω)

 1
2

.

Exercise 3.3.8. Use Exercise 3.3.5 to show that the corresponding scalar product is
given by

(u, v)Hm(Ω) =
∑
|α|≤m

(∂αu, ∂αv)L2(Ω).

By introducing the gradient ∇u(x) = (∂1u(x), · · · , ∂nu(x)), we see that∫
Ω

∇u(x) · ∇v(x) dx =

∫
Ω

n∑
i=1

∂iu(x)∂iv(x) dx

=
n∑
i=1

∫
Ω

∂iu(x)∂iv(x) dx =
n∑
i=1

(∂iu, ∂iv)L2(Ω)

Therefore it is convenient to de�ne

(∇u,∇v)L2(Ω) :=

∫
Ω

∇u(x) · ∇v(x) dx, ∥∇u∥L2(Ω) :=
√

(∇u,∇u)L2(Ω),

so the scalar product and norm on H1(Ω) can be expressed as

(u, v)H1(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω), ∥u∥H1(Ω) =
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω)

) 1
2
.

We introduce the Hessian matrix∇⊗2u(x) ≡ ∇⊗∇u(x) with entries (∇⊗2u(x))ij = ∂i∂ju(x).
The following simple exercise explains why we choose this notation.

Exercise 3.3.9. For each vectors a, b ∈ Rn (identify as n × 1 matrix), we de�ne the
juxtaposition a⊗ b ∈ Rn×n (i.e. an n×n matrix with entries in R) by a⊗ b = ab⊺, where ⊺
denotes the transpose of the vector. Compute each entry (a⊗ b)ij of the n×n matrix a⊗ b.

Exercise 3.3.10. Let ej ∈ Rn be the jth column of the identity matrix Idn. Show that

n∑
k=1

ek ⊗ ek = Idn.

Exercise 3.3.11. Let u,v ∈ Rn and consider the matrix A := Idn+u⊗v, which is called
the rank-one perturbation of identity. Determine the relation between u and v to guarantee
A−1 exists, and compute A−1.
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We see that ∫
Ω

∇⊗2u(x) : ∇⊗2v(x) dx =

∫
Ω

n∑
i,j=1

∂i∂ju(x)∂i∂jv(x) dx

=
n∑

i,j=1

∫
Ω

∂i∂ju(x)∂i∂jv(x) dx =
n∑

i,j=1

(∂i∂ju, ∂i∂jv)L2(Ω).

Therefore it is convenient to de�ne

(∇⊗2u,∇⊗2v)L2(Ω) :=

∫
Ω

∇⊗2(x) : ∇⊗2v(x) dx, ∥∇⊗2u∥L2(Ω) :=
√

(∇⊗2u,∇⊗2u)L2(Ω),

and

(u, v)H2(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω) + (∇⊗2u,∇⊗2v)L2(Ω),

∥u∥H2(Ω) =
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω) + ∥∇⊗2u∥2L2(Ω)

) 1
2
.(3.3.2)

The ∥ · ∥H2(Ω)-norm given in (3.3.2) is actually equivalent to the ∥ · ∥H2(Ω)-norm given in
De�nition 3.3.7 in the following sense:

Definition 3.3.12. Let ∥ · ∥1 and ∥ · ∥2 are norms on the vector space X. We say that
∥ · ∥1 and ∥ · ∥2 are equivalent if there exists a constant c > 0 such that

c−1∥u∥1 ≤ ∥u∥2 ≤ c∥u∥1 for all u ∈ X.

Similarly, by introducing the k-tensor ∇⊗ku(x) with entries
(
∇⊗ku(x)

)
i1i2···ik

=

∂i1∂i2 · · · ∂iku(x), we see that∫
Ω

∇⊗ku(x)
(k)
• ∇⊗kv(x) dx =

∫
Ω

n∑
i1,··· ,ik=1

∂i1∂i2 · · · ∂iku(x)∂i1∂i2 · · · ∂ikv(x) dx

=
n∑

i1,··· ,ik=1

∂i1∂i2 · · · ∂iku(x)∂i1∂i2 · · · ∂ikv(x) dx

=
n∑

i1,··· ,ik=1

(∂i1∂i2 · · · ∂iku, ∂i1∂i2 · · · ∂ikv)L2(Ω).

It is convenient to de�ne ∇⊗0u := u, and for each k ∈ N that

(∇⊗ku,∇⊗kv)L2(Ω) :=

∫
Ω

∇⊗k(x)
(k)
• ∇⊗kv(x) dx, ∥∇⊗ku∥L2(Ω) :=

√
(∇⊗ku,∇⊗ku)L2(Ω).

We de�ne the scalar products and norm by

(3.3.3) (u, v)Hm(Ω) =
m∑
k=0

(∇⊗ku,∇⊗kv)L2(Ω), ∥u∥Hm(Ω) =

(
m∑
k=0

∥∇⊗ku∥2L2(Ω)

) 1
2

.

The ∥ · ∥Hm(Ω)-norm given in (3.3.3) is actually equivalent to the ∥ · ∥H2(Ω)-norm given in
De�nition 3.3.7. We recall the following fact, which already mentioned in Theorem 3.2.8:
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Theorem 3.3.13 (Trace theorem). Let Ω be a bounded domain in Rn with C0,1 boundary
∂Ω, i.e. Ω is a bounded Lipschitz domain in Rn. The mapping

Tr : C∞(Ω) → C∞(∂Ω), Tr (u) := u|∂Ω
extends to a unique bounded linear surjective mapping H1(Ω) → H

1
2 (∂Ω), where H

1
2 (∂Ω) :=

Tr (H1(Ω)) ⊂ L2(∂Ω), which is a Hilbert space equipped with the quotient norm

∥g∥
H

1
2 (∂Ω)

= inf
u∈H1(Ω),Tr (u)=g

∥u∥H1(Ω).

It is also possible to de�ne the �traces� and �normal derivatives� on ∂Ω for Hm-functions
(see Theorem 3.2.8), see also [LM72, Theorem 9.4] for similar results for higher order
derivatives:

Theorem 3.3.14 (Trace theorem, a special case of [AH09, Theorem 7.3.11]). Let m ∈
Z≥2 and let Ω be a bounded Cm−1,1 domain in Rn. The mapping

u ∈ C∞(Ω) 7→ (u|∂Ω , ∂νu|∂Ω) ∈ C∞(∂Ω)× C∞(∂Ω),

where ∂νu := ν · ∇u, extends to a unique bounded linear surjective mapping Hm(Ω) →
Hm− 1

2 (∂Ω) × Hm− 3
2 (∂Ω), where for each k = 1, 2, · · · ,m the space Hk− 1

2 (∂Ω) :=
Tr (Hk(Ω)) ⊂ L2(∂Ω), which is a Hilbert space equipped with the quotient norm

∥g∥
Hk− 1

2 (∂Ω)
= inf

u∈Hk(Ω),Tr (u)=g
∥u∥Hk(Ω).

The following is an immediate corollary of Lemma 3.2.4:

Corollary 3.3.15 (Density). Let Ω be a bounded Lipschitz domain in Rn and let m ∈ N.
Given any f ∈ Hm(Ω), there exists a sequence {fk}k∈N in C∞(Ω) such that

fn → f in Hm(Ω), that is, lim
k→∞

∥fk − f∥Hm(Ω) = 0.

In view of Corollary 3.3.15, it is natural to consider the following subspace of Hm(Ω):

Definition 3.3.16. For each m ∈ N, we de�ne Hm
0 (Ω) be the closure of C∞

c (Ω) with
respect to the norm ∥ · ∥Hm(Ω).

The relation between Hm
0 (Ω) and Hm(Ω) are given in the followings:

Lemma 3.3.17. If Ω is a bounded Lipschitz domain in Rn, then

H1
0 (Ω) =

{
u ∈ H1(Ω) : u|∂Ω = 0

}
.

If Ω is a bounded C1,1 domain in Rn, then

H2
0 (Ω) =

{
u ∈ H1(Ω) : u|∂Ω = ∂νu|∂Ω = 0

}
.

Remark. The subscript 0 in Hm
0 (Ω) means the zero boundary value. Therefore here we

denote C∞
c (Ω) rather than C∞

0 (Ω), which also used by many authors, to avoid confusion.
Since H1

0 (Ω)∩H2(Ω) = {u ∈ H2(Ω) : u|∂Ω = 0} for any bounded C1,1 domain Ω ⊂ Rn, then
H1

0 (Ω) ∩H2(Ω) ̸= H2
0 (Ω).

Example 3.3.18. For each parameter ω ≥ 0, we consider the function v(t,x) = eiωtu(x).
It is not di�cult to see that

(∂2t − c2∆)v(t,x) = −c2eiωt(∆ + k2)u(x) with k =
ω

c
.
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Since c ̸= 0 and eiωt ̸= 0 for all t ∈ R, the it is natural to consider the following second order
elliptic PDE on a bounded Lipschitz domain Ω:

(3.3.4) (∆ + k2)u = f in Ω, u|∂Ω = 0.

When k = 0, we call (3.3.4) the Poisson equation; when k > 0, we (3.3.4) the
Helmholtz equation, which described the acoustic wave with �xed wave number k > 0
[CCH23, CK19, KG08]. The term eiωt is called the time-harmonic, and thus we also
called the Helmholtz equation the time-harmonic wave equation. In view of the integration
by parts (Theorem 3.2.8), one �rst formally compute that∫

Ω

fϕ dx =

∫
Ω

∆uϕ dx+ k2
∫
Ω

uϕ dx

= −
∫
Ω

∇u · ∇ϕ dx+ k2
∫
Ω

uϕ dx for all ϕ ∈ C∞
c (Ω).

In view of the de�nition of H1
0 (Ω) and Lemma 3.3.17, we say that u is a weak solution of

(3.3.4) if

(3.3.5) u ∈ H1
0 (Ω) and (f, ϕ)L2(Ω) = −(∇u,∇ϕ)L2(Ω) + k2(u, ϕ)L2(Ω) for all ϕ ∈ H1

0 (Ω)

for any pre-given f ∈ L2(Ω).

One sees that (f, ϕ)L2(Ω) is actually well-de�ned for f, ϕ ∈ L2(Ω), and here we have
ϕ ∈ H1

0 (Ω). Therefore it is natural to ask:

Question 3.3.19. Given any ϕ ∈ H1
0 (Ω), whether the term Tf (ϕ) := (f, ϕ)L2(Ω) still make

sense for lower regularity f?

By using Exercise 1.0.9 and the density lemma (Lemma 1.0.15), we have

(3.3.6) ∥f∥L2(Ω) = sup
0̸≡ϕ∈L2(Ω)

(f, ϕ)L2(Ω)

∥ϕ∥L2(Ω)

≡ sup
0̸≡ϕ∈C∞

c (Ω)

(f, ϕ)L2(Ω)

∥ϕ∥L2(Ω)

.

This is actually a special case of the following general notion:

Definition 3.3.20. Let X and Y be two Banach spaces. An unbounded linear operator
from X into Y is a linear map L : dom (L ) ⊂ X → Y de�ned on a linear spaces dom (L ) ⊂
X with values Y . The linear space dom (L ) is called the domain of L . If Y = R or Y = C,
then we called such L a linear functional on the domain dom (L ).

Definition 3.3.21. One says that L is bounded (or continuous) if dom (L ) = X and if
there is a constant c ≥ 0 such that

∥L u∥ ≤ c∥u∥ for all u ∈ X.

The norm of a bounded operator is de�ned by

∥L ∥X→Y := inf {c ≥ 0 : ∥L u∥ ≤ c∥u∥ for all u ∈ X} ≡ sup
u̸=0

∥L u∥Y
∥u∥X

.

If Y = R or Y = C, one says that such L is a bounded (or continuous) linear functional on
X.

Exercise 3.3.22. Verify that ∥ · ∥X→Y given in De�nition 3.3.21 is a norm.

Similar to distributions (De�nition 3.1.19), we now introduce the following de�nition:
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Definition 3.3.23. Let H be a Hilbert space. The dual space H∗ of H is a Hilbert space
consists of all bounded linear functional on H, with norm ∥ · ∥H∗ = ∥ · ∥H→R.

We now consider a trick similar to Example 3.1.17:

Example 3.3.24. The equality (3.3.6) means that f can be identify with the bounded
linear functional Tf (ϕ) := (f, ϕ)L2(Ω) for all ϕ ∈ L2(Ω). In other words, we have L2(Ω) =
(L2(Ω))∗.

We now ready to answer Question 3.3.19. Since we have ϕ ∈ H1
0 (Ω), together with the

density lemma (Corollary 3.3.15), the equation (3.3.6) suggests us to de�ne the following
quantity:

∥f∥H−1(Ω) := sup
ϕ ̸≡0

∫
Ω
fϕ dx

∥ϕ∥H1
0 (Ω)

≡ sup
∥ϕ∥

H1
0(Ω)

=1

∫
Ω

fϕ dx

Here we write
∫
Ω
fϕ dx rather than (f, ϕ)L2(Ω) because here f may not in L2(Ω). We see that

∥f∥H−1(Ω) = ∥Tf∥(H1
0 (Ω))∗ , therefore we immediately can de�ne H−1(Ω) := (H1

0 (Ω))
∗, more

precisely:

Definition 3.3.25. For each bounded Lipschitz domain Ω in Rn, we de�ne

H−1(Ω) :=
{
f ∈ D ′(Ω) : Tf ∈ (H1

0 (Ω))
∗} .

From the above discussions, we obtain the triplet

(3.3.7) H1
0 (Ω) ⊂ L2(Ω) ∼= (L2(Ω))∗ ⊂ H−1(Ω).

From de�nition, one can easily note that∣∣∣∣∫
Ω

f(x)g(x) dx

∣∣∣∣ ≤ ∥f∥H−1(Ω)∥g∥H1
0 (Ω).

Warning. However, one should aware that in general∫
Ω

|f(x)g(x)| dx cannot be bounded from above by ∥f∥H−1(Ω)∥g∥H1
0 (Ω),

it is interesting to compare this with (1.0.4) in Exercise 1.0.9.

Remark 3.3.26. Similarly, for each bounded smooth (for simplicity) domain Ω in Rn,
one can de�ne H−m(Ω) := (Hm

0 (Ω))∗ for each m ∈ N, more precisely,

H−m(Ω) := {f ∈ D ′(Ω) : Tf ∈ (Hm
0 (Ω))∗} .

Similarly, we also obtain the triplet

(3.3.8) Hm
0 (Ω) ⊂ L2(Ω) ∼= (L2(Ω))∗ ⊂ H−m(Ω) for all m ∈ N.

This ideas also can be extended for real numbers m ≥ 0 and bounded Lipschitz domains
[McL00], see also [LM72]. Here we also remark that (Hm(Ω))∗ for (real) m ≥ 0 can be
characterized in terms of quotient norm [McL00].

We now exhibit the following remarkable fact for all bounded linear functionals on Hilbert
spaces:

Theorem 3.3.27 (Riesz-Fréchet representation theorem [Bre11, Theorem 5.5]). Given
any φ ∈ H∗, there exists a unique v ∈ H with ∥v∥H = ∥φ∥H∗ such that

φ(u) = (v, u)H for all u ∈ H.
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Remark. Due to the above Riesz-Fréchet theorem, we also denote φ(u) = ⟨φ, u⟩, or
more precisely, φ(u) = ⟨φ, u⟩H∗⊗H , and we call ⟨·, ·⟩ the duality pair.

The Riesz-Fréchet representation theorem (Theorem 3.3.27) de�nes the isometry ι : H∗ →
H by ι(φ) := v. Similar to Sobolev embeddings (Theorem 3.2.6), this suggests us to identify
H and H∗, but this sometimes cause some troubles. For example, if we identify both L2(Ω) ∼=
(L2(Ω))∗ and H1

0 (Ω)
∼= (H1

0 (Ω))
∗ = H−1(Ω), then the triplet (3.3.7) implies L2 ∼= H1

0 (Ω)
∼=

H−1(Ω), which obviously make no sense. In typical situation, we usually identify L2(Ω) =
(L2(Ω))∗ and not identify H1

0 (Ω) with its dual H−1(Ω) despite we have the Riesz-Fréchet
representation theorem (Theorem 3.3.27).

3.4. Solving elliptic PDE for small wave number

We now turn back to the Helmholtz equation (3.3.4), and we now can ask the following
question (in a proper way):

Question 3.4.1 (See also Question 3.6.21 for a slightly general case). Let Ω be a bounded
Lipschitz domain in Rn, let f ∈ H−1(Ω) and k ≥ 0, can we �nd a weak solution u of the
Helmholtz equation (3.3.4)? More precisely, can we �nd u ∈ H1

0 (Ω) satis�es

(∇u,∇v)L2(Ω) − k2(u, v)L2(Ω) = −⟨f, v⟩H−1⊗H1
0 (Ω) for all v ∈ H1

0 (Ω)

or not? In addition, is the solution unique?

In view of the above formulation, it is natural to introduce the following notions:

Definition 3.4.2. A bilinear form a(·, ·) : H×H → R (see De�nition 3.3.1) is said to be

(a) continuous if there is a constant C > 0 such that

|a(u, v)| ≤ C∥u∥H∥v∥H for all u, v ∈ H.

(b) coercive if there is a constant α > 0 such that

a(v, v) ≥ α∥v∥2H for all v ∈ H.

(c) symmetric if a(u, v) = a(v, u) for all u, v ∈ H. In this case, the coercive bilinear
form a is also said to be positive de�nite.

Remark 3.4.3 (Finite dimensional case: linear algebra). We say that a symmetric matrix
A ∈ Rn×n is positive de�nite if

(3.4.1) Au · u = u⊺Au > 0 for all 0 ̸= u ∈ Rn.

Since A is symmetric, the it is unitary diagonalizable (i� A is normal, i.e. AA⊺ = A⊺A),
i.e. there exists an invertible matrix Q with Q−1 = Q⊺ such that A = QDQT , where D is a
diagonal matrix. Hence (3.4.1) writes

u⊺QDQ⊺u = D(Q⊺u) · (Q⊺u) = D(Q−1u) · (Q−1u) > 0 for all 0 ̸= u ∈ Rn,

this equivalent to
Dv · v > 0 for all 0 ̸= v ∈ Rn.

Therefore, all entries in D, they called the eigenvalue of A, must be positve. This explains
why we the condition (3.4.1) called positive de�nite, and so is the above de�nition for in�nite
dimensional case.

We now exhibit the following remarkable result, which is a very simple and e�cient tool
for solving linear elliptic PDE:
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Theorem 3.4.4 (Lax-Milgram [Bre11, Corollary 5.8]). Assume that a(·, ·) is continuous
coercive bilinear form on H. Then, given any φ ∈ H∗, there exists a unique element u ∈ H
such that

(3.4.2) a(u, v) = ⟨φ, v⟩ for all v ∈ H.

Moreover, if a is symmetric, then u is characterized by the property

(3.4.3) u ∈ H,
1

2
a(u, u)− ⟨φ, u⟩ = min

v∈H

{
1

2
a(v, v)− ⟨φ, v⟩

}
.

Remark 3.4.5. In the language of the calculus of variations, one says that (3.4.2) the
Euler equation associated with the minimization problem (3.4.3).

In order to answer Question 3.4.1, it is now natural to consider

(3.4.4) a(u, v) := (∇u,∇v)L2(Ω) − k2(u, v)L2(Ω), φ = −f ∈ H−1(Ω).

It is easy to verify that a : H1
0 (Ω)×H1

0 (Ω) → R is a continuous and symmetric bilinear form.
In order to verify its coercivity, we need the following lemma:

Lemma 3.4.6 (Poincaré's inequality [Bre11, Corollary 9.19]). Let Ω be a bounded open
set. Then there exists a constant C, depending on Ω, such that

∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω) for all u ∈ H1
0 (Ω).

Exercise 3.4.7. Let I be a bounded interval in R. Show that there exists a constant C,
depending on the length of the interval |I| <∞, such that

∥u∥L2(I) ≤ C∥u′∥L2(I) for all u ∈ H1
0 (I).

(Hint: This result is not optimal, you will see the optimal inequality in the proof.)

By using the Poincaré inequality and the density result (Corollary 3.3.15), one can de�ne
a positive number, called the fundamental tone of Ω, by

(3.4.5) λ1 := inf
0̸≡u∈C∞

c (Ω)

∥∇u∥2L2(Ω)

∥u∥2L2(Ω)

= inf
0̸≡u∈H1

0 (Ω)

∥∇u∥2L2(Ω)

∥u∥2L2(Ω)

> 0.

The quotient ∥∇u∥2L2(Ω)/∥u∥2L2(Ω) sometimes also referred as the Rayleigh quotient. Hence

a(u, u) = ∥∇u∥2L2(Ω) − k2∥u∥2L2(Ω) ≥
(
1− k2

λ1

)
∥∇u∥2L2(Ω),

which means that a is coercive when k2 < λ1. By using the Lax-Milgram theorem
(Theorem 3.4.4), we can give some partial answers to Question 3.4.1:

Theorem 3.4.8. Let Ω be a bounded Lipschitz domain in Rn and let f ∈ H−1(Ω). If
k2 < λ1, then there exists a unique u ∈ H1

0 (Ω) satis�es

(∇u,∇v)L2(Ω) − k2(u, v)L2(Ω) = −⟨f, v⟩H−1⊗H1
0 (Ω) for all v ∈ H1

0 (Ω)

satisfying

F (u) = min
v∈H1

0 (Ω)
F (v), F (v) =

1

2

(
∥∇v∥2L2(Ω) − k2∥v∥2L2(Ω)

)
+ ⟨f, v⟩H−1(Ω)⊗H1

0 (Ω).
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3.5. The maximum principle

We now investigate the solution u of the Helmholtz equation (3.3.4), in the sense of
Theorem 3.4.8. In order to make our statement make sense, we �rst introduce the following
notion.

Definition 3.5.1 ([KS00, De�nition 5.1]). Let Ω be an open set in Rn, let u ∈ H1(Ω)
and let E ⊂ Ω. We say that the function u is nonnegative on E in the sense of H1(Ω), or we
simply denote u ≥ 0 on E in H1(Ω), if there exists a sequence un ∈ H1,∞(Ω) such that

un(x) ≥ 0 for all x ∈ E, un → u in H1(Ω).

If −u ≥ 0 on E in H1(Ω), then u is nonpositive on E in H1(Ω),or we simply denote u ≤ 0
on E in H1(Ω). Similarly, we say that u ≤ v on E in H1(Ω) if v − u ≥ 0 on E in H1(Ω).
Accordingly, we also de�ne

sup
E
u := inf

{
M ∈ R : u ≤M on E in H1(Ω)

}
.

In fact, the following density lemma with signed constraint (which does not mentioned
in Corollary 3.3.15) guarantees that the notion of ≥ in H1(Ω) is consistent with the notion
of ≥ in the Lebesgue measure sense.

Lemma 3.5.2 ([KS00, Proposition 5.2]). Let Ω be an open set in Rn, let u ∈ H1(Ω) and
let E ⊂ Ω.

(i) If u ≥ 0 on E in H1(Ω), then u ≥ 0 on E a.e.
(ii) If u ≥ 0 on Ω a.e., then u ≥ 0 on Ω in H1(Ω).
(iii) If u ∈ H1

0 (Ω) and u ≥ 0 on Ω a.e., then there exists a sequence un ∈ W 1,∞
0 (Ω) such

that un ≥ 0 in Ω and un → u in H1
0 (Ω).

(iv) If E is open in Ω and u ≥ 0 on E a.e., then for each compact set K ⊂ E, one has
u ≥ 0 on E in H1(Ω).

(i) and (ii) implies u ≥ 0 on Ω a.e. if and only if u ≥ 0 on Ω in H1(Ω). Hence, from
now on, we can just simply write u ≥ 0 in Ω for all u ∈ H1(Ω). The following lemma is also
helpful:

Lemma 3.5.3 ([AK19, Lemma 2.5]1). Let Ω be an open set in Rn and let u ∈ H1(Ω).
We set u+(x) := max {u(x), 0} for a.e. x ∈ Ω. Then u+ ∈ H1(Ω) and Tr (u+) = (Tru)+ for
H n−1-a.e. on ∂Ω with

(3.5.1) ∇(u+) =

{
∇u a.e. in Ω+ := {x ∈ Ω : u(x) > 0} ,
0 a.e. in Ω \ Ω+.

Exercise 3.5.4. Verify (3.5.1) by assuming that u ∈ H1(Ω) and u+ ∈ H1(Ω).

We now ready to prove the following lemma (it is interesting to compare the ideas in the
following lemma with [GT01, Theorem 8.1]).

Lemma 3.5.5 (Weak maximum principle [KLSS22, Proposition A.5 in arXiv version]).
Let Ω be a bounded open set in Rn, and let λ1(Ω) be the fundamental tone of Ω given in
(3.4.5). If k2 < λ1(Ω), u ∈ H1(Ω) satis�es

(a) u|∂Ω ≤ 0 in the sense of u+ ∈ H1
0 (Ω), which is well-de�ned by Lemma 3.5.3 above;

1see also [KS00, Theorem A.1]
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(b) −(∆ + k2)u ≤ 0 in the sense of H−1(Ω), i.e. a(u, v) ≤ 0 for all v ∈ H1
0 (Ω) with

v ≥ 0, where a is the bilinear form given in (3.4.4);

then u ≤ 0 in Ω. (one can refer to Remark 2.3.5 for the minus sign in (b))

Proof. By using Lemma 3.5.3, we observe that (∇u+,∇u−)L2(Ω) = 0, therefore from (a)
and (b) one sees that

∥∇u+∥2L2(Ω) = (∇u,∇u+)L2(Ω) ≤ k2∥u+∥2L2(Ω).

From (a), we have u+ ∈ H1
0 (Ω), therefore Poincaré inequality (Lemma 3.4.6) gives

∥u+∥2L2(Ω) ≤
1

λ1(Ω)
∥∇u+∥2L2(Ω).

Combining the above two inequalities, we reach

∥u+∥2L2(Ω) ≤
k2

λ1(Ω)
∥u+∥2L2(Ω).

Since k2

λ1(Ω)
< 1, it follows that w+ ≡ 0, and therefore w ≤ 0 in Ω. □

Indeed, by using the mean value theorem for Helmholtz operator, one can show
the following lemma (we will not show the proof here, also compare this with [GT01,
Theorem 8.19]).

Lemma 3.5.6 (Strong maximum principle [KLSS22, Proposition A.5 in arXiv version]).
Suppose that all assumptions in Lemma 3.5.5 hold. If we additionally assume that u is
continuous in Ω, then in each connected component of Ω we have either u < 0 or u ≡ 0.

Finally, we closed this section by remark that it is also possible to formula the maximum
principle for arbitrary open set Ω (without any regularity assumption on its boundary ∂Ω),
see [BNV94].

3.6. Solving elliptic PDE: Eigenvalue problem and Fredholm alternative

We now turn back to Question 3.4.1. Since we con�rmed the case k2 < λ1 in
Theorem 3.4.8, then it is natural to ask whats going for the case when k2 = λ1(Ω). Under
some suitable assumptions on Ω, later we will show that the in�mum in (3.4.5) can be
achieved, i.e. one can �nd 0 ̸≡ u∗ ∈ H1

0 (Ω) such that

(3.6.1) λ1 = inf
0̸≡u∈H1

0 (Ω)

∥∇u∥2L2(Ω)

∥u∥2L2(Ω)

=
∥∇u∗∥2L2(Ω)

∥u∗∥2L2(Ω)

,

i.e. ∥∇u∗∥2L2(Ω) = λ1∥u∗∥2L2(Ω), which suggests that u∗ may satis�es (∆ + λ1)u∗ = 0 and

u∗|∂Ω = 0, therefore we have to expect a negative answer (the solution is not unique) for
Question 3.4.1 when k2 = λ1.

Definition 3.6.1. Let H be a Hilbert space with scalar product (·, ·)H and the norm
∥ · ∥H . We say that a sequence {ϕk}k∈N is a Hilbert basis or orthonormal basis of H if it
satis�es the following properties:

(1) ∥ϕk∥H = 1 for all k ∈ N and (ϕk, ϕj)H = 0 for all k ̸= j.
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(2) the linear space spanned by {ϕk}k∈N, i.e.

span {ϕk}k∈N :=

{∑
k∈I

ckϕk : I is a �nite set in N, ck ∈ R

}
,

is dense in H.

We exhibit the following remarkable fact about Hilbert basis (here we do not show the
proof).

Theorem 3.6.2. Let H be a separable (i.e. there exists a subset X ⊂ H which is countable
and dense) Hilbert space and let {ϕk}k∈N be an orthonormal subset of H. Then the following
are equivalent:

(1) {ϕk}k∈N is a Hilbert basis;
(2) The following Parseval identity holds:

∥f∥2H =
∑
k∈N

|(f, ϕk)H |2;

(3) If f ∈ H and (f, ϕk)H = 0 for all k ∈ N, then f ≡ 0.

Corollary 3.6.3. Let H be a separable Hilbert space with Hilbert basis {ϕk}k∈N. For
each u ∈ H, one has

(3.6.2) u =
∞∑
k=1

(u, ϕk)Hϕk converges in H.

The precise meaning of (3.6.2) is

lim
m→∞

∥∥∥∥∥u−
m∑
k=1

(u, ϕk)Hϕk

∥∥∥∥∥
H

= 0.

In fact, we have the following well-known result:

Theorem 3.6.4 (Spectral decomposition of Dirichlet Laplacian [Bre11, Corollary 9.19]).
Let Ω be a bounded Lipschitz domain. There exists a Hilbert basis {ϕj}j∈N of L2(Ω) and a
sequence of real numbers {λj}j∈N with 0 < λ1 ≤ λ2 ≤ · · · → ∞ such that

ϕj ∈ H1
0 (Ω) ∩ C∞(Ω), −∆ϕj = λjϕj in Ω.

We usually call {λj}j∈N the eigenvalues of Dirichlet Laplacian on Ω, and {ϕj}j∈N be their
corresponding eigenfunctions. Sometimes we call {(λj, ϕj)}j∈N the eigensystem of Dirichlet
Laplacian on Ω. (one can refer to Remark 2.3.5 for the minus sign in elliptic operators)

This immediately gives negative results for Question 3.4.1 for k2 = λj for some j ∈ N:
the solution of Helmholtz equation (3.3.4) is not unique when k2 = λj for some j ∈ N.
We will not going to give a detailed proof of the eigendecomposition of Dirichlet Laplacian
(Theorem 3.6.4). As an introduction, we slightly mention that the proof of Theorem 3.6.4
involving the following notion:

Definition 3.6.5. Let X and Y be two Banach spaces. A bounded linear operator
T : X → Y is said to be compact if for any bounded sequence {xj}j∈N in X, the sequence
{Txj}j∈N contains a convergent subsequence in Y . The set of all compact operators from X
to Y is denoted as K(X, Y ). If X = Y , we simply write K(X) = K(X,X).
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The following fact is useful to check whether the bounded linear operator is compact or
not.

Lemma 3.6.6 ([Bre11, Proposition 6.3]). Let X, Y and Z be three Banach spaces. Let
L(X, Y ) denotes the set of bounded linear operator from X to Y .

(1) If T ∈ L(X, Y ) and S ∈ K(Y, Z), then S ◦ T ∈ K(X,Z).
(2) If T ∈ K(X, Y ) and S ∈ L(Y, Z), then S ◦ T ∈ K(X,Z).

We usually use the following form of Lemma 3.6.6: If Y ⋐ Z, i.e. the embedding ι : Y → Z
is compact, then by identifying T ∼= ι ◦ T , one sees that T ∈ L(X, Y ) implies T ∈ K(X,Z).
Similarly, if X ⋐ Y , one sees that S ∈ L(Y, Z) implies S ∈ K(X,Z).

Remark 3.6.7. By using the Poincaré inequality (Lemma 3.4.6), one sees that H1
0 (Ω)

is a Hilbert space equipped with the scalar product (u, v)H1
0 (Ω) := (∇u,∇v)L2(Ω). From the

weak formulation of −∆ϕj = λjϕj in Ω, together with the density lemma (Corollary 3.3.15),
one sees that

m∑
k=1

(u, ϕk)H1
0 (Ω)ϕk =

m∑
k=1

(∇u,∇ϕk)L2(Ω)ϕk =
m∑
k=1

λk(u, ϕk)L2(Ω)ϕk,

and then from Theorem 3.6.2 we see that

(3.6.3) ∥u∥2H1
0 (Ω) =

∞∑
k=1

|(u, ϕk)H1
0 (Ω)|2 =

∞∑
k=1

λ2k|(u, ϕk)L2(Ω)|2.

From this, one then easily see that

∥u∥2H1(Ω) = ∥u∥2L2(Ω) + ∥u∥2H1
0 (Ω) =

∞∑
k=1

(1 + λ2k)|(u, ϕk)L2(Ω)|2.

Remark 3.6.8. From (3.6.3), in fact one can de�ne the fractional order Sobolev by

∥u∥2Hs
0(Ω) :=

∞∑
k=1

λ2sk |(u, ϕk)L2(Ω)|2 for s ∈ (0, 1),

with scalar product

(u, v)Hs
0(Ω) :=

∞∑
k=1

λ2sk (u, ϕk)L2(Ω)(v, ϕk)L2(Ω) for s ∈ (0, 1).

For each u ∈ Hs
0(Ω), one also may de�ne the spectral factional Laplacian (not to confused

with Fourier fractional Laplacian) (−∆)su ∈ H−s(Ω) := (Hs
0(Ω))

∗ by

⟨(−∆)su, v⟩H−s(Ω)⊕Hs
0(Ω) := (u, v)Hs

0(Ω) for all v ∈ Hs
0(Ω).

However, the above idea cannot directly extend to arbitrary s ∈ R, which require additionally
assumptions on the boundary on u to make sure the de�nition is consistent with the classical
Laplacian, see e.g. my dissertation [Kow21], which is indeed a lecture note, for further
details.

It is worth-mentioning the following properties:



3.6. SOLVING ELLIPTIC PDE: EIGENVALUE PROBLEM AND FREDHOLM ALTERNATIVE 47

Theorem 3.6.9 ([GT01, Theorem 8.38]). Let Ω be a bounded Lipschitz domain, and let
λ1 be the �rst eigenvalue (also called the principal eigenvalue) given in the eigendecomposition

in Theorem 3.6.4. Then the corresponding eigenfunction is simple, that is, if ϕ1 and ϕ̃1

are both eigenfunctions corresponding to λ1, then there exists a constant c ̸= 0 such that
ϕ1(x) = cϕ̃1(x) for all x ∈ Ω. In addition, one can choose ϕ1 such that ϕ1(x) > 0 for all
x ∈ Ω.

Remark. If we further assuming that ∂Ω is C2,α for some 0 < α < 1, as a consequence
of Krein-Rutman theorem, one has ϕ1 ∈ C1,α(Ω), see e.g. [Du06, Theorem 1.3].

We now turn back to answer (3.6.1), i.e. whether the in�mum in Rayleigh quotient
(3.4.5) can be achieved or not. In order to answer this question, need the following facts
on compact operators, which can be found in [dF82, dFG92] as well as my dissertation
[Kow21, Appendix A.5]:

Lemma 3.6.10. Let H be a Hilbert space and let T ∈ K(H) which is symmetric, i.e.
(Tu, v)H = (u, Tv)H for all u, v ∈ H. If

µ1 = sup {(Tu, u)H : ∥u∥H = 1} ,
then there exists ϕ1 ∈ H with ∥ϕ1∥H = 1 such that

(Tϕ1, ϕ1) = µ1, Tϕ1 = µ1ϕ1.

Inductively for j ≥ 2, if

µj = sup {(Tu, u)H : ∥u∥H = 1, u ⊥ ϕi for all i = 1, · · · , j − 1} ,
where u ⊥ v means (u, v)H = 0, then there exists ϕj ∈ H with ∥ϕj∥H = 1 with ϕj ⊥
ϕ1, · · · , ϕj−1 such that

(Tϕj, ϕj) = µj, Tϕj = µjϕj.

Exercise 3.6.11. Let Ω be a bounded Lipschitz domain in Rn. Given f ∈ H−1(Ω), by
using Theorem 3.4.8 with k = 0 one can �nd a unique solution u ∈ H1

0 (Ω) of the problem

(3.6.4) (∇u,∇v)L2(Ω) = ⟨f, v⟩H−1(Ω)⊕H1
0 (Ω) for all v ∈ H1

0 (Ω).

Then one can de�ne the linear operator (−∆)−1
Dirf := u. By doing some suitable

identi�cations, show that (−∆)−1
Dir ∈ K(L2(Ω)).

Exercise 3.6.12 (The equivalence of �rst Dirichlet eigenvalue and fundamental tone).
By choosing T = (−∆)−1

Dir and H = L2(Ω), where (−∆)−1
Dir is the operator mentioned in

Exercise 3.6.11, show that the in�mum in Rayleigh quotient (3.4.5) can be achieved, i.e.
there exists u∗ ∈ H1

0 (Ω) such that

inf
0̸≡u∈H1

0 (Ω)

∥∇u∥2L2(Ω)

∥u∥2L2(Ω)

=
∥∇u∗∥2L2(Ω)

∥u∗∥2L2(Ω)

.

In addition, show that there exists a constant c ̸= 0 such that u∗ = cϕ1.

Exercise 3.6.13 (Rayleigh quotient). Let Ω be a bounded Lipschitz domain in Rn and
we consider the eigendecomposition in Theorem 3.6.4. Show that

λj = min

{
∥∇u∥2L2(Ω)

∥u∥2L2(Ω)

: 0 ̸≡ u ∈ H1
0 (Ω) with u ⊥ ϕi for all i = 1, · · · , j − 1

}
.

Here u ⊥ ϕi means (u, ϕi)L2(Ω) = 0.
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The following Courant minimax principle [CH04a] (see [CH04b] for volume 2), which
also can be found in [dF82, dFG92] as well as my dissertation [Kow21, Appendix A.5],
enables us to characterize the eigenvalues without referring previous eigenvalues:

Lemma 3.6.14. Suppose that all assumptions in Lemma 3.6.10 hold. Then

µj = max
Fj⊂H,dim(Fj)=j

(inf {(Tu, u)H : ∥u∥H = 1, u ∈ Fj}) ,

where max
Fj⊂H,dim(Fj)=j

means the maximum taken over all subspaces Fj of H with dim(Fj) = j.

Exercise 3.6.15 (Courant minimax principle). Let Ω be a bounded Lipschitz domain in
Rn and we consider the eigendecomposition in Theorem 3.6.4. Show that

λj = min
Fj⊂H1

0 (Ω),dimFj=j

(
max
u∈Fj

∥∇u∥2L2(Ω)

∥u∥2L2(Ω)

)
,

where min
Fj⊂H1

0 (Ω),dimFj=j
means that the minimum is taken over all �nite dimensional vector

space Fj ⊂ H1
0 (Ω) with dimFj = j.

Remark 3.6.16. If we replace H1
0 (Ω) by H

1(Ω) in the Rayleigh quotient (3.4.5), or more
generally the Courant minimax principle above, then this produces Neumann eigenfunctions
for Laplacian. Since this is a bit technical, here we will not explain in this lecture note.

There is also another characterization for principal eigenvalue:

Theorem 3.6.17 (see e.g. [BNV94]). Let Ω be a bounded Lipschitz domain, and let λ1
be the �rst eigenvalue (also called the principal eigenvalue) given in the eigendecomposition
in Theorem 3.6.4. Then

λ1 = max
{
λ ∈ R : there exists a function 0 ≤ u ∈ H1(Ω) such that (∆ + λ)u ≤ 0 in Ω

}
.

Here (∆+ λ)u ≤ 0 in Ω means that (∇u · ∇v)L2(Ω) − λ(u, v)L2(Ω) ≥ 0 for all 0 ≤ v ∈ C∞
c (Ω).

We now begin discuss the case when k2 ̸= λj for all j ∈ N in the following exercise:

Exercise 3.6.18. Let Ω be a bounded Lipschitz domain in Rn and let u ∈ H1
0 (Ω). If

k2 ̸= λj for all j ∈ N, show that

u ≡ 0 in Ω if and only if (∆ + k2)u = 0 in Ω (give a suitable formulation).

We will need the following theorem, which is a consequence of the Fredholm alternative
[Bre11, Theorem 6.6]:

Theorem 3.6.19 (Uniqueness implies existence result for Fredholm operators). Let X be
a Banach space, let f ∈ X and let T ∈ K(X). If there is at most one solution of the equation
(Id− T )u = f , then there exists a unique solution u of (Id− T )u = f . More precisely, if

v = 0 i� v − Tv = 0 i.e. Id− T is injective,

then for each f ∈ X there exists a unique solution u ∈ X such that (Id− T )u = f .

Remark. In fact, Id− T is a Fredholm operator of index zero.
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Given any f ∈ H−1(Ω), we notice that �nding a H1
0 (Ω) solution of the Helmholtz equation

(3.3.4) is equivalent to �nd a solution u ∈ H1
0 (Ω) of the following equation:

(∇u,∇v)L2(Ω) = ⟨k2u− f, v⟩H−1(Ω)⊕H1
0 (Ω) for all v ∈ H1

0 (Ω).

If we consider the compact operator (−∆)−1
Dir given in (3.6.4), the above equation means

u = (−∆)−1
Dir(k

2u− f) ≡ k2(−∆)−1
Diru− (−∆)−1

Dirf,

equivalently,

(Id− k2(−∆)−1
Dir)u = −(−∆)−1

Dirf.

By Exercise 3.6.11, it is easy to see that T := k2(−∆)−1
Dir ∈ K(L2(Ω)). Finally, we combine

Exercise 3.6.18 and the Fredholm alternative (Theorem 3.6.19) to conclude the following
theorem:

Theorem 3.6.20 (See also Theorem 3.4.8 for re�nement when k2 < λ1). Let Ω be a
bounded Lipschitz domain in Rn and let f ∈ H−1(Ω). If k2 ̸= λj for all j ∈ N, then there
exists a unique u ∈ H1

0 (Ω) satis�es

(∇u,∇v)L2(Ω) − k2(u, v)L2(Ω) = −⟨f, v⟩H−1⊕H1
0 (Ω) for all v ∈ H1

0 (Ω).

We now give a somehow satisfying answer to Question 3.4.1 (here we will not explain how
the weak solution related to strong solution). We now ask another question which is slightly
general than Question 3.4.1:

Question 3.6.21. Let Ω be a bounded Lipschitz domain in Rn, let f ∈ H−1(Ω), g ∈
H

1
2 (∂Ω) and k ≥ 0 with k2 is not an eigenvalue as mentioned in Theorem 3.6.4, can we �nd

a weak solution u of the Helmholtz equation

(3.6.5) (∆ + k2)u = f in Ω, u|∂Ω = g

or not? (Note: the uniqueness is already guaranteed by Exercise 3.6.18)

As above, we need to give a valid formulation �rst. By using the surjectivity of the
trace theorem, see the trace theorem (Theorem 3.3.13), there exists a ũ ∈ H1(Ω) such that
ũ|∂Ω = g (but however such extension ũ of g may not unique). From (3.6.5) we formally see
that the function w := u− ũ satis�es

(3.6.6) (∆ + k2)w = f − (∆ + k2)ũ in Ω, w|∂Ω = 0.

Despite ∆ũ can be de�ned in distribution sense, but it may not in H−1(Ω) since the
integration by parts (Theorem 3.2.8) may generate some boundary terms, therefore we cannot
formulate the above using similar ideas as above.

One still can perform the above simple idea by imposing additional assumptions. For
example, we can further assume Ω is a bounded C1,1 domain in Rn and further assume that
g ∈ H

3
2 (∂Ω). In this case, by the trace theorem (Theorem 3.3.14), one can construct a

ũ ∈ H2(Ω) such that ũ|∂Ω = g. In this case ∆ũ is well-de�ned and is L2(Ω) ⊂ H−1(Ω),
therefore f − (∆ + k2)ũ ∈ H−1(Ω). Hence we can solve (3.6.6) as in above. Here we do not
formulate this as a theorem since the result is far away from optimal.

In order to answer Question 3.6.21, one sees that the only problematic term in (3.6.6) is
the term ∆ũ. One simplest way to deal with it is to �nd an extension ũ ∈ H1(Ω) which is
harmonic in Ω, i.e. ∆ũ = 0 in Ω. In fact, this is true (we will not going to prove this):
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Theorem 3.6.22 (A special case of [GT01, Theorem 8.3], see also Theorem 4.4.6). Let Ω

be a bounded Lipschitz domain in Rn and let g ∈ H
1
2 (∂Ω). There exists a unique ũ ∈ H1(Ω)

with
∆ũ = 0 in Ω, ũ|∂Ω = g.

Now it is not di�cult to answer Question 3.6.21 in the following exercise:

Exercise 3.6.23. Let Ω be a bounded Lipschitz domain in Rn, let f ∈ H−1(Ω), g ∈
H

1
2 (∂Ω) and k ≥ 0 with k2 is not an eigenvalue as mentioned in Theorem 3.6.4. Show that

there exists a unique u ∈ H1(Ω) satis�es (3.6.5).



CHAPTER 4

Fourier analysis, convolution and fundamental solution

As mentioned in the title of this chapter, we will introduce the Fourier series as in my
previous lecture note [Kow22].

4.1. Fourier series

We now restrict ourselves when the case n = 1, and we want to compute the
eigendecomposition exhibited in Theorem 3.6.4. By choosing n = 1 and Ω = (0, π) in
Theorem 3.6.4, we generate an eigensystem {(λj, ϕj)}j∈N of L2((0, π)), and ϕj ∈ C∞((0, π))
satis�es

(4.1.1) ϕ′′
j = −λjϕj in (0, π), ϕ(0) = ϕ(π) = 0.

We now consider the general solution of the ODE ϕ′′
j = −λjϕj without account the boundary

condition. By introducing a variable ψj = ϕ′
j, we then reach

(4.1.2)

(
ψ′
j

ϕ′
j

)
=

(
0 −1
1 0

)(
ψj
ϕj

)
.

Indeed, the general solutions of (4.1.1), equivalnetly (4.1.2), forms a 2-dimentional vector
space over C, which is actually a special case of the following fundamental result:

Theorem 4.1.1 ([HS99, Theorem IV-2-1]). The general solutions of y′(t) = A(t)y(t),
where the entries of the n × n matrix A(t) are continuous on a closed interval, forms an
n-dimensional vector space (over C).

Remark 4.1.2. Using similar reduction (4.1.2) of (4.1.1), it is not di�cult to see that
the general solutions of linear ODE of order m form a m-dimensional vector space (over C).

Exercise 4.1.3 ([Bre11, page 232]). Show that ϕj(x) =
√

2
π
sin(jx) for j = 1, 2, · · · by

solving the ODE (4.1.1), and also verify that {ϕj}j∈N is orthonormal, i.e. ∥ϕj∥L2((0,π)) = 1
and (ϕi, ϕj)L2((0,π)) = 0 for all i ̸= j.

Since {ϕj} is an orthonormal basis of L2((0, π)), for each f ∈ L2((0, π)), we can write

(4.1.3) f(x) =
∞∑
j=1

aj sin(kx) with aj =
2

π

∫ π

0

sin(jx)f(x) dx.

The expansion (4.1.3) is called the Fourier sine series.

Exercise 4.1.4. Show that the solutions of the

(4.1.4) ψ′′
j = −λjψj in (0, π), ψ′(0) = ψ′(π) = 0

is ψj(x) =
√

2
π
cos(jx) for j = 0, 1, 2, · · · , and also verify that {ψj}j∈N is orthonormal, i.e.

∥ψj∥L2((0,π)) = 1 and (ψi, ψj)L2((0,π)) = 0 for all i ̸= j.

51
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In fact, {ψj}j∈N∪{0} also forms an orthonormal basis of L2((0, π)). One way to to this is
using the completeness of Neumann Laplacian eigenfunction (Remark 3.6.16). In this lecture
note, we will later give another elementary approach (see Exercise 4.1.23 below) involving
approximate identity (see Deinition 4.1.14 below). If we have the completeness, using similar
ideas will induce Fourier cosine expansion for f ∈ L2((0, π)):

(4.1.5) f(x) =
1

2
b0 +

∞∑
j=1

bj cos(jx) with bj =
2

π

∫ π

0

cos(jx)f(x) dx,

see also [Bre11, Comments on Chapter 5]. Later (see Exercise 4.1.11 below) we will give
another explaination about the normalizing constant 1/2 in the b0-term. Here both sine series
(4.1.3) and cosine series (4.1.5) are converges in L2((0, π)).

Exercise 4.1.5. Show that both sine series (4.1.3) and cosine series (4.1.5) also converges
in L2((−π, π)).

One should notice that sine series (4.1.3) is exactly the odd extension (2.4.10), while
cosine series (4.1.5) is exactly the even extension used in Exercise 2.4.6.

Example 4.1.6. Let f(x) = 1 in the interval (0, π). The function has a Fourier sine series
with coe�cients

aj =
2

π

∫ π

0

sin(jx) dx = − 2

πj
cos(jx)

∣∣∣∣x=π
x=0

=
2

πj
(1− cos jπ) =

2

πj
(1− (−1)j),

which in particular gives

aj =

{
4
jπ

if j is odd,

0 if j is even.

Thus

1 =
4

π

∑
j∈N

1

2j − 1
sin((2j − 1)x) converges in L2((0, π)).

As mentioned in Exercise 4.1.5, the above sine series also converges in L2((−π, π)). In fact,
one can verify that the above series converges pointwisely (this is not easy to prove, see
[Kow22] for details) with limit

f(x) =


1 , x ∈ (0, π),

0 , x = 0,

−1 , x ∈ (−π, 0).

Exercise 4.1.7. Compute the coe�cients of Fourier cosine series (4.1.5) for the function
f(x) = 1 in the interval (0, π).

Exercise 4.1.8. Compute the sine series (4.1.3) and cosine series (4.1.5) for the function
f(x) = x in the interval (0, π).

Exercise 4.1.9. Given any function f : R → R. We say that f is odd (resp. even)
if f(−x) = −f(x) (resp. f(−x) = f(x)) for all x ∈ R. Show that f can be uniquely
decomposed as f = feven + fodd, where feven is even and fodd is odd.
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In view of Exercise 4.1.9, it is natural to represent f : (−π, π) → C by the following full
Fourier series :

(4.1.6) f(x) =
1

2
B0 +

∞∑
j=1

 odd part︷ ︸︸ ︷
Aj sin(jx)+

even part︷ ︸︸ ︷
Bj cos(jx)

 for x ∈ (−π, π)

in L2((−π, π)).

Exercise 4.1.10. Show that

Aj =
1

π

∫ π

−π
f(x) sin(jx) dx for j = 1, 2, · · ·

Bj =
1

π

∫ π

−π
f(x) cos(jx) dx for j = 0, 1, 2, · · ·

In addition, show that f is odd i� Bj = 0 for all j = 0, 1, 2, · · · and similarly f is even i�
Aj = 0 for all j = 1, 2, · · · .

In view of eiθ = cos θ + i sin θ for all θ ∈ R, see e.g. my lecture note on complex
analysis [Kow23], it is helpful to express the Fourier series in terms of complex numbers.
Alternatively, we may consider the series

(4.1.7) f(x) =
∞∑

j=−∞

cje
ijx for x ∈ (−π, π) with cj ∈ C.

We can write (4.1.7) as

f(x) =
∞∑

j=−∞

cje
ijx = c0 +

∞∑
j=1

(cje
ijx + c−je

−ijx)

= c0 +
∞∑
j=1

(ℜcj + iℑcj)(cos(jx) + i sin(jx))

+
∞∑
j=1

(ℜc−j + iℑc−j)(cos(jx)− i sin(jx))

= c0 +
∞∑
j=1

(ℜcj cos(jx)−ℑcj sin(jx)) + i(ℜcj sin(jx) + ℑcj cos(jx))

+
∞∑
j=1

(ℜc−j cos(jx) + ℑc−j sin(jx)) + i(−ℜc−j sin(jx) + ℑc−j cos(jx))

= c0 +
∞∑
j=1

(−ℑcj + ℑc−j + i(ℜcj −ℜc−j)) sin(jx)

+
∞∑
j=1

(ℜcj + ℜc−j + i(ℑcj + ℑc−j)) cos(jx)

= c0 +
∞∑
j=1

i(cj − c−j) sin(jx) +
∞∑
j=1

(cj + c−j) cos(jx).
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Compare this with (4.1.6), we have

c0 =
1

2
B0, cj + c−j = Bj, i(cj − c−j) = Aj for all j ∈ N,

equivalently,

(4.1.8) c0 =
1

2
B0, cj =

1

2
(Bj − iAj), c−j =

1

2
(Bj + iAj) for all j ∈ N.

Exercise 4.1.11. Show that (4.1.8) is equivalent to

cj =
1

2π

∫ π

−π
f(x)eijx dx for all j ∈ Z.

Show that f is real-valued if and only if cj ∈ R for all j ∈ Z.

Exercise 4.1.12. Compute the Fourier series, which given in (4.1.7) and (4.1.8), of the
function f(x) = x in the interval (−π, π).

The ideas for multi-variable case is also similar: If f : Rn → C is of 2π-periodic in each
variable, we want to represent it by the Fourier series

f(x) =
∑
j∈Zn

cje
ij·x =

∑
j∈Zn

cje
ij1x1 · · · eijnxn for all x = (x1, · · · , xn) ∈ Rn.

We now consider the cube Q = [−π, π]n and normalize the scalar product on L2(Q) by

(f, g) ≡ (f, g)L2(Q) :=
1

|Q|

∫
Q

f(x)g(x) dx ≡ −
∫
Q

f(x)g(x) dx.

with |Q| = (2π)n.

Exercise 4.1.13. Show that the countable set {eik·x}k∈Zn is an orthonormal subset of
L2(Q).

In order to show that {eik·x}k∈Zn is a Hilbert basis of L2(Q), we need some preparations.

Definition 4.1.14. A sequence {QN(x)}N∈N of 2π-period continuous functions on the
real line is called an approximate identity if

(1) QN ≥ 0 for all N ∈ N;
(2) −

∫ π
−πQN(x) dx = 1 for all N ∈ N; and

(3) for each 0 < ϵ < π one has lim
N→∞

sup
ϵ≤|x|≤π

QN(x) = 0.

We now prove the existence of such function described in De�nition 4.1.14.

Lemma 4.1.15. The sequence

QN(x) := cN

(
1 + cos x

2

)N
, cN = 2π

(∫ π

−π

(
1 + cos x

2

)N
dx

)−1

is an approximate identity.
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Proof. It is easy to see that QN ≥ 0 and −
∫ π
−πQN(x) dx = 1 for all N ∈ N. We estimate

the constant cN as followings:

1 =
cN
2π

∫ π

−π

(
1 + cos x

2

)N
dx =

cN
π

∫ π

0

(
1 + cos x

2

)N
dx

≥ cN
π

∫ π

0

(
1 + cos x

2

)N
sinx dx

=
cN
π

∫ 1

−1

(
1 + t

2

)N
dt =

2cN
π

∫ 1

0

sN ds =
2cN

π(N + 1)
.

Thus for each 0 < ϵ < π we have

0 ≤ sup
ϵ≤|x|≤π

QN(x) ≤ QN(ϵ) = cN

(
1 + cos ϵ

2

)N
≤ π(N + 1)

2

(
1 + cos ϵ

2

)N
→ 0 as N → ∞

because 0 < 1+cos ϵ
2

< 1. □

Let f and g be two 2π-periodic functions. Then we formally de�ne the convolution f ∗ g
by

(f ∗ g)(x) := −
∫ π

−π
f(y)g(x− y) dy.

Exercise 4.1.16. Let f and g be two 2π-periodic functions. Show that f ∗ g = g ∗ f .

The following lemma explains the naming of De�nition 4.1.14.

Lemma 4.1.17. Let QN be an approximate identity described in De�nition 4.1.14 and let
f be a 2π-periodic function. If f is continuous, then

lim
N→∞

QN ∗ f = f converges in L∞((−π, π)).

If f ∈ Lp((−π, π)) for some 1 ≤ p <∞, then

lim
N→∞

QN ∗ f = f converges in Lp((−π, π)).

Proof. We �rst observe that

(QN ∗ f − f)(x) = −
∫ π

−π
QN(y)(f(x− y)− f(x)) dy.

Case 1: f is a (uniformly) continuous 2π-periodic function. Given any ϵ > 0,
there exists δ = δ(ϵ) > 0 such that

sup
|y|≤δ

|f(x− y)− f(x)| ≤ ϵ for all x ∈ R

and

sup
δ≤|x|≤π

QN(x) ≤ ϵ for all su�ciently large N.
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Then for all su�ciently large N we estimate that

|(QN ∗ f − f)(x)|

≤ 1

2π

(∫
|y|≤δ

+

∫
δ≤|y|≤π

)
QN(y)|f(x− y)− f(x)| dy

≤ ϵ

2π

( ≤ 2π︷ ︸︸ ︷∫
|y|≤δ

QN(y) dy+

≤ 4π∥f∥L∞(R)︷ ︸︸ ︷∫
δ≤|y|≤π

|f(x− y)− f(x)| dy
)

≤ ϵ(1 + 2∥f∥L∞(R)),

which gives

(4.1.9) lim sup
N→∞

|(QN ∗ f − f)(x)| ≤ ϵ(1 + 2∥f∥L∞(R)).

By arbitrariness of ϵ > 0, we conclude the �rst part of the lemma.
Case 2: f ∈ Lp((−π, π)) for some 1 ≤ p < ∞. Using the Minkowski's integral

inequality (Exercise 1.0.10), we estimate

∥QN ∗ f − f∥Lp((−π,π))

≤ 1

2π

(∫ π

−π

∣∣∣∣∫ π

−π
QN(y)(f(x− y)− f(x)) dy

∣∣∣∣p dx) 1
p

≤ 1

2π

∫ π

−π

(∫ π

−π
|QN(y)(f(x− y)− f(x))|p dx

) 1
p

dy

=
1

2π

∫ π

−π
QN(y)∥f(· − y)− f∥Lp((−π,π)) dy.

Since f ∈ Lp((−π, π)), by approximate it by C∞
c (−π, π) functions (Lemma 1.0.15), one can

show that, given any ϵ > 0, there exists δ = δ(ϵ) > 0 such that

sup
|y|≤δ

∥f(· − y)− f∥Lp((−π,π)) ≤ ϵ.

By using (4.1.9), then for all su�ciently large N we estimate

∥QN ∗ f − f∥Lp((−π,π))

≤ 1

2π

(∫
|y|≤δ

+

∫
δ≤|y|≤π

)
QN(y)∥f(· − y)− f∥Lp((−π,π)) dy

≤ ϵ

2π

( ≤ 2π︷ ︸︸ ︷∫
|y|≤δ

QN(y) dy+

≤ 4π∥f∥Lp((−π,π))︷ ︸︸ ︷∫
δ≤|y|≤π

∥f(· − y)− f∥Lp((−π,π)) dy

)
≤ ϵ(1 + 2∥f∥Lp((−π,π)))

and we prove the second part of the lemma similar as in the �rst part. □

Here we also recall the following version of Hahn-Banach theorem, its contrapositive
statement is quite useful in PDE:
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Theorem 4.1.18 ([Bre11, Corollary 1.8]). Let X be a Banach space with dual space1

X∗. Let X0 ⊂ X be a linear subspace. If X0 ̸= X, then there exists some 0 ̸≡ f ∈ E∗ such
that ⟨f, x⟩X∗⊕X = 0 for all x ∈ X.

We are now ready to prove the following:

Lemma 4.1.19. {eijx}j∈Z is a Hilbert basis (i.e. complete orthonormal basis) of
L2((−π, π)).

Proof. Write ϕj(x) = eikx. Let f ∈ L2((−π, π)) be such that

(4.1.10) (f, ϕj)L2((−π,π)) = 0 for all j ∈ Z.

Let QN be the function described in Lemma 4.1.15, and from (4.1.10) implies QN ∗ f = 0
for all N ∈ N. Therefore, by using Lemma 4.1.17, we conclude that f ≡ 0, and our result
immediately follows from the Hahn-Banach theorem (Theorem 4.1.18). □

Exercise 4.1.20. Show that {eij·x}j∈Zn is a complete orthonormal basis of L2(Q).

We �nally end this section by the following theorem, which makes the above discussions
rigorous.

Theorem 4.1.21 (Fourier series of L2 functions). If f ∈ L2(Q), then one has the Fourier
series

(4.1.11) f(x) =
∑
k∈Zn

f̂(k)eik·x converges in L2(Q)

with the Fourier coe�cients

(4.1.12) f̂(k) = −
∫
Q

f(x)e−ik·x dx.

One has the Parseval identity

∥f∥2L2(Q) =
∑
k∈Zn

|f̂(k)|2.

Conversely, if the sequence {ck} ∈ ℓ2(Zn), i.e.
∑

k∈Zn |ck|2 < ∞, then the series∑
k∈Zn cke

ik·x converges in L2(Q) to some f ∈ L2(Q) and it is necessarily ck = f̂(k), i.e. the
Fourier series is unique.

Remark 4.1.22. If we equipped ℓ2(Zn) with the norm

∥{ck}∥ℓ2(Zn) :=

(∑
k∈Zn

|ck|2
) 1

2

,

then in fact it is a Banach space. Theorem 4.1.21 says that there is a 1-1 corresponding
between the elements in L2(Q) with the elements in ℓ2(Zn). Therefore the Fourier coe�cients
(4.1.12) can be viewed as the discrete Fourier transform, and the inverse discrete Fourier
transform is given by the formula (4.1.11). We will further explain this in next section.

1I didn't explain the meaning of the �dual space of Banach space�, but let's keep the terminology here for
future references.
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Proof of Theorem 4.1.21. The �rst part is an immediate consequence of
Exercise 4.1.20. We now prove the uniqueness of the Fourier series. If {ck} ∈ ℓ2(Zn),
then we see that the partial sum

SN(x) :=
∑
|k|≤N

cke
ik·x

is a Cauchy sequence in L2(Q). Since L2(Q) is Banach, then we know that SN(x) converges
to some f ∈ L2(Q) as N → ∞. For each N ≥ k, we also see that

|ck − f̂(k)| = |(SN − f, ei⟨k,·⟩)| ≤ Cn∥ei⟨k,·⟩∥L2(Q)∥SN − f∥L2(Q) → 0 as N → ∞,

which conclude ck = f̂(k). □

Exercise 4.1.23. Show that {ψj}j∈N∪{0} given in Exercise 4.1.4 also forms an orthonormal
basis of L2((0, π)), therefore the Neumann series discussed above is valid. [Hint: Use
Exercise 4.1.10.]

It is possible to discuss the convergence of Fourier series in di�erent sense (e.g. pointwise
convergence, absolute convergence as well as uniform convergence), one can refer to my
lecture note [Kow22]. We will not discuss them in this lecture note.

4.2. A quick introduction of Fourier transform

As mentioned in Remark 4.1.22, the Fourier series is a discrete version of Fourier
transform. We now start to explain this from the following exercise:

Exercise 4.2.1. Let T > 0 and let f : Rn → C be a function with period 2T on each
variable. Show that the Fourier series of f is given by

(4.2.1) f(x) =
∑
k∈Zn

f̂(k)ei
π
T
k·x with f̂(k) = −

∫
[−T,T ]n

f(y)e−i π
T
k·y dy,

where −
∫
[−T,T ]n is the average integral given by

−
∫
[−T,T ]n

≡ 1

|[−T, T ]n|

∫
[−T,T ]n

=
1

(2T )n

∫
[−T,T ]n

.

If we denote ξ = π
T
k ∈ π

T
Zn, then the scaled Fourier series (4.2.1) can be rewritten as

f(x) =
1

(2π)n

∑
k∈Zn

(∫
[−T,T ]n

f(y)e−iξ·y dy

)
eiξ·x

(π
T

)n
.

We observe that
(
π
T

)n
is the volume of each square in the mesh π

T
Zn. In view of Riemann

integral, formally taking the limit T → ∞ we see that

(4.2.2) f(x) =
1

(2π)n

∫
Rn

(∫
Rn

f(y)e−iξ·y dy

)
eiξ·x dξ.

Definition 4.2.2. The Fourier transform of f ∈ L1(Rn) is de�ned by

(Ff)(ξ) ≡ f̂(ξ) :=

∫
Rn

f(y)e−iξ·y dy.

From this, it is easy to see that ∥f̂∥L∞(Rn) ≤ ∥f∥L1(Rn) and f̂ is continuous.
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From (4.2.2), we formally have the Fourier inversion formula

(4.2.3) f(x) =
1

(2π)n

∫
Rn

f̂(ξ)eiξ·x dξ ≡ 1

(2π)n
(Ff)(−x).

But the problem here is the regularity does not match since we do not know whether the
Fourier transform converges for L∞(Rn) functions or not, because we only de�ne Fourier
transform for L1(Rn)-functions. Our goal to explain when does the equality (4.2.3) is well-
de�ned.

Exercise 4.2.3. Using Fubini's theorem (Theorem 1.0.4), show that∫
Rn

f̂(ξ)g(ξ) dξ =

∫
Rn

f(x)ĝ(x) dx for all f, g ∈ L1(Rn).

The above exercise might suggests de�ning the Fourier transform f̂ of a distribution
f ∈ D ′(Rn). However, this idea does not work since we do not whether F (C∞

c (Rn)) is
contained in C∞

c (Rn). In fact, the failure of this idea is con�rmed by the following fact:

Lemma 4.2.4. If φ ∈ C∞
c (Rn) and φ̂ ∈ C∞

c (Rn), then φ ≡ 0.

This fact says that
∫
Rn f(x)ĝ(x) dx is not well-de�ned for general distribution f ∈ D ′(Rn).

One can overcome this di�culty by introduce the following class of functions:

Definition 4.2.5. The Schwartz class of rapidly decreasing function is de�ned as

S (Rn) :=

φ ∈ C∞(Rn) :
∑

|α|≤m

sup
x∈Rn

(1 + |x|2)
m
2 |∂αφ(x)| <∞ for all m ∈ Z≥0

 .

Exercise 4.2.6. For each 1 ≤ p <∞, show that S (Rn) ⊂ Lp(Rn).

Similar to distributions, it is also possible to de�ne suitable topology for S (Rn). In fact,
the Fourier inversion formula (4.2.3) can be done in a rigorous way:

Theorem 4.2.7 (Fourier inversion formula). The Fourier transform is an algebraic and
topological isomorphism, i.e. F : S (Rn) → S (Rn) is a well-de�ned bijective mapping,
which is continuous, and its inverse also continuous. In addition, its inverse is the operator
F−1 : S (Rn) → S (Rn) is given by the formula

(4.2.4) (F−1g)(x) =
1

(2π)n

∫
Rn

g(ξ)eiξ·x dξ

for all g ∈ S (Rn) and for all x ∈ Rn.

Exercise 4.2.8. For each f, g ∈ S (Rn), show that

(1) Symmetry. F 2f = (2π)nf̃ with f̃(x) = f(−x). Consequently, F 4f = (2π)2nf .

(2) Parseval's identity.
∫
Rn f̂(x)g(x) dx =

∫
Rn f(x)ĝ(x) dx

(3) Parseval's identity.
∫
Rn f(x)g(x) dx = (2π)−n

∫
Rn f̂(ξ)ĝ(ξ) dξ. Consequently,

∥f∥2L2(Rn) = (2π)−n∥f̂∥2L2(Rn).

(4) Derivative. F (∂αx f)(x) = (iξ)αf̂(ξ), where yα := yα1
1 yα2

2 · · · yαn
n .

(5) Polynomial. F ((−ix)βf)(ξ) = ∂βξ f̂(ξ).

Suppose that A is a real symmetric positive de�nite matrix (in the sense of Exercise 2.3.1).
Compute F (−∆f), where ∆ is the Laplacian (see again Remark 2.3.5).
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Definition 4.2.9. We denote the tempered distribution S ′(Rn) the collection of bounded
linear functional on S (Rn).

By using the Fourier inversion formula on Schwartz function (Theorem 4.2.7), suggested

by Exercise 4.2.3, one can de�ne the Fourier transform f̂ of f ∈ S ′(Rn) by

(4.2.5) ⟨f̂ , g⟩S ′(Rn)⊕S (Rn) := ⟨f, ĝ⟩S ′(Rn)⊕S (Rn) for all g ∈ S (Rn).

In fact, the Fourier inversion formula also holds true for tempered distributions:

Theorem 4.2.10 (Fourier inversion formula). The Fourier transform is a bijective map
from S ′(Rn) → S ′(Rn), and the Fourier inversion formula (4.2.4) also holds.

Remark 4.2.11. All properties in Exercise 4.2.8 also can be extended for the Fourier
transform in Theorem 4.2.10 as well. Even though the precise de�nition is given by (4.2.5),
we usually still denote as in De�nition 4.2.2.

4.3. Distribution with compact support and convolution

We now want to extend the convolution for functions (De�nition 1.0.12) as in [FJ98],
but here we only exhibit some special cases which we needed. In order to do so, we �rst
introduce some concept of tensor products. Given any functions f, g, the tensor product
f ⊗ g is de�ned by

(f ⊗ g)(x,y) := f(x)g(y).

For each f ∈ L1
loc(Rn), let Tf ∈ D ′(Rn) be the distribution given in Example 3.1.17, and this

suggests us to de�ne

(Tf ⊗ Tg)(φ) :=

∫
Rm

∫
Rn

f(x)g(y)φ(x,y) dx dy

for all φ ∈ C∞
c (Rn × Rm). If one take a particular choice φ(x,y) = (φ1 ⊗ φ2)(x,y) =

φ1(x)φ2(y), one immediately obtain

(Tf ⊗ Tg)(φ1 ⊗ φ2) = Tf (φ1)Tg(φ2).

However, not all φ can be written in the form of φ1 ⊗ φ2, and not all distributions can
be written in the form of Tf , therefore the well-de�nedness of the tensor product is not so
obvious. Despite it is not so obvious, however it can be done:

Theorem 4.3.1. [FJ98, Theorem 4.3.2] Given any T ∈ D ′(Rn) and S ∈ D ′(Rm), there
exists a unique element T ⊗ S ∈ D ′(Rn × Rn), which is called the tensor product of T and
S, such that

(T ⊗ S)(φ1 ⊗ φ2) = T (φ1)S(φ2) for all φ1 ∈ C∞
c (Rn) and φ2 ∈ C∞

c (Rm).

Here we refer to [FJ98, Theorem 4.3.3] for some basic properties of tensor products.
In order to motivate the de�nition of convolution, let us again consider the distribution
Tf ∈ D ′(Rn) be the distribution given in Example 3.1.17 with f ∈ L1

loc(Rn). By direct
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computations, one sees that

(Tf ∗ Tg)(φ) =
∫
Rn

(f ∗ g)(z)φ(z) dz

=

∫
Rn

∫
Rn

g(y)f(z − y)φ(z) dy dz

=

∫
Rn

∫
Rn

f(x)g(y)φ(x+ y) dy dx

=

∫
Rn

∫
Rn

f(x)g(y)ϕ(x,y) dy dx where ϕ(x,y) = φ(x+ y)

= (Tf ⊗ Tg)(ϕ).

This suggests us to de�ne the convolution of distirbutions T, S ∈ D ′(Rn) by

(4.3.1) (T ∗ S)(φ) := (T ⊗ S)(ϕ) with ϕ(x,y) = φ(x+ y).

Formally from (4.3.1) we immediately sees that

T ∗ S = S ∗ T.
However, one cannot guarantee ϕ has compact support in Rn × Rn ∼= R2n even though with
φ ∈ C∞

c (Rn). In order to encounter this problem, we introduce the following notion:

Definition 4.3.2. For any open set Ω ⊂ Rn, the tempered distribution T ∈ D ′(Rn) is
said to vanish on Ω, we often denoted as T = 0 in Ω, if

T (φ) = 0 for all φ ∈ C∞
c (Ω).

Two tempered distributions T1, T2 ∈ D ′(Rn) are said to be equal in Ω if T1 − T2 vanish in
Ω. The support of a distribution T ∈ D ′(Rn), denoted by supp (T ), is the complement of
the largest open subset of Rn where T vanishes (therefore supp (T ) is necessarily closed in
Rn). Accordingly, we say that a tempered distribution has compact support if its support is
a compact set in Rn.

One can de�ne a suitable topology (not similar to above) for E (Rn) ≡ C∞(Rn), and we
let E ′(Rn) be the set of continuous linear functional on E (Rn). Sometimes we denote E (Rn)
to emphasize the topology, but however we will still denote C∞(Rn) in this lecture note. In
fact, the above notions are actually consistent:

Theorem 4.3.3. Let T ∈ D ′(Rn). The following are equivalent:

(1) T has compact support;
(2) T can be extended to an element in E ′(Rn).

From this, if a distribution T ∈ D ′(Rn) has compact support, then T (φ) is well-de�ned
for general smooth function φ ∈ C∞(Rn) without compact support, this fact is helpful to
deal with the problem encountered while de�ne the convolution of distributions (4.3.1). This
strongly suggests us to overcome this di�culty is to assume that one of the distributions T
or S has compact support.

Theorem 4.3.4. The convolution of distributions (4.3.1) is a well-de�ned (separately
continuous2) map

2We will not explain this topological terminology in this lecture note, but we still keep here for future
reference.
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(1) E ′(Rn)× D ′(Rn) → D ′(Rn);
(2) E ′(Rn)× E ′(Rn) → E ′(Rn);

One can refer [FJ98] how to deal with the convolution of distributions with non-compact
supports. Despite the precise de�nition of convolution is given by (4.3.1), but here and
after we abuse the notation by using the notation same as the convolution for functions
(De�nition 1.0.12). Similar to Lemma 3.2.10 and Lemma 3.2.11, it is worthmentioning that
similar properties also holds for distirbutional derivatives:

Lemma 4.3.5. Let T ∈ E ′(Rn) and S ∈ D ′(Rn), then

∂α(T ∗ S) = (∂αT ) ∗ S = T ∗ (∂αS).

However, one should be careful about the associativity. The proper statement should be
the followings:

Lemma 4.3.6. Let T ∈ E ′(Rn), S ∈ D ′(Rn) and R ∈ E ′(Rn), then

R ∗ (S ∗ T ) = (R ∗ S) ∗ T = (R ∗ T ) ∗ S.

However, the above associativity property may fails without assuming the compact
support condition properly, we provide a counterexample in the following exercise:

Exercise 4.3.7. Let T1 = 1, T2 = δ′0 (derivative of Dirac distribution at 0) and T3 = H
(Heaviside function given in (3.1.1)). Note that both T1 and T3 do not have compact support
on R1. Show that

(T1 ∗ T2) ∗ T3 and T1 ∗ (T2 ∗ T3) both exist but they are not identical.

4.4. Fundamental solution of Laplacian

For simplicity, here we only consider the Laplacian. The ideas in this section can be
generalized for general elliptic systems, here we refer to the monograph [McL00]. We are
now interested to construct a distribution Φ ∈ S ′(Rn) for which

(4.4.1) −∆Φ = δ0 in S ′(Rn).

In view of Lemma 4.3.5, for each f ∈ C∞
c (Rn), one can easily see that

−∆(Φ ∗ f) = −∆Φ ∗ f = δ0 ∗ f = f,

which immediately gives a solution of the Poisson equation −∆u = f in Rn, which motivate
us to study such distribution Φ. Taking the Fourier transform on (4.4.1) suggests us to �nd

Φ̂(ξ) = |ξ|−2. However this seems not a good idea since there is a singularity at ξ = 0.
For simplicity, here we will only consider Laplacian case, one can refer e.g. [DHM18] for
discussions for more general elliptic systems.

We now de�ne

(4.4.2) Φ(x) :=

{
1

n(n−2)|B1| |x|
2−n when n > 2,

− 1
2π

log |x| when n = 2,

where |B1| is the volume of unit ball in Rn, and in fact it is given by

|B1| =
2πn/2

nΓ(n/2)
.
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Exercise 4.4.1. Show that Φ ∈ L1
loc(Rn), and it satis�es (4.4.1), more precisely, show

that

−
∫
Rn

Φ(x)∆u(x) dx = u(0) for all u ∈ C∞
c (Rn).

[Hint: Choose R > 0 such that supp (f) ⊂ BR. Given ϵ > 0, consider the integral∫
Rn\Bϵ

Φ(x)∆f(x) dx =
∫
BR\Bϵ

Φ(x)∆f(x) dx, and then doing integration by parts on

BR \Bϵ. Be careful the orientation on the inner sphere ∂Bϵ.]

Exercise 4.4.2. Let Ω be a bounded Lipschitz domain in Rn. Prove the Green's
representation formula:

u(y) =

∫
∂Ω

(Φ(x− y)∂νu(x)− u(x)∂νΦ(x− y)) dSx −
∫
Ω

Φ(x− y)∆u(x) dx

[Hint: Can be done using similar ideas as in previous exercise.]

Definition 4.4.3. The integral
∫
Ω
Φ(x−y)f(x) dx is call the Newtonian potential with

density f .

If we choose u be the unique solution of ∆u = 0 in Ω with u|∂Ω = g (see Theorem 3.6.22),
from Exercise 4.4.2 we have

(4.4.3) u(y) =

∫
∂Ω

(Φ(x− y)∂νu(x)− g(x)∂νΦ(x− y)) dSx.

Now suppose that h ∈ C1(Ω) ∩ C2(Ω) satis�es ∆h = 0 in Ω, then by integration by parts
one can easily show that

(4.4.4) 0 =

∫
Ω

h(x)∆u(x) dx = −
∫
∂Ω

(h(x)∂νu(x)− g(x)∂νh(x)) dSx.

In view of (4.4.3) and (4.4.4), if we write G(x,y) := Φ(x− y)− h(x), then we reach

u(y) =

∫
∂Ω

(G(x,y)∂νu(x)− g(x)∂νG(x,y)) dSx.

If we can �nd h such that G(x,y) = 0 for all x ∈ ∂Ω, then we reach

(4.4.5) u(y) = −
∫
∂Ω

g(x)∂νG(x,y) dSx,

which gives a representation for the unique solution u of ∆u = 0 in Ω with u|∂Ω = g (see
Theorem 3.6.22). Such function G in (4.4.5) is called the Green's function.

When Ω is a ball, indeed the Green function can be written explicitly, and thus (4.4.5) is
valid at least when Ω is a ball:

Exercise 4.4.4 (Poisson integral formula). Let Ω = BR = BR(0) = {x ∈ Rn : |x| < R}.
For each 0 ̸= x ∈ Rn, let x̃ be its re�ection with respect to ∂BR with formula

x̃ :=
R2

|x|2
x for all 0 ̸= x ∈ Rn.

Let Φ be the function given in (4.4.2), and de�ne

G(x,y) =

Φ(x− y)− Φ

(
|y|
R

(x− ỹ)

)
,y ̸= 0,

Φ(x)− Φ(R) ,y = 0
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(1) Show that G(x,y) = G(y,x) ≥ 0 for all x,y ∈ BR.
(2) Show that

(4.4.6) ∂νG(x,y) ≡ ∂|x|G(x,y) =
R2 − |y|2

n|B1|R
|x− y|−n ≥ 0

for all x ∈ ∂BR and y ∈ BR.
(3) If u ∈ C2(BR) ∩ C1(BR) satis�es ∆u = 0 in Ω, then

(4.4.7) u(y) =
R2 − |y|2

n|B1|R

∫
∂BR

u(x)

|x− y|n
dSx for all y ∈ BR.

We usually call (4.4.6) the Poisson kernel, and we denoted it by

K(x,y) :=
R2 − |y|2

n|B1|R
|x− y|−n for all x ∈ ∂BR and y ∈ BR.

By choosing u ≡ 1 in (4.4.7), one immediately sees that

(4.4.8)

∫
∂BR

K(x,y) dSx = 1 for all y ∈ BR.

Based on this observation, we now able to solve the Dirichlet problem in the following sense
(it is interesting to compare this result with Theorem 3.6.22):

Theorem 4.4.5. Let Ω = BR = BR(0) = {x ∈ Rn : |x| < R} and let φ be a continuous
function on ∂BR. Then the function u de�ned by

u(x) =

{∫
∂BR

K(x,y)g(y) dSy for x ∈ BR,

g(x) for x ∈ ∂BR,

belongs to C2(BR) ∩ C0(BR) and satis�es ∆u = 0 in Ω with u|∂Ω = g.

Proof. It remains to show that u ∈ C0(BR). From (4.4.8) it is easy to see that

u(x)− u(x0) =

∫
∂BR

K(x,y)(g(y)− g(x0)) dSy.

Given any x0 ∈ ∂BR and let ϵ > 0 be arbitrary number. Since φ is (uniformly) continuous,
one can �nd δ = δ(ϵ) > 0 such that

sup
|x−x0|<δ

|φ(x)− φ(x0)| ≤ ϵ.

Then if |x− x0| < δ/2, then from (4.4.6) we see that

|u(x)− u(x0)| =
∣∣∣∣∫
∂BR

K(x,y)(g(y)− g(x0)) dSy

∣∣∣∣
≤
∫
y∈∂BR,|y−x0|≤δ

K(x,y)|g(y)− g(x0)| dSy

+

∫
y∈∂BR,|y−x0|>δ

K(x,y)|g(y)− g(x0)| dSy

≤ ϵ+
2∥g∥L∞(∂BR)(R− |x|2)Rn−2

(δ/2)n
.
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Since x0 ∈ ∂BR, then x → x0 implies |x| → R, therefore

lim sup
x→x0

|u(x)− u(x0)| ≤ ϵ.

By arbitrariness of ϵ > 0, we conclude our theorem. □

In fact, one can show the unique solvable of the Dirichlet problem∆u = 0 in Ω with u|∂Ω =
g for some suitable regular ∂Ω by using the method of subharmonic functions, called the
Perron's method. This ideas even works for elliptic equations, see e.g. [GT01, Theorem 6.13].
In fact, we have the following result, which is even holds true for general elliptic equations:

Theorem 4.4.6 (A special case of [GT01, Theorem 6.13], see also Theorem 3.6.22).
Let Ω be a bounded Lipschitz domain in Rn and let g ∈ C0(∂Ω). There exists a unique
ũ ∈ H1

loc(Ω) ∩ C0(Ω) with
∆u = 0 in Ω, u|∂Ω = g.

Here H1
loc(Ω) = {u ∈ D ′(Ω) : u|ω ∈ H1(ω) for any open set ω satis�es ω ⊂ Ω}.

Fix any x ∈ Ω. By using Theorem 4.4.6, one sees that the mapping g 7→ u(x) is a linear
functional on C0(∂Ω), which is positive in the sense of g ≥ 0 implies u(x) ≥ 0 in Ω and if
0 ̸≡ g ≥ 0 implies u(x) > 0, which holds true by strong maximum principle (Lemma 3.5.6).
Therefore, by the Riesz representation theorem [Rud87, Theorem 6.19], there exists a Borel
measure µx on ∂Ω such that

u(x) =

∫
∂Ω

g(y) dµx(y).

This is related to the existence of the Green's function in (4.4.5) by interpreting

−∂νG(x,y) dSx := dµx(y).

Definition 4.4.7. We call such measures {µx}x∈Ω the harmonic measures.

Here we refer the monographs [CS05, Ken95] for further introduction on this topic, see
also [CFMS81] for discussions about some generalizations.



CHAPTER 5

Partial di�erential equation in weak sense (continued)

In Chapter 2, we discussed wave equation under classical sense. Recall that in the very
beginning of Chapter 3, we give some reason that it is necessarily to investigate the PDE
in weak sense. We now turn back to study the wave equation, but now in weak sense, as
in [Eva10, Chapter 7]. For simplicity, here we only consider constant coe�cient case. The
argument can be easily extended for variable case. The ideas in this chapter even works
for some PDE involving pseudodi�erential operators with some necessarily modi�cations
[KLW22, KMS23, KW23].

Let Ω be a bounded Lipschitz domain in Rn and for each T > 0 we denote ΩT := (0, T )×Ω
and (∂Ω)T := (0, T )×∂Ω. Our goal is to solve the following hyperbolic initial-boundary value
problem for some suitable external source f = f(t,x) as well as initial conditions g = g(x)
and h = h(x):

(5.0.1)


∂2t u−∆u+ b · ∇u+ cu = f in ΩT ,

u = 0 on (∂Ω)T ,

u(0,x) = g(x), ∂tu(0,x) = h(x) for all x ∈ Ω.

Here b = (b1, · · · , bn) and c are constants (for simplicity).

5.1. Formulation of weak solutions

We �rst explain the motivation for de�nition of weak solution. Fix any t ∈ (0, T ) and
given any φ = φ(x) ∈ C∞

c (Ω), from (5.0.1) and integration by parts (Theorem 3.2.8) formally
one has

⟨f(t, ·), φ⟩H−1(Ω)⊕H1
0 (Ω) = ∂2t (u(t, ·), φ)L2(Ω) + a(u(t, ·), φ),

where the bilinear form B is given by

a(ϕ, φ) := (∇ϕ,∇φ)L2(Ω) + (b · ∇ϕ, φ)L2(Ω) + c(ϕ, φ)

This strongly suggests us to work with u(t, ·) ∈ H1
0 (Ω) and f(t, ·) ∈ H−1(Ω). For later

convenience, we de�ne the associated mapping

ũ : [0, T ] → H1
0 (Ω), [ũ(t)](x) := u(t,x),

f̃ : [0, T ] → H−1(Ω), [f̃(t)](x) := f(t,x).

We denote

(ũ′(t))(x) = ∂tu(t,x), (ũ′′(t))(x) = ∂2t u(t,x),

and we write

⟨f̃(t), φ⟩H−1(Ω)⊕H1
0 (Ω) = ∂2t (ũ(t), φ)L2(Ω) +B(ũ, v; t),

with

B[ũ, φ; t] := a(u(t, ·), φ).
66
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For convenience, for each Hilbert space H, we denote

L2(0, T ;H) :=
{
u : (0, T )×H → R : t 7→ ∥u(t, ·)∥H ∈ L2((0, T ))

}
,

which is a Banach space equipped with the norm

(5.1.1) ∥u∥L2(0,T ;H) :=

(∫ T

0

∥u(t, ·)∥2H dt

) 1
2

.

Exercise 5.1.1. Verify that (5.1.1) is a norm.

We now state the precise meaning of the weak solution of (5.0.1):

Definition 5.1.2. We say a function u ∈ L2(0, T ;H1
0 (Ω)) with ∂tu ∈ L2(0, T ;L2(Ω)) and

∂2t ∈ L2(0, T ;H−1(Ω)) is a weak solution of the hyperbolic IBVP (5.0.1) if

(5.1.2) ⟨ũ′′, φ⟩H−1(Ω)⊕H1
0 (Ω) +B[ũ, φ; t] = ⟨f̃ , φ⟩H−1(Ω)⊕H1

0 (Ω)

for all φ ∈ H1
0 (Ω) and a.e. t ∈ (0, T ), and ũ(0) = g as well as ũ′(0) = h.

5.2. Existence of weak solutions

Let {λjϕj} be the eigensystem of L2(Ω) described in Theorem 3.6.4, which is also an
orthogonal basis of H1

0 (Ω), see Remark 3.6.7. We want to approximate ũ by

(5.2.1) ũm(t) :=
m∑
k=1

dkm(t)ϕk,

where ũm satis�es

(5.2.2) ⟨ũ′′m(t), ϕk⟩H−1(Ω)⊕H1
0 (Ω) +B[ũm, ϕk; t] = ⟨f̃(t), ϕk⟩H−1(Ω)⊕H1

0 (Ω)

for all φ ∈ H1
0 (Ω) and a.e. t ∈ (0, T ), and (ũm(0), ϕk)L2(Ω) = (g, ϕk)L2(Ω) as well as

(ũ′m(0), ϕk)L2(Ω) = (h, ϕk)L2(Ω).

Exercise 5.2.1. Show that dkm(t) satis�es the linear system of ODE

(dkm)
′′(t) +

m∑
ℓ=1

ekℓ(t)dℓm(t) = fk(t) for k, ℓ ∈ {1, · · · ,m}.

with ekℓ(t) = B[wℓ, wk; t] and f
k(t) := (f̃(t), ϕk)L2(Ω).

By using the standard theory for ODE [HS99], there exists a unique C2 function dm(t) =
(d1m(t), · · · , dmm(t)) satis�es the ODE described in Exercise 5.2.1, and thus we constructed the
function ũm as in (5.2.1), which is called the Galerkin appriximation of u. The next step is
to obtain an energy estimate for ũm.

Theorem 5.2.2. If f ∈ L2(0, T ;L2(Ω)), then there exists a constant C = C(Ω, T ) such
that

sup
0≤t≤T

(
∥ũm(t)∥H1

0 (Ω) + ∥ũ′m(t)∥H1
0 (Ω)

)
+ ∥ũ′′m∥L2(0,T ;H−1(Ω))

≤ C
(
∥f∥L2(0,T ;L2(Ω)) + ∥g∥H1

0 (Ω) + ∥h∥L2(Ω)

)
for all m ∈ N.
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Proof. The constant C > 0may di�er in each line. We will only tracking its dependence.
By choosing φ = ũm(t) in (5.2.2), we reach

(f̃(t), ũ′m)L2(Ω) = ⟨ũ′′m(t), ũ′m(t)⟩H−1(Ω)⊕H1
0 (Ω) +B[ũm, ũ

′
m; t]

=
d

dt

(
1

2
∥ũ′m(t)∥2L2(Ω)

)
+B[ũm, ũ

′
m; t].

Furthermore, we can write

B[ũm, ũ
′
m; t] = (∇ũm,∇ũ′m)L2(Ω) + (b · ∇ũm, ũ′m)L2(Ω) + c(ũm, ũ

′
m)

=
d

dt

(
1

2
∥∇ũm(t)∥2L2(Ω)

)
+ (b · ∇ũm, ũ′m)L2(Ω) + c(ũm, ũ

′
m)

≥ d

dt

(
1

2
∥∇ũm(t)∥2L2(Ω)

)
− C

(
∥ũm∥2H1

0 (Ω) + ∥ũ′m∥2L2(Ω)

)
.

Combining the above two estimates, together with the Poincaré inequality (Lemma 3.4.6),
we reach

d

dt

(
∥∇ũm(t)∥2L2(Ω) + ∥ũ′m(t)∥2L2(Ω)

)
≤ C

(
∥∇ũm(t)∥2L2(Ω) + ∥ũ′m∥2L2(Ω) + ∥f∥2L2(0,T ;L2(Ω))

)
.

For convenience, we write η(t) := ∥∇ũm(t)∥2L2(Ω) + ∥ũ′m(t)∥2L2(Ω), and the above inequality
reads

η′(t) ≤ C(η(t) + ∥f∥2L2(0,T ;L2(Ω))).

By consider the integral factor e−Ct, we see that

d

dt
(e−Ctη(t)) = −Ce−Ctη(t) + e−Ctη′(t)

≤ Ce−Ct∥f∥2L2(0,T ;L2(Ω)) ≤ C∥f∥2L2(0,T ;L2(Ω)),

therefore we immediately sees that

e−Cτη(τ)− η(0) =

∫ τ

0

d

dt
(e−Ctη(t)) dτ ≤ Cτ∥f∥2L2(0,T ;L2(Ω)), for a.e. τ ∈ (0, T ).

However, from Remark 3.6.7 one has

η(0) = ∥∇ũm(0)∥2L2(Ω) + ∥ũ′m(0)∥2L2(Ω)

≤ ∥ũm(0)∥2H1
0 (Ω) + ∥ũ′m(0)∥2L2(Ω)

=
m∑
k=1

λ2j |(ũj(0), ϕj)L2(Ω)|2 +
m∑
k=1

|(ũ′j(0), ϕj)L2(Ω)|2

=
m∑
k=1

λ2j |(g, ϕj)L2(Ω)|2 +
m∑
k=1

|(h, ϕj)L2(Ω)|2

≤
∞∑
k=1

λ2j |(g, ϕj)L2(Ω)|2 +
∞∑
k=1

|(h, ϕj)L2(Ω)|2

= ∥g∥2H1
0 (Ω) + ∥h∥2L2(Ω),(5.2.3)
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which proves

sup
0≤t≤T

(
∥ũm(t)∥H1

0 (Ω) + ∥ũ′m(t)∥H1
0 (Ω)

)
≤ C

(
∥f∥L2(0,T ;L2(Ω)) + ∥g∥H1

0 (Ω) + ∥h∥L2(Ω)

)
.(5.2.4)

In order to estimate the term ũ′′m(t), we �x any v ∈ H1
0 (Ω) with ∥v∥H1

0 (Ω) ≤ 1 and it can be

uniquely decomposed as v = v1 + v2, where v1 ∈ span {ϕk}mk=1 and (v2, wk)L2(Ω) = 0 for all
k = 1, · · · ,m. It is easy to verify that

⟨ũ′′m(t), v⟩H−1(Ω)⊕H1
0 (Ω) = (ũ′′m(t), v)L2(Ω)

= (ũ′′m(t), v
1)L2(Ω) = (f̃(t), v1)−B[ũm(t), v

1; t].

Since (v2, wk)L2(Ω) = 0, then by using Remark 3.6.7 one can easily verify that (v2, wk)H1
0 (Ω) =

0, and thus ∥v1∥H1
0 (Ω) ≤ 1. Hence one sees that

|⟨ũ′′m(t), v⟩H−1(Ω)⊕H1
0 (Ω)| ≤ C

(
∥f∥L2(0,T ;L2(Ω)) + ∥ũm(t)∥H1

0 (Ω)

)
for a.e. t ∈ (0, T ),

which implies

∥ũ′′m(t)∥H−1(Ω) = sup
∥v∥

H1
0(Ω)

≤1

|⟨ũ′′m(t), v⟩H−1(Ω)⊕H1
0 (Ω)|

≤ C
(
∥f∥L2(0,T ;L2(Ω)) + ∥ũm(t)∥H1

0 (Ω)

)
for a.e. t ∈ (0, T ).

Consequently, we reach∫ T

0

∥ũ′′m(t)∥2H−1(Ω) dt

≤ C

∫ T

0

(
∥f∥2L2(0,T ;L2(Ω)) + ∥ũm(t)∥2H1

0 (Ω)

)
dt

≤ C
(
∥f∥L2(0,T ;L2(Ω)) + ∥g∥H1

0 (Ω) + ∥h∥L2(Ω)

)
,

where the last inequality follows from (5.2.4). Finally, combining this with (5.2.4), we
conclude our lemma. □

Exercise 5.2.3 (Gronwall inequality). Let t 7→ η(t) be a non-negative, absolutely
continuous function on [0, T ], which satis�es for a.e. t the di�erential inequality

η′(t) ≤ ϕ(t)η(t) + ψ(t)

where ϕ(t) and ψ(t) are non-negative integrable functions on [0, T ]. Show that

η(t) ≤ exp

(∫ t

0

ϕ(s) ds

)[
η(0) +

∫ t

0

ψ(s) ds

]
for all 0 ≤ t ≤ T.

In particular, if η′ ≤ ϕη on [0, T ] and η(0) = 0, show that η ≡ 0 on [0, T ].

Exercise 5.2.4 (Gronwall inequality). Let ξ(t) be a nonnegative integrable function on
[0, T ] which satis�es for a.e. t the integral inequality

ξ(t) ≤ C1

∫ t

0

ξ(s) ds+ C2
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for some constants C1, C2 ≥ 0. Show that

ξ(t) ≤ C2(1 + C1te
C1t) for a.e. 0 ≤ t ≤ T.

In particular, if ξ(t) ≤ C1

∫ t
0
ξ(s) ds for a.e. 0 ≤ t ≤ T , then ξ ≡ 0 on [0, T ].

It is important to notice that the upper bound in Theorem 5.2.2 is independent of m.
We will recall a standard tool for proving the existence of weak solutions, which is related
to Banach-Alaoglu-Bourbaki theorem [Bre11, Theorem 3.16] as well as Kakutani theorem
[Bre11, Theorem 3.17]:

Theorem 5.2.5 ([Bre11, Proposition 3.5 and Theorem 3.18]). Let X be a re�exive
(roughly speaking, X∗∗ ∼= X with respect to some suitable topology) Banach space and let
{um} be a bounded sequence in X. Then there exists a subsequence {umℓ

} that converges
weakly to some u ∈ X in the sense of

⟨f, umℓ
⟩X∗⊗X → ⟨f, u⟩X∗⊗X as ℓ→ ∞.

In view of the upper bound in Theorem 5.2.2 which is independent of m (in other words,
uniform with respect to m), by choosing the space X with norm (Note. here we choose L2

in the time variable, rather than L∞: the dual of L1 is L∞, but the dual of L∞ is BMO, but
not L1)

∥ṽ∥X := ∥ṽ∥L2(0,T ;H1
0 (Ω)) + ∥ṽ′∥L2(0,T ;H1

0 (Ω)) + ∥ṽ′′∥L2(0,T ;H−1(Ω)),

there exists a subsequence {umℓ
}∞ℓ=1 and u ∈ L2(0, T ;H1

0 (Ω)) with ∂tu ∈ L2(0, T ;L2(Ω)) and
∂′′t u ∈ L2(0, T ;H−1(Ω)) such that

(5.2.5)


umℓ

→ u weakly in L2(0, T ;H1
0 (Ω)),

∂tumℓ
→ ∂tu weakly in L2(0, T ;L2(Ω)),

∂2t umℓ
→ ∂2t u weakly in L2(0, T ;H−1(Ω)).

We now �x an integer N and choose a function v ∈ C∞([0, T ];H1
0 (Ω)) of the form

(5.2.6) ṽ(t) =
N∑
k=1

dk(t)ϕk where dk ∈ C∞([0, T ]).

Then from (5.2.2) we have∫ T

0

⟨ũ′′m(t), ṽ(t)⟩H−1(Ω)⊕H1
0 (Ω) dt+

∫ T

0

B[ũm, ṽ; t] dt =

∫ T

0

(f̃(t), ṽ(t))L2(Ω) dt.

Choosing m = mℓ and from (5.2.5), we have

(5.2.7)

∫ T

0

⟨ũ′′(t), ṽ(t)⟩H−1(Ω)⊕H1
0 (Ω) dt+

∫ T

0

B[ũ, ṽ; t] dt =

∫ T

0

(f̃(t), ṽ(t))L2(Ω) dt.

By using the density lemma (Corollary 3.3.15) and the eigendecomposition of Laplacian
(Theorem 3.6.4), we know that each function in L2(0, T ;H1

0 (Ω)) can be approximated by the
functions in the form of (5.2.6). Therefore (5.2.7) is actually valid for all

v ∈ L2(0, T ;H1
0 (Ω)).
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By choosing the test function v which is independent of t in (5.2.7), we immediately see that
the limiting function u satis�es (5.1.2). If we choose v ∈ C∞([0, T ];H1

0 (Ω)) with ṽ(T ) =
ṽ′(T ) = 0 in (5.2.7), integration by parts twice with respect to t we �nd∫ T

0

(ṽ′′(t), ũ(t))L2(Ω) dt+

∫ T

0

B[ũ, ṽ; t] dt

=

∫ T

0

(f̃(t), ṽ(t))L2(Ω) dt− (ũ(0), ṽ′(0))L2(Ω) + ⟨ũ′(0), ṽ(0)⟩H−1(Ω)⊕H1
0 (Ω).(5.2.8)

If we choose v be as in the form of (5.2.6), we reach∫ T

0

(ṽ′′(t), ũm(t))L2(Ω) dt+

∫ T

0

B[ũm, ṽ; t] dt

=

∫ T

0

(f̃(t), ṽ(t))L2(Ω) dt− (ũm(0), ṽ
′(0))L2(Ω) + ⟨ũ′m(0), ṽ(0)⟩H−1(Ω)⊕H1

0 (Ω)

=

∫ T

0

(f̃(t), ṽ(t))L2(Ω) dt− (g(0), ṽ′(0))L2(Ω) + ⟨h(0), ṽ(0)⟩H−1(Ω)⊕H1
0 (Ω)

because (ũm(0), ϕk)L2(Ω) = (g, ϕk)L2(Ω) as well as (ũ′m(0), ϕk)L2(Ω) = (h, ϕk)L2(Ω). Again
choosing m = mℓ and from (5.2.5), from the above equation we see that∫ T

0

(ṽ′′(t), ũ(t))L2(Ω) dt+

∫ T

0

B[ũ, ṽ; t] dt

=

∫ T

0

(f̃(t), ṽ(t))L2(Ω) dt− (g(0), ṽ′(0))L2(Ω) + ⟨h(0), ṽ(0)⟩H−1(Ω)⊕H1
0 (Ω).(5.2.9)

Combining (5.2.8) and (5.2.9), we see that

− (ũ(0), ṽ′(0))L2(Ω) + ⟨ũ′(0), ṽ(0)⟩H−1(Ω)⊕H1
0 (Ω)

= −(g(0), ṽ′(0))L2(Ω) + ⟨h(0), ṽ(0)⟩H−1(Ω)⊕H1
0 (Ω).

By arbitrariness of ṽ′(0) and ṽ(0), we verify the boundary conditions in De�nition 5.1.2, and
hence we conclude the following theorem:

Theorem 5.2.6. There exists a weak solution (De�nition 5.1.2) of the hyperbolic IBVP
(5.0.1) satis�es the energy estimate

sup
0≤t≤T

(
∥u(t, ·)∥H1

0 (Ω) + ∥∂tu(t, ·)∥H1
0 (Ω)

)
+ ∥∂2t u(t, ·)∥L2(0,T ;H−1(Ω))

≤ C
(
∥f∥L2(0,T ;L2(Ω)) + ∥g∥H1

0 (Ω) + ∥h∥L2(Ω)

)
.(5.2.10)

5.3. Uniqueness of weak solutions

We now show that the solution is unique.

Theorem 5.3.1. There is at most one weak solution (De�nition 5.1.2) of the hyperbolic
IBVP (5.0.1).
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Proof. It is su�ces to show that the only weak solution of the hyperbolic IBVP (5.0.1)
with f ≡ g ≡ h ≡ 0 must be u ≡ 0. To verify this, �x 0 ≤ s ≤ T and set

ṽ(t) :=

{∫ s
t
ũ(τ) dτ if 0 ≤ t ≤ s,

0 if s ≤ t ≤ T.

For each 0 ≤ t ≤ T one sees that ṽ(t) ∈ H1
0 (Ω) and so

0 =

∫ s

0

(
⟨ũ′′, ṽ⟩H−1(Ω)⊕H1

0 (Ω) +B[ũ, ṽ; t]
)
dt

=

∫ s

0

(
−(ũ′, ṽ′)L2(Ω) +B[ũ, ṽ; t]

)
dt (since ũ′(0) = h ≡ 0 and ṽ(s) = 0)

=

∫ s

0

(
(ũ′, ũ)L2(Ω) −B[ṽ′, ṽ; t]

)
dt (since ṽ′ = −ũ)

=

∫ s

0

d

dt

(
1

2
∥ũ(t)∥2L2(Ω) −

1

2
∥∇ṽ(t)∥2L2(Ω) −

c

2
∥ṽ(t)∥2L2(Ω)

)
dt

−
∫ s

0

(b · ∇ṽ′, ṽ)L2(Ω) dt

=
1

2
∥ũ(s)∥2L2(Ω) −

1

2

=0︷ ︸︸ ︷
∥∇ṽ(s)∥2L2(Ω)−

c

2

=0︷ ︸︸ ︷
∥ṽ(s)∥2L2(Ω)

− 1

2
∥

=g≡0︷︸︸︷
ũ(0) ∥2L2(Ω) +

1

2
∥∇ṽ(0)∥2L2(Ω) +

c

2
∥ṽ(0)∥2L2(Ω)

−
=0︷ ︸︸ ︷

(b · ∇ṽ(s), ṽ(s))L2(Ω)+(b · ∇ṽ(0), ṽ(0))L2(Ω) +

∫ s

0

(b · ∇ṽ, ṽ′)L2(Ω) dt,

Then we have

∥ũ(s)∥2L2(Ω) + ∥∇ṽ(0)∥2L2(Ω)

= −c∥ṽ(0)∥2L2(Ω) − (b · ∇ṽ(0), ṽ(0))L2(Ω) −
∫ s

0

(b · ∇ṽ, ṽ′)L2(Ω) dt

= −c∥ṽ(0)∥2L2(Ω) − (b · ∇ṽ(0), ṽ(0))L2(Ω) −
∫ s

0

(b · ∇ṽ, ũ)L2(Ω) dt (since ṽ′ = −ũ)

It is not di�cult to see that

|(b · ∇ṽ(0), ṽ(0))L2(Ω)| ≤
1

2
∥∇ṽ(0)∥2L2(Ω) + C∥ṽ(0)∥2L2(Ω)

The constant C > 0 may di�er in each line. Hence we see that

∥ũ(s)∥2L2(Ω) + ∥∇ṽ(0)∥2L2(Ω)

≤ C

∫ s

0

(
∥∇ṽ(t)∥2L2(Ω) + ∥ũ(t)∥2L2(Ω)

)
dt+ C∥ṽ(0)∥2L2(Ω).(5.3.1)

Now we write

w̃(t) :=

∫ t

0

ũ(τ) dτ,
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and now (5.3.1) reads

∥ũ(s)∥2L2(Ω) + ∥∇w̃(s)∥2L2(Ω)

≤ C

∫ s

0

(
∥∇(w̃(t)− w̃(s))∥2L2(Ω) + ∥ũ(t)∥2L2(Ω)

)
dt+ C∥w̃(s)∥2L2(Ω)

≤ C

∫ s

0

(
∥∇w̃(t)∥2L2(Ω) + ∥∇w̃(s)∥2L2(Ω) + ∥ũ(t)∥2L2(Ω)

)
dt

since ∥w̃(s)∥L2(Ω) ≤
∫ s
0
∥ũ(t)∥L2(Ω) dt. It is important to observe that C is independent of s,

hence we obtain

∥ũ(s)∥2L2(Ω) + (1− sC)∥∇w̃(s)∥2L2(Ω)

≤ C

∫ s

0

(
∥∇w̃(t)∥2L2(Ω) + ∥ũ(t)∥2L2(Ω)

)
dt.

Hence we can choose T1 :=
1
2C
, and so

∥ũ(s)∥2L2(Ω) + ∥∇w̃(s)∥2L2(Ω) ≤ C0

∫ s

0

(
∥∇w̃(t)∥2L2(Ω) + ∥ũ(t)∥2L2(Ω)

)
dt.

Consequently, the integral form of Gronwall's inequality (Exercise 5.2.4) implies ũ(t) ≡ 0 for
all 0 ≤ t ≤ T1. We apply the same argument on the intervals [T1, 2T1], [2T1, 3T1] and so so,
�nally we conclude u ≡ 0, which complete the uniqueness proof. □



Bibliography

[AK19] G. Akagi and M. Kimura. Unidirectional evolution equations of di�usion type. J. Di�erential
Equations, 266(1):1�43, 2019. MR3870555, Zbl:1403.35141, doi:10.1016/j.jde.2018.05.022,
arXiv:1501.01072.

[Apo74] T. M. Apostol. Mathematical analysis. Addison-Wesley Publishing Co., second edition, 1974.
MR0344384, Zbl:0309.26002.

[AH09] K. Atkinson and W. Han. Theoretical numerical analysis. A functional analysis framework,
volume 39. Texts Appl. Math., Dordrecht, third edition, 2009. MR2511061, Zbl:1181.47078,
doi:10.1007/978-1-4419-0458-4.

[BN10] J. Bak and D. Newman. Complex Analysis. Undergraduate Texts in Mathematics. Springer, New
York, third edition, 2010. MR2675489, Zbl:1205.30001, doi:10.1007/978-1-4419-7288-0.

[BNV94] H. Berestycki, L. Nirenberg, and S. R. S. Varadhan. The principal eigenvalue and maximum
principle for second-order elliptic operators in general domains. Comm. Pure Appl. Math.,
47(1):47�92, 1994. MR1258192, Zbl:0806.35129, doi:10.1002/cpa.3160470105.

[Bre11] H. Brezis. Functional analysis, Sobolev spaces and partial di�erential equations. Universitext.
Springer, New York, 2011. MR2759829, Zbl:1220.46002, doi:10.1007/978-0-387-70914-7.

[CFMS81] L. Ca�arelli, E. Fabes, S. Mortola, and S. Salsa. Boundary behavior of nonnegative solutions of
elliptic operators in divergence form. Indiana Univ. Math. J., 30(4):621�640, 1981. MR0620271,
Zbl:0512.35038, doi:10.1512/iumj.1981.30.30049.

[CS05] L. Ca�arelli and S. Salsa. A geometric approach to free boundary problems, volume 68 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. MR2145284,
Zbl:1083.35001, doi:10.1090/gsm/068.

[CCH23] F. Cakoni, D. Colton, and H. Haddar. Inverse scattering theory and transmission eigenvalues,
volume 98 of CBMS-NSF Regional Conf. Ser. in Appl. Math. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, second edition edition, 2023. MR4539629,
Zbl:1507.35002, doi:10.1137/1.9781611977424.

[Cha06] I. Chavel. Riemannian geometry. A modern introduction, volume 98 of Cambridge Stud. Adv.
Math. Cambridge University Press, Cambridge, second edition, 2006. MR2229062, Zbl:1099.53001,
doi:10.1017/CBO9780511616822.

[CK19] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93
of Applied Mathematical Sciences. Springer, Cham, fourth edition, 2019. MR3971246,
Zbl:1425.35001, doi:10.1007/978-3-030-30351-8.

[CH04a] R. Courant and D. Hilbert. Methods of mathematical physics (vol I). Wiley-VCH Verlag GmbH
& Co. KGaA, 2004. MR0065391, Zbl:0053.02805, doi:10.1002/9783527617210.

[CH04b] R. Courant and D. Hilbert.Methods of mathematical physics (vol II). Partial di�erential equations.
Wiley-VCH Verlag GmbH & Co. KGaA, 2004. MR1013360, doi:10.1002/9783527617234.

[DHM18] B. Davey, J. Hill, and S. Mayboroda. Fundamental matrices and Green matrices for non-
homogeneous elliptic systems. Publicacions Matemàtiques, 62(2):537�614, 2018. MR3815288,
Zbl:1400.35098, doi:10.5565/PUBLMAT6221807, arXiv:1610.08064.

[dF82] D. G. de Figueiredo. Positive solutions of semilinear elliptic problems. In Di�erential equations,
volume 957 of Lecture Notes in Math. Springer-Verlag, Berlin-New York, 1982. MR0679140,
Zbl:0506.35038.

[dFG92] D. G. de Figueiredo and J.-P. Gossez. Strict monotonicity of eigenvalues and unique continuation.
Comm. Partial Di�erential Equations, 17(1�2):339�346, 1992. MR1151266, Zbl:0777.35042,
doi:10.1080/03605309208820844.

74

https://mathscinet.ams.org/mathscinet/article?mr=3870555
https://zbmath.org/1403.35141
https://doi.org/10.1016/j.jde.2018.05.022
https://arxiv.org/abs/1501.01072
https://mathscinet.ams.org/mathscinet/article?mr=0344384
https://zbmath.org/0309.26002
https://mathscinet.ams.org/mathscinet/article?mr=2511061
https://zbmath.org/1181.47078
https://doi.org/10.1007/978-1-4419-0458-4
https://mathscinet.ams.org/mathscinet-getitem?mr=2675489
https://zbmath.org/1205.30001
https://doi.org/10.1007/978-1-4419-7288-0
https://mathscinet.ams.org/mathscinet/article?mr=1258192
https://zbmath.org/0806.35129
https://doi.org/10.1002/cpa.3160470105
https://mathscinet.ams.org/mathscinet-getitem?mr=2759829
https://zbmath.org/1220.46002
https://doi.org/10.1007/978-0-387-70914-7
https://mathscinet.ams.org/mathscinet-getitem?mr=620271
https://zbmath.org/0512.35038
https://doi.org/10.1512/iumj.1981.30.30049
https://mathscinet.ams.org/mathscinet-getitem?mr=2145284
https://zbmath.org/1083.35001
https://doi.org/10.1090/gsm/068
https://mathscinet.ams.org/mathscinet/article?mr=4539629
https://zbmath.org/1507.35002
https://doi.org/10.1137/1.9781611977424
https://mathscinet.ams.org/mathscinet/article?mr=2229062
https://zbmath.org/1099.53001
https://doi.org/10.1017/CBO9780511616822
https://mathscinet.ams.org/mathscinet-getitem?mr=3971246
https://zbmath.org/1425.35001
https://doi.org/10.1007/978-3-030-30351-8
https://mathscinet.ams.org/mathscinet/article?mr=0065391
https://zbmath.org/0053.02805
https://doi.org/10.1002/9783527617210
https://mathscinet.ams.org/mathscinet-getitem?mr=1013360
https://doi.org/10.1002/9783527617234
https://mathscinet.ams.org/mathscinet-getitem?mr=3815288
https://zbmath.org/1400.35098
https://doi.org/10.5565/PUBLMAT6221807
https://arxiv.org/abs/1610.08064
https://mathscinet.ams.org/mathscinet/article?mr=0679140
https://zbmath.org/0506.35038
https://mathscinet.ams.org/mathscinet/article?mr=1151266
https://zbmath.org/0777.35042
https://doi.org/10.1080/03605309208820844


BIBLIOGRAPHY 75

[Du06] Y. Du. Order structure and topological methods in nonlinear partial di�erential equations. Vol. 1,
volume 2 of Series in Partial Di�erential Equations and Applications. World Scienti�c Publishing
Co. Pte. Ltd., Hackensack, NJ, 2006. MR2205529, Zbl:1202.35043, doi:10.1142/5999.

[Eva10] L. C. Evans. Partial di�erential equations, volume 19 ofGrad. Stud. Math. American Mathematical
Society, Providence, RI, second edition, 2010. MR2597943, Zbl:1194.35001, doi:10.1090/gsm/019.

[EG15] L. C. Evans and R. Gariepy. Measure theory and �ne properties of functions. Textbooks in
Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015. MR3409135, Zbl:1310.28001,
doi:10.1201/b18333.

[FB09] E. Freitag and R. Busam. Complex Analysis. Universitext. Springer-Verlag, Berlin, second edition,
2009. MR2513384, Zbl:1167.30001, doi:10.1007/978-3-540-93983-2.

[FJ98] F. G. Friedlander and M. Joshi. Introduction to the theory of distributions. Cambridge University
Press, Cambridge, second edition, 1998. MR1721032.

[GT01] D. Gilbarg and N. S. Trudinger. Elliptic partial di�erential equations of second order (reprint
of the 1998 edition), volume 224 of Classics in Mathematics. Springer-Verlag Berlin Heidelberg,
2001. MR1814364, Zbl:1042.35002, doi:10.1007/978-3-642-61798-0.

[HS99] P.-F. Hsieh and Y. Sibuya. Basic theory of ordinary di�erential equations. Universitext. Springer-
Verlag, New York, 1999. MR1697415, doi:10.1007/978-1-4612-1506-6.

[Joh78] F. John. Partial di�erential equations, volume 1 of Appl. Math. Sci. Springer-Verlag, New York-
Berlin, third edition, 1978. MR0514404, Zbl:0426.35002.

[Ken95] C. E. Kenig. Harmonic analysis techniques for second order elliptic boundary value problems,
volume 83 of CBMS Regional Conference Series in Mathematics. American Mathematical Society,
Providence, RI, 1995. MR1282720, Zbl:0812.35001, doi:10.1090/cbms/083.

[KS00] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their
applications, volume 31 of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1980 original. MR1786735,
Zbl:0988.49003, doi:10.1137/1.9780898719451.

[KG08] A. Kirsch and N. Grinberg. The factorization method for inverse problems, volume 36 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2008.
MR2378253, doi:10.1093/acprof:oso/9780199213535.001.0001.

[Kow21] P.-Z. Kow. Unique Continuation Property of the Fractional Elliptic Operators and
Applications. PhD thesis, Department of Mathematics, National Taiwan University, 2021.
doi:10.6342/NTU202100933.

[Kow22] P.-Z. Kow. Fourier analysis and distribution theory. University of Jyväskylä, 2022.
https://puzhaokow1993.github.io/homepage.

[Kow23] P.-Z. Kow. Complex Analysis. National Chengchi University, Taipei, 2023.
https://puzhaokow1993.github.io/homepage.

[KK22] P.-Z. Kow and M. Kimura. The Lewy-Stampacchia inequality for the fractional Laplacian
and its application to anomalous unidirectional di�usion equations. Discrete Contin. Dyn.
Syst. Ser. B, 27(6):2935�2957, 2022. MR4430602, Zbl:1490.35520, doi:10.3934/dcdsb.2021167,
arXiv:1909.00588.

[KLSS22] P.-Z. Kow, S. Larson, M. Salo, and H. Shahgholian. Quadrature domains for the Helmholtz
equation with applications to non-scattering phenomena. Potential Anal., 2022. Early online.
doi:10.1017/s11118-022-10054-5. The results in the appendix are well-known, and the proofs can
found at arXiv:2204.13934.

[KLW22] P.-Z. Kow, Y.-H. Lin, and J.-N. Wang. The Calderón problem for the fractional wave equation:
Uniqueness and optimal stability. SIAM J. Math. Anal., 54(3):3379�3419, 2022. MR4434352,
Zbl:1492.35427, doi:10.1137/21M1444941, arXiv:2105.11324.

[KMS23] P.-Z. Kow, S. Ma, and S. K. Sahoo. An inverse problem for semilinear equations involving the
fractional Laplacian. Inverse Problems, 39(9), 2023. Paper No. 095006, 27 pages. MR4629230,
Zbl:7749164, doi:10.1088/1361-6420/ace9f4, arXiv:2201.05407.

[KW23] P.-Z. Kow and J.-N. Wang. Inverse problems for some fractional equations with general
nonlinearity. Res. Math. Sci., 10(4), 2023. Paper No. 45, 33 pages. MR4656890, Zbl:7771748,
doi:10.1007/s40687-023-00409-8.

https://mathscinet.ams.org/mathscinet-getitem?mr=2205529
https://zbmath.org/1202.35043
https://doi.org/10.1142/5999
https://mathscinet.ams.org/mathscinet/article?mr=2597943
https://zbmath.org/1194.35001
http://dx.doi.org/10.1090/gsm/019
https://mathscinet.ams.org/mathscinet-getitem?mr=3409135
https://zbmath.org/1310.28001
https://doi.org/10.1201/b18333
https://mathscinet.ams.org/mathscinet-getitem?mr=2513384
https://zbmath.org/1167.30001
https://doi.org/10.1007/978-3-540-93983-2
https://mathscinet.ams.org/mathscinet-getitem?mr=1721032
https://mathscinet.ams.org/mathscinet-getitem?mr=1814364
https://zbmath.org/1042.35002
https://doi.org/10.1007/978-3-642-61798-0
https://mathscinet.ams.org/mathscinet/article?mr=1697415
https://doi.org/10.1007/978-1-4612-1506-6
https://mathscinet.ams.org/mathscinet/article?mr=0514404
https://zbmath.org/0426.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=1282720
https://zbmath.org/0812.35001
https://doi.org/10.1090/cbms/083
https://mathscinet.ams.org/mathscinet-getitem?mr=1786735
https://zbmath.org/0988.49003
https://doi.org/10.1137/1.9780898719451
https://mathscinet.ams.org/mathscinet-getitem?mr=2378253
https://doi.org/10.1093/acprof:oso/9780199213535.001.0001
https://doi.org/10.6342/NTU202100933
https://puzhaokow1993.github.io/homepage/teaching/teaching.html
https://puzhaokow1993.github.io/homepage/teaching/Lecture_Note/ver1_Lecture_Note_Complex_Analysis.pdf
https://mathscinet.ams.org/mathscinet/article?mr=4430602
https://zbmath.org/1490.35520
https://doi.org/10.3934/dcdsb.2021167
https://arxiv.org/abs/1909.00588
https://doi.org/10.1017/s11118-022-10054-5
https://arxiv.org/abs/2204.13934
https://mathscinet.ams.org/mathscinet/article?mr=4434352
https://zbmath.org/1492.35427
https://doi.org/10.1137/21M1444941
https://arxiv.org/abs/2105.11324
https://mathscinet.ams.org/mathscinet/article?mr=4629230
https://zbmath.org/7749164
https://doi.org/10.1088/1361-6420/ace9f4
https://arxiv.org/abs/2201.05407
https://mathscinet.ams.org/mathscinet/article?mr=4656890
https://zbmath.org/7771748
https://doi.org/10.1007/s40687-023-00409-8


BIBLIOGRAPHY 76

[KRY20] A. Kubica, K. Ryszewska, and M. Yamamoto. Time-fractional di�erential equations � a
theoretical introduction. Springer Briefs in Mathematics. Springer, Singapore, 2020. MR4200127,
doi:10.1007/978-981-15-9066-5.

[Kwa17] M. Kwa±nicki. Ten equivalent de�nitions of the fractional Laplace operator. Fractional Calculus
and Applied Analysis, 20(1):7�51, 2017. MR3613319, Zbl:1375.47038, doi:10.1515/fca-2017-0002,
arXiv:1507.07356.

[LM72] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol.
I, volume 181 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New
York-Heidelberg, 1972. MR0350177, Zbl:0223.35039.

[McL00] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University
Press, 2000. MR1742312, Zbl:0948.35001.

[Mit18] D. Mitrea. Distributions, partial di�erential equations, and harmonic analysis. Universitext.
Springer, Cham, second edition, 2018. MR3887685, Zbl:1425.46001, doi:10.1007/978-3-030-03296-
8.

[Rud87] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.
MR0924157, Zbl:0925.00005.

[Rud91] W. Rudin. Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-
Hill, Inc., New York, second edition, 1991. MR1157815, Zbl:0867.46001.

[Str08] W. A. Strauss. Partial di�erential equations: An introduction. John Wiley & Sons, Ltd.,
Chichester, second edition, 2008. MR2398759, Zbl:1160.35002.

[WZ15] R. L. Wheeden and A. Zygmund. Measure and integral. An introduction to real analysis. Pure
Appl. Math. CRC Press, Boca Raton, FL, second edition, 2015. MR3381284, Zbl:1326.26007.

https://mathscinet.ams.org/mathscinet-getitem?mr=4200127
https://doi.org/10.1007/978-981-15-9066-5
https://mathscinet.ams.org/mathscinet-getitem?mr=3613319
https://zbmath.org/1375.47038
https://doi.org/10.1515/fca-2017-0002
https://arxiv.org/abs/1507.07356
https://mathscinet.ams.org/mathscinet/article?mr=0350177
https://zbmath.org/0223.35039
https://mathscinet.ams.org/mathscinet-getitem?mr=1742312
https://zbmath.org/0948.35001
https://mathscinet.ams.org/mathscinet-getitem?mr=3887685
https://zbmath.org/1425.46001
https://doi.org/10.1007/978-3-030-03296-8
https://doi.org/10.1007/978-3-030-03296-8
https://mathscinet.ams.org/mathscinet/article?mr=0924157
https://zbmath.org/0925.00005
https://mathscinet.ams.org/mathscinet-getitem?mr=1157815
https://zbmath.org/0867.46001
https://mathscinet.ams.org/mathscinet-getitem?mr=2398759
https://zbmath.org/1160.35002
https://mathscinet.ams.org/mathscinet/article?mr=3381284
https://zbmath.org/1326.26007

	Preface
	Chapter 1. Preliminaries
	Chapter 2. Partial differential equation in classical sense
	2.1. What is partial differential equations
	2.2. First order PDE
	2.3. Linear PDE of second order
	2.4. Wave equation

	Chapter 3. Partial differential equation in weak sense
	3.1. Weak derivatives and distribution derivatives 
	3.2. Definition and elementary properties of the Sobolev spaces
	3.3. Hilbert spaces
	3.4. Solving elliptic PDE for small wave number
	3.5. The maximum principle
	3.6. Solving elliptic PDE: Eigenvalue problem and Fredholm alternative

	Chapter 4. Fourier analysis, convolution and fundamental solution 
	4.1. Fourier series
	4.2. A quick introduction of Fourier transform
	4.3. Distribution with compact support and convolution
	4.4. Fundamental solution of Laplacian 

	Chapter 5. Partial differential equation in weak sense (continued)
	5.1. Formulation of weak solutions
	5.2. Existence of weak solutions
	5.3. Uniqueness of weak solutions

	Bibliography

