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Preface

This lecture note is prepared for the course Calculus for undergraduate level during Fall
2024 (113-1, 000713011) and Spring 2025 (113-2, 000713012). The main purpose of this
lecture note is to highlight some fundamental facts rather than all full details. In order to
avoid too much technical details, the proof of some results in this lecture will be omit, one
can see e.g. the monograph [Apo74, Rud87] for rigorous proofs of all results. The notations
and terminologies in this lecture note, which will be used throughout the course, may di�er
to other monographs, including other textbooks [HB10, SCW21]. This lecture note may
updated during the course.

Title. Calculus (Fall 2024, 3 credits)

Lectures (113-1, 000713011). Thursday (13:10�14:00, 14:10�15:00 15:10�16:00). Begins
at September 9, 2024 and ends at January 10, 2025.

Language. Chinese and English. Materials will be prepared in English.

Instructor. Pu-Zhao Kow (Email: pzkow@g.nccu.edu.tw)

O�ce hour. Thursday (16:10�17:00)

Teaching Assistant. TBA

Acknowledgments. I would like to give special thanks to students who pointed out my
mistakes in this note.

Some di�cult materials are included in this lecture note for those interested in mathematics.
I understand that it is not possible to remember all details, and I will not going to teach
proofs in this course, however, one should at least remember basic de�nitions and some basic
lemmas/propositions/theorems, and know how to utilize them �rst. In order to do so, I
choose some examples and exercises to highlight what you should remember, therefore the
quizzes and exams will be prepared based on Examples and Exercises in this lecture note,
not necessarily identical, may slightly change to make the questions interested if necessarily.
One should remember the principal rather than the exact formula. You may use methods
which I have not taught, but always state the name of the theorem you used and check
su�cient conditions carefully.
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Part 1

Fall 2024 (113-1, 000713011)



CHAPTER 1

Set and functions

1.1. A quick and informal introduction of mathematical logic

In logic, a logical connective (also called a logical operator) is used to connect logical
formulas. Some commonly used logical connectives are:

• negation (not), denoted as ¬
• conjunction (and), denoted as ∧
• disjunction (or), denoted as ∨
• implication (if · · · then), denoted as =⇒
• equivalence (if and only if), denoted as ⇐⇒ .

It is also common to consider the always true formula and the always false formula to be
logical connectives as well:

• always true formula, denoted as T
• always false formula, denoted as F

Now the above logical connectives can be summarized in the following table:

P Q ¬P P ∧Q P ∨Q P =⇒ Q P ⇐⇒ Q

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Table 1. Truth table

It is important to see that (which very frequently used in mathematics)

P ⇐⇒ Q ≡ (P =⇒ Q) ∧ (Q =⇒ P ),

as well as

(1.1.1) ¬(P =⇒ Q) ≡ ¬Q =⇒ ¬P.
We now give a simple example to demonstrate the meaning of the truth table in Table 1.

Example 1.1.1. We denote P the event �it is raining� and denote Q the event �the �oor
is wet�.

• The negation ¬P becomes the event �it is not raining� and the negation ¬Q becomes
the event �the �oor is not wet�.

• The conjunction P ∧Q is the event �it is raining and the �oor is wet�.
• The disjunction P ∨Q is the event �it is raining or the �oor is wet�.
• The implication P =⇒ Q is the event �If it is raining, then the �oor is wet�.
• The equivalence P =⇒ Q is the event �It is raining, if and only if the �oor is wet�.

2



1.2. AN INTUITIVE INTRODUCTION OF SET THEORY 3

Lets give more explanation on the implication P =⇒ Q. Each row can be summarized in
the following sentence:

• If it is raining (i.e. P = T), then the �oor is wet (i.e. Q = T). This implication is
true (i.e. (P =⇒ Q) = T).

• If it is raining (i.e. P = T), then the �oor is not wet (i.e. Q = F). This implication
is false (i.e. (P =⇒ Q) = F).

• If it is not raining (i.e. P = F), then the �oor is wet (i.e. Q = T). This implication
is true (i.e. (P =⇒ Q) = T).

• If it is not raining (i.e. P = F), then the �oor is not wet (i.e. Q = F). This
implication is true (i.e. (P =⇒ Q) = T).

We see that if it is not raining (i.e. P = F), no matter the �oor is wet or not, the implication
is always true. This means that, if the assumption is not true, then whatever you say is
always true, but the sentence is basically a nonsense. This is exactly re�ected in the truth
table (Table 1). Therefore, always check the assumptions before using theorems .

Definition 1.1.2. If the implication P =⇒ Q is true, then we say that P is a su�cient
condition of Q (or P guarantees Q) and in view of the contrapositive statement (1.1.1), we
also say that Q is a necessary condition of P .

Example 1.1.3. We denote P the event �you study hard� and denote Q the event �you
pass the course�. I believe that the implication Q =⇒ P is true, which means that �for
those students who pass the course, they are studied hard�. In view of the contrapositive
statement (1.1.1), this implication reads ¬P =⇒ ¬Q, which means that �for those students
who do not study hard will fail the course�. The implication P =⇒ Q means �if you study
hard, then you will pass the exam�, which I believe to be false. In fact, �there is no any
guarantee that you can pass this course even you study hard�. In terms of De�nition 1.1.2,
P is a necessary condition of Q:

if you want to pass this course, you at least have to study hard.

However, P is not a su�cient condition of Q:

even you study hard, there is no any guarantee to pass this course.

In mathematical logic, it is important to mention the following quanti�ers:

• universal quanti�cation ∀: which is interpreted as �given any�, �for all�, or �for any�.
• existential quanti�er ∃: which is interpreted as �there exists�, �there is at least one�,
or �for some�.

The negation of �the event P (x) holds true for all x� is �there exists x such that the event
P (x) does not hold�. The negation of �the event P (x) holds true for some x� is �the event
P (x) does not hold for all x�. Finally, we remind the readers that, one has to be careful
about the order of the mathematical argument, analogously, you cannot swap the order of
computer program.

1.2. An intuitive introduction of set theory

Set theory, more speci�cally Zermelo�Fraenkel set theory, has been the standard way
to provide rigorous foundations for all branches of mathematics since the �rst half of the
20th century. Rather than explaining details in a rigorous way, here we will only intuitively
introduce the set theory (https://en.wikipedia.org/wiki/Set_(mathematics)), since we

https://en.wikipedia.org/wiki/Set_(mathematics)
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will only use the set theory as a mathematical language. One can take a look on a lecture
note [Win10] for more details on this topic.

Definition 1.2.1. A set is a collection of di�erent mathematical objects (e.g. numbers,
symbols, points in space, lines, other geometrical shapes, variables, or even other sets); these
objects are called elements or members of the set.

We �rst explain now to express a set. Roster or enumeration notation de�nes a set by
listing its elements between curly brackets, separated by commas, for example:

A = {1, 3, 4, a, black}.

For sets with many elements, especially those following an implicit pattern, the list of mem-
bers can be abbreviated using an ellipsis �· · · �, for example:

{1, 2, 3, · · · , 100}, {a, b, c, · · · , k}.

To describe an in�nite set in roster notation, an ellipsis is placed at the end of the list, or at
both ends, to indicated that the list continuous forever. For example:

N := {1, 2, 3, · · · }, Z := {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

Another way to de�ne a set is to use a rule to determine what the elements are, for example:

Let Z≥2 be the set whose members are integers ≥ −2.

Such a de�nition is called a semantic description. One also can specify a set as a selection
from a larger set, determined by condition(s) on the the elements. For example,

Z≥−2 = {n : n ∈ Z, n ≥ −2} = {n ∈ Z : n ≥ −2}.

We usually, unless stated, assuming the following axiom:

Axiom 1.2.2 (Extensionality). Two sets that have precisely the same elements are equal.
In other words, sets are uniquely characterized by their elements (without repeat counting the
same element and without considering the order of elements). For example, {1, 2, 4, 2} =
{1, 2, 4} = {4, 2, 1}.

This axiom is just to unify the writing format of the sets, so that we can communicate
using the same language. The above extensionality axiom implies the following lemma.

Lemma 1.2.3. There exists a unique empty set ∅.

Remark 1.2.4. The empty set ∅ also can be expressed in Roster notation as {}. However,
one should be careful that ∅ and {∅} are di�erent, since {∅} is a set consists of one element,
which is called ∅, therefore {∅} is not an empty set.

Example 1.2.5. We now introduce some special sets of numbers in mathematics.

• N is the set of all natural numbers, that is, N := {1, 2, 3, · · · }.
• Z is the set of all integers, that is, Z := {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.
• For each a ∈ R and b ∈ R, it also convenient to de�ne the set aZ + b := {am + b :
m ∈ Z}.

• Q is the set of all rational numbers, that is, Q = {a
b
: a ∈ Z, b ∈ Z, b ̸= 0}.
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• R is the set of all real numbers, which is the completion of Q with respect to the
Euclidean norm | · |, where

|a| :=
√
a2 =

{
a if a ≥ 0,

−a if a < 0.

Sometime, we also call | · | the absolute value of real numbers. We will give a precise
de�nition in Part 2.

• For each a, b ∈ R, we denote the intervals by

(a, b) := {x ∈ R : a < x < b} (open interval),(1.2.1)

[a, b] := {x ∈ R : a ≤ x ≤ b} (closed interval),

[a, b) := {x ∈ R : a ≤ x < b},
(a, b] := {x ∈ R : a < x ≤ b}.

It is also convenient to write

(1.2.2) (−∞, b) := {x ∈ R : x < b}, (a,+∞) := {x ∈ R : x > a}, (−∞,∞) := R,
as well as

(−∞, b] := {x ∈ R : x ≤ b}, [a,+∞) := {x ∈ R : x ≥ a}.
• Despite ±∞ /∈ R, we still often abuse the notation by saying that �I = (a, b) for
some −∞ ≤ a < b ≤ +∞�, which means that I can be either (1.2.1) or (1.2.2). One
can interpret the notions �I = (a, b) for some −∞ ≤ a < b < +∞� and �I = (a, b)
for some −∞ < a < b ≤ +∞� using a similar manner.

Definition 1.2.6. Let A be a set. If a is a member in A, then we denote a ∈ A. If b is
not a member in A, then we denote b /∈ A.

Definition 1.2.7 (Basic operations). Given any two sets A and B:

• we say that A is a subset of B, denoted as A ⊂ B, if all elements of A also belongs
to B.

• their union A ∪B is the set of all elements that are members of A or B or both.
• their intersection A ∩ B is the set of all things that are members of both A and B.
If A ∩B = ∅, then A and B are said to be disjoint.

• the set di�erence A \B is the set of all things that belong to A but not B.
• their symmetric di�erence A△B is the set of all things that belong to A or B but
not both, that is, A△B = (A \B) ∪ (B \ A).

• their Cartesian product A × B is the set of all ordered pairs (a, b) such that a ∈ A
and b ∈ B.

Remark 1.2.8. If A ⊂ B and B ⊂ A, then by Axiom 1.2.2 we see that A and B are
equal, and we denote A = B.

The simple concept of set has proved enormously useful in mathematics, but paradoxes
arise if no restriction are placed on how sets can be constructed, for example, the Russell's
paradox shows that the �set of all sets that do not contain themselves�, i.e.

(1.2.3) {X : X is a set and X /∈ X} cannot exist.

Rather than go through all details how the Zermelo�Fraenkel set theory excludes this situ-
ation, we will explain this philosophy using some simple examples. In practical, we usually
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refer the set consists of other sets as a collection. For example, let P be the collection of all
subsets in {a, b} means that

P = {∅, {a}, {b}, {a, b}}.
We intuitively view ∅, {a}, {b}, {a, b} as �level-1� objects, and view P as �level-2� object. The
elements in sets also can be viewed as �level-0� objects. We usually refer the set consists of
collections (i.e. �level-2� objects) as a superset, which is natural to be labeled as �level-3�
object. We distinguish between �∈� and �⊂� as follows:

• We write x ∈ X for �level-0� object x (point) and for �level-1� object X (set); we
write X ∈ P for �level-1� object X (set) and for �level-2� object P (collection), and
so on.

• We write X ⊂ Y for two �level-1� objects X and Y (sets); we write P ⊂ Q for two
�level-2� objects P and Q (collections).

We now see that (1.2.3) is invalid if we consider the above concept of �levels� (more pre-
cisely, the Zermelo�Fraenkel set theory). The union, intersection, di�erence and symmetric
di�erence also can be operated for collections (�level-2� objects) as well as supersets (�level-3�
objects). The Cartesian product can be operate for di�erent �levels� of objects.

Finally, we also can explain Remark 1.2.4 in terms of �levels�: The empty set ∅ is a �level-
1� object, while {∅} is a �level-2� object, which is a collection consists of only one element ∅.
Sometimes we also abuse the notation by denoting the empty collection (�level-2� object) as
∅, for example the superset (�level-3� object) {{∅}, ∅}.

1.3. Functions

Definition 1.3.1. Let X and Y be sets. A function f from a set X to a set Y , denoted
as f : X → Y , is an assignment of one unique element of Y to each element of X. In this
case, the set X is called the domain, while Y is called the range. If the element y ∈ Y is
assigned to x ∈ X by the function, one says that f maps x to y, and this is commonly write
f(x) = y. Sometimes we also write

f : x 7→ y, or more precisely, f : x ∈ X 7→ y ∈ Y.

One may imagine a function works like a virtual machine, or simply a computer program.
We highlight two main points in the above de�nition:

• When we input an element x ∈ X into a function, or a �machine� f , we have to
make sure that f can accept this element and the output is also valid. For example:
� invalid input. the �machine� g(x) =

√
x cannot process the input x < 0. In

this case, g cannot be de�ned as a function on R.
� invalid output. the �machine� h(x) = x is not well-de�ned from R to R≥0,
since the range R≥0 is too small with respect to the domain R.

• After we input an element x ∈ X into a �machine� f , we must specify a unique
output (otherwise your computer only suggests you a �fatal error�).
� For example, you input a number 1 and ask the �machine� to solve x2 = 1, then
the �machine� will confused it should output x = 1 or x = −1 if there is no
restriction.

Therefore it is important to mention the domain and range while writing a function (but
unfortunately many textbooks fail to do so). Here is also a reminder for beginners: Always
carefully mention �for all/for each� and �for some/there exists�, and the order of sentences
is also important (just like your computer program, you cannot mess up the order).
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Example 1.3.2. Let f : R \ {1} → R given by f(x) = x2−x
x−1

for all x ∈ R \ {1}, and let
g : R → R given by g(x) = x for all x ∈ R. One sees that

f(x) = g(x) for all x ∈ R \ {1},
which means that the functions f : R \ {1} → R and g : R \ {1} → R are identical, but the
functions f : R \ {1} → R and g : R → R are di�erent, since f(1) is not well-de�ned.

We now consider the function f : R → R given by f(x) = x2 for all x ∈ R. We see
that f(x) ≥ 0 for all x ∈ R, which suggests that the range f : R → R is redundant, that is,
f : R → R≥0 is also a well-de�ned function. This suggests us the following de�nition:

Definition 1.3.3. A function f : X → Y is said to be onto or surjective, if for each
y ∈ Y , there exists a x ∈ X such that f(x) = y.

Here the choice x ∈ X is not necessarily unique, for example the function f : R → R≥0 is
surjective since for each y ∈ R≥0 one sees that

f(
√
y) = y and f(−√

y) = y.

Let f : X → Y be a function, we de�ne its image

(1.3.1) f(X) := {f(x) : x ∈ X}.
One see that f : X → f(X) is surjective.

On the other hand, if f : X → Y is a function, then so is f : X0 → Y for any X0 ⊂ X.
This strongly suggests the following notion:

Definition 1.3.4. A function f : X → Y is said to be one-to-one or injective, if f(x1) =
f(x2) implies x1 = x2.

Remark. We recall a logic facts: �P implies Q� equivalent to �negative-Q� implies
�negative-P �. Therefore, the above de�nition is also equivalent to: x1 ̸= x2 implies
f(x1) ̸= f(x2).

Definition 1.3.5. If f : X → Y is both injective and surjective, then we say that
f : X → Y is bijective.

Definition 1.3.6. Let f : X → Y1 and g : Y2 → Z be functions. If Y1 ⊂ Y2, then we
denote the function g ◦ f : X → Z by

(g ◦ f)(x) = g(f(x)) for all x ∈ X,

which is called the composition of f and g.

Definition 1.3.7. We say that a function f : X → Y is invertible if there exists a
function f−1 : Y → X such that (f−1 ◦ f)(x) = x for all x ∈ X and (f ◦ f−1)(y) = y for all
y ∈ Y .

Theorem 1.3.8 ([Win10, Lemma 3.9]). Let f : X → Y be a function. Then it is bijective
if and only if it is invertible.

Example 1.3.9. This example also explains the importance of stating the domain and
range of functions.

• The function f : R → R given by f(x) = x2 for all x ∈ R is neither injective nor
surjective.
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• The function f : R → R≥0 given by f(x) = x2 for all x ∈ R is surjective but not
injective.

• The function f : R≥0 → R given by f(x) = x2 for all x ∈ R≥0 is injective but not
surjective.

• The function f : R≥0 → R≥0 given by f(x) = x2 for all x ∈ R≥0 is bijective, with
inverse function f−1 : R≥0 → R≥0 given by f−1(y) =

√
y for all y ∈ R≥0.

Remark 1.3.10. Let f : X → Y be a bijective function. If f(x) = y, then f−1(y) = x.
Hence it is recommend to use di�erent variable for f and f−1. For example, it is recommend
to write the inverse function f−1 : R≥0 → R≥0 of f : R≥0 → R≥0 given by f(x) = x2 for all
x ∈ R≥0 as f−1(y) =

√
y for all y ∈ R≥0 (rather than f−1(x) =

√
x for all x ∈ R≥0 even

though this is true).

Definition 1.3.11. Let I be an interval in R.
(a) A function f : I → R is called non-decreasing if f(x1) ≤ f(x2) for all x1, x2 ∈ I with

x1 < x2.
(b) A function f : I → R is called strictly increasing if f(x1) < f(x2) for all x1, x2 ∈ I

with x1 < x2.
(c) A function f : I → R is called non-increasing if f(x1) ≥ f(x2) for all x1, x2 ∈ I with

x1 < x2.
(d) A function f : I → R is called strictly decreasing if f(x1) > f(x2) for all x1, x2 ∈ I

with x1 < x2.

Lemma 1.3.12. If f : I → R is either strictly increasing or strictly decreasing, then
f : I → f(I) is bijective, with inverse f−1 : f(I) → I.

It is easy to construct a bijective function which is neither non-decreasing nor non-
increasing:

Example 1.3.13. One sees that f : [−1, 1) → [−1, 1) by

f(x) =

{
−x− 1 if − 1 ≤ x ≤ 0,

−x+ 1 if 0 < x < 1,

is bijective, but neither non-decreasing nor non-increasing.

Example 1.3.14. Here we exhibit some basic functions.

(1) A function P : R → R is called a polynomial if

P (x) =
n∑

j=0

ajx
j = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 for all x ∈ R.

The numbers a0, a1, · · · , an are called the coe�cients. If the leading coe�cient an ̸=
0, then the degree of the polynomial P is n, and we simply denote deg(P ) = n.

(2) Suggested by the polynomial, we are now interested in the power function of the
form fp(x) = xp for p ∈ R, where the domain to be specify later.
(a) For each n ∈ N, one sees that fn : R≥0 → R≥0 is simply the polynomial. Since

fn : R≥0 → R≥0 is strict increasing and bijective. In view of the exponential
rule, we de�ne

f 1
n
(x) ≡ x

1
n := f−1

n (x) for all x ∈ R≥0.
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Accordingly, we de�ne fp : R≥0 → R≥0 for all p ∈ Q>0 by

fm
n
(x) ≡ x

m
n := (f 1

n
◦ fm)(x) for all x ∈ R≥0.

Finally, the function fp : R≥0 → R≥0 can be de�ned for all p ∈ R>0 via the
completion (will not rigorously explain this at this point).

(b) For p < 0, we simply de�ne fp : R>0 → R>0 by

fp(x) :=
1

f|p|(x)
for all x ∈ R>0.

In view of the exponential rule, we use the convention f0(x) = 1 for all x ∈ R≥0.
(3) A function f is called a algebraic function if it can be constructed using algebraic op-

erations (such as addition, subtraction, multiplication, division, and composite with
the power function above). The functions that are not algebraic are called tran-
scendental ; these include the trigonometric, exponential and logarithmic functions
mentioned below.

Example 1.3.15 (Trigonometric functions). Let B be the unit ball in R2 with radius 1
centered at 0, and let ∂B be its boundary, i.e. the unit circle. Let π be the area of B. It is
well-known that π = 3.14159 · · · , and the length of ∂B (also known as circumference or the
perimeter of the unit circle). Let L1 and L2 are two straight line both passing through the
origin, and let P1 := L1∩∂B and P2 := L2∩∂B, and we see that the circle ∂B is partitioned
into two parts, says Γ1 and Γ2, by the points P1 and P2. Intuitively, it is natural to de�ne the
angle between L1 and L2 by the length of Γ1 or Γ2, but however this may cause some trouble
in mathematics, since this is not a function, since both choices Γ1 and Γ2 correspond to the
same geometry. In order to make the de�nition rigorous, we de�ne angle with orientation.
Starting from the point P1, which corresponds to line L1, we rotate counter-clockwise and
stop at P2 (not necessarily stop at the �rst meeting), which corresponds to line L2. Let Γ be
the portion of ∂B during the rotation. Then we say that1:

the angle θ (in radian) from L1 to L2 is de�ned by the length of Γ.

Now the angle is oriented, one sees that the angle from L2 to L1 is −θ. In addition, θ can be
any value in R. In some occasion, we sometimes refer the |θ| the (phaseless) angle between
L1 and L2, even it is not so rigorous.

With the oriented angle at hand, we now can de�ne the trigonometric functions, as in
Figure 1.3.1 below:

1Since π is transcendental, it is not so convenient in some application (e.g. aviation). We usually normalize
the angle as follows:

the angle θ̃ (in degree) is de�ned by θ̃ :=
360

2π
θ, where θ is angle in radian.

The reason we choose 360 is it is dividable by many integers, including 2, 3, 4, 5, 6, 8, 9, 10, · · · .
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1

θ
sin(θ)

cos(θ)

Figure 1.3.1. De�nition of sine function and cosine function: Stephan Kulla
(User:Stephan Kulla), CC0, via Wikimedia Commons

Since the angle is oriented, thus the trigonometric also has sign, for example, sin θ < 0
when π

2
< θ < 3

2
π. According to the above de�nition, we also see that

sin : R → [−1, 1] and cos : R → [−1, 1]

are both surjective functions, but not injective. The de�nition of sine and cosine function
immediately gives

(cos θ)2 + (sin θ)2 = 1 for all θ ∈ R.
Some special values are showed in Figure 1.3.2 below:

Figure 1.3.2. Some special values of (cos θ, sin θ): Gustavb (talk · contribs),
Public domain, via Wikimedia Commons

It is remarkable to mention that

sin(−θ) = − sin θ for all θ ∈ R,
cos(−θ) = cos θ for all θ ∈ R,



1.3. FUNCTIONS 11

x

y
2
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1

−1.5

1
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C

B

O
θ

E

x=1

y=1

A

sinθ

cosθcscθ

cotθ

tanθ

secθ−1 2

Figure 1.3.3. Six trigonometric functions: Onmaditque, CC BY-SA 4.0, via
Wikimedia Commons

that is, the sine function is odd while the cosine function is even. The other trigonometric
functions are de�ned as follows (see Figure 1.3.3):

tan θ :=
sin θ

cos θ
for all θ ∈ R \

(
πZ+

π

2

)
,

sec θ :=
1

cos θ
for all θ ∈ R \

(
πZ+

π

2

)
,

cot θ :=
cos θ

sin θ
for all θ ∈ R \ πZ,

cosecθ ≡ csc θ :=
1

sin θ
for all θ ∈ R \ πZ.

One see that

cot θ =
1

tan θ
for all θ ∈ R \

(
πZ ∪

(
πZ+

π

2

))
= R \ π

2
π,

which means that the identity only holds true in restricted domain.

Exercise 1.3.16. We say that f : R → R is an odd function if f(−x) = −f(x) for all
x ∈ R, and we say that f : R → R is an even function if f(−x) = f(x) for all x ∈ R. Given
any function g : R → R, show that there exists an odd function godd : R → R and an even
function geven : R → R such that

g(x) = godd(x) + geven(x) for all x ∈ R.

In addition, if g ̸≡ 0 and there exists an odd function hodd : R → R and an even function
heven : R → R such that

godd(x) + geven(x) = hodd(x) + heven(x) for all x ∈ R,

show that godd(x) = hodd(x) and geven(x) = heven(x) for all x ∈ R.
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Example 1.3.17 (Inverse trigonometric functions). In order to de�ne inverse functions,
we usually (unless stated) consider

sin : [−π/2, π/2] → [−1, 1]

cos : [0, π] → [−1, 1],

tan : (−π/2, π/2) → R,
cot : (0, π) → R,
sec : [0, π] \ {π/2} → R≤−1 ∪ R≥1,

cosec ≡ csc : [−π/2, π/2] \ {0} → R≤−1 ∪ R≥1,

which are bijective, and hence the corresponding inverse functions, called the inverse trigono-
metric functions, are de�ned as :

arcsin ≡ sin−1 : [−1, 1] → [−π/2, π/2],

arccos ≡ cos−1 : [−1, 1] → [0, π],

arctan ≡ tan−1 : R → (−π/2, π/2),

cot−1 : R → (0, π),

sec−1 : R≤−1 ∪ R≥1 → [0, π] \ {π/2},
csc−1 : R≤−1 ∪ R≥1 → [−π/2, π/2] \ {0}.

Since all other trigonometric functions can be generated by sine and cosine function, through-
out this course, we will only focus on sine and cosine functions .

Exercise 1.3.18. Sketch the function sin−1 ◦ sin : R → R and cos−1 ◦ cos : R → R.

Example 1.3.19 (Euler formula and trigonometric functions). Here we also explain a
simple way to derive trigonometric identities. We formally write the imaginary number
i :=

√
−1, one can see e.g. my other lecture note [Kow23], which is much more advance, for

a precise de�nition. The Euler formula reads:

eiθ := cos θ + i sin θ for all θ ∈ R.

Performing some formal computations lead (more precisely, the de Moivre theorem)

cos(θ1 + θ2) + i sin(θ1 + θ2) = ei(θ1+θ2)

= eiθ1eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= cos θ1 cos θ2 + i2 sin θ1 sin θ2 + i(cos θ1 sin θ2 + sin θ1 cos θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2).

Comparing the real and imaginary parts lead us to the sum-to-product formula:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2.

Choosing θ1 = θ2 = θ leads to the multiple angle formula. It is easy to obtain further
generalization by consider ei(θ1+θ2+θ3) = eiθ1eiθ2eiθ3 and so on. From this, it is easy to derive
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the product-to-sum formula, for example,

cos(θ1 + θ2) + cos(θ1 − θ2)

= cos θ1 cos θ2 − sin θ1 sin θ2 + cos θ1 cos(−θ2)− sin θ1 sin(−θ2)

= cos θ1 cos θ2 −((((((sin θ1 sin θ2 + cos θ1 cos θ2 +((((((sin θ1 sin θ2

= 2 cos θ1 cos θ2.

The other three product-to-sum formula can be easily obtained by considering

cos(θ1 + θ2)− cos(θ1 − θ2), sin(θ1 + θ2) + sin(θ1 − θ2), sin(θ1 + θ2)− sin(θ1 − θ2),

here we left the details for readers as an exercise.
Here we also exhibit some interesting functions, which will serves as counterexample in

the future.

(a) f : R \ {0} → R, f(x) = sin(1/x) for all x ∈ R \ {0}.
(b) Given a parameter p > 0, we consider the function f : R \ {0} → R is given by

f(x) = |x|p sin(1/x) for all x ∈ R \ {0}.

(c) f : R → R, f(x) =

{
1 , if x ∈ Q,

0 , if x ∈ R \Q.

(d) f : R → R, f(x) =

{
1
q

, if x = p
q
∈ Q, q > 0, gcd(p, q) = 1,

0 , if x ∈ (R \Q) ∪ {0}.

The above examples demonstrate that the functions may oscillating intensely. In some
case, it is even not possible to sketch, see Example 1.3.19(c)(d) above.

Exercise 1.3.20. Sketch Example 1.3.19(a)(b).

Example 1.3.21 (Exponential function and logarithmic function). Given any a > 0 with
a ̸= 1 (this case is trivial), we already showed in Example 1.3.14 that

(1.3.2) f : R → R>0, f(x) := ax

is a well-de�ned function. One sees that the function is strictly increasing when a > 1, and
strictly decreasing when 0 < a < 1, and in fact (1.3.2) is bijective. One sees that

f(0) = 1 for all a > 0 with a ̸= 1.

We now consider the tangent line of the graph of (1.3.2). One sees that the tangent line has
slope about 0.693147 · · · when a = 2, and about 1.0986 · · · when a = 3. In fact, there exists
a unique number e, which is called the natural exponent, with value about 2.71828 · · · , such
that the tangent line has slope exactly 1. In this case, we usually denote the function

exp : R → R>0, exp(x) := ex,

which is bijective, with inverse function

(1.3.3) ln : R>0 → R.
called the natural logarithmic function. For each p ∈ R and q ∈ R, since

exp(ln(xpyp)) = xpyp = (exp(lnx))p(exp(ln y))q = exp(p lnx+ q ln y) for all x, y > 0,

then we reach the following fundamental identity for logarithmic function:

(1.3.4) ln(xpyq) = p lnx+ q ln y for all x > 0, y > 0, p ∈ R, q ∈ R.
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For each a > 0, one also may de�ne the logarithmic function with base a as

(1.3.5) loga : R>0 → R, loga(x) :=
lnx

ln a
for all a > 0,

which is clearly a bijective function. It is easy to extend the fundamental identity (1.3.4) for
(1.3.5). In addition, one sees that

(1.3.6) loga(a
y) =

ln ay

ln a
=

y ln a

ln a
= y for all y ∈ R,

together with the bijection (1.3.5), we conclude that (1.3.5) is exactly the inverse function of
(1.3.2). In view of (1.3.5), it is not interesting to consider arbitrary base a, throughout this
course, we will only focus on the natural logarithmic function (i.e. the logarithmic function
with base e).



CHAPTER 2

Limits and continuity

2.1. Limit and limit superior in R

In Example 1.3.2, we have explained that the functions f : R \ {1} → R given by

f(x) = x2−x
x−1

for all x ∈ R \ {1} and g : R → R given by g(x) = x for all x ∈ R are di�erent
in the sense of functions, despite they looks similar intuitively. Despite it is not possible to
de�ne f at 1, but it is possible to discuss the behavior of f near 1. This situation suggests
us the following de�nition:

Definition 2.1.1. Let a, x0, b ∈ R with a < x0 < b and let f : (a, b) \ {x0} → R be a
function. We say that the limit limx→x0 f(x) = L ∈ R exists if: Given any ϵ > 0, there exists
δ = δ(ϵ) > 0 such that

(2.1.1) 0 < |x− x0| < δ implies |f(x)− L| < ϵ.

The implication (2.1.1) roughly means that, if x ̸= x0 is �su�ciently close� to x, then f(x)
is also �close� to the number L ∈ R. Here is the main point: what is the precise meaning
of �su�cient close�? The idea is: Lets �nd a third-party judge, which is absolutely fair, give
a tolerance level ϵ > 0 (ϵ is the Greek letter corresponding to English character �e�, which
represents the error), we then decide a reasonable distance δ > 0 depends on the tolerance
level ϵ so that (2.1.1) works. Since δ depends on ϵ (and in fact also depends on x0), it is
recommend to write δ = δ(ϵ) in order to emphasize (and remind yourself) the dependence
on ϵ. According to the above de�nition, it is not di�cult to see that

lim
x→1

f(x) = 1 despite f(1) is not well-de�ned.

This example also reminds the reader that the de�nition of limit does not involve the value
of f(x0), so the function f in De�nition 2.1.1 may not well-de�ned at x0. One sees that the
absolute value function | · | is simply the Euclidean norm, therefore it is natural to write the
ball Br(x) := {x ∈ R : |x| < r}. We can rewrite (2.1.1) as:

(2.1.2) x ∈ Bδ(x0) \ {x0} implies f(x) ∈ Bϵ(L),

or in terms of image (1.3.1), we even can write

f (Bδ(x0) \ {x0}) ⊂ Bϵ(L).

Now we consider the Heaviside function H : R \ {0} → R de�ned by

(2.1.3) H(x) =

{
1 , x > 0,

0 , x < 0.

Intuitively, we may expect the limit limx→0H(x) does not exist. However, this suggests the
following de�nition.

15
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Definition 2.1.2. Let a, x0, b ∈ R with a < x0 < b and let f : (x0, b) → R and
g : (a, x0) → R be functions. We say that the right limit limx→x0+ f(x) = L ∈ R exists if:
Given any ϵ > 0, there exists δ = δ(ϵ) > 0 such that

(2.1.4) 0 < |x− x0| < δ and x > x0 together imply |f(x)− L| < ϵ.

Similarly, we say that the left limit limx→x0− g(x) = L ∈ R exists if: Given any ϵ > 0, there
exists δ = δ(ϵ) > 0 such that

(2.1.5) 0 < |x− x0| < δ and x < x0 together imply |g(x)− L| < ϵ.

It is easy to see that (2.1.4) is equivalent to

0 < x− x0 < δ implies |f(x)− L| < ϵ,

and similarly (2.1.5) is equivalent to

−δ < x− x0 < 0 implies |f(x)− L| < ϵ.

From the de�nition it is not di�cult to see that:

Lemma 2.1.3. Let a, x0, b ∈ R with a < x0 < b and let f : (a, b)\{x0} → R be a function.

• If limx→x0 f(x) ∈ R exists, then both limx→x0+ f(x) ∈ R and limx→x0− f(x) ∈ R exist
and

(2.1.6) lim
x→x0

f(x) = lim
x→x0+

f(x) = lim
x→x0−

f(x).

• If both limx→x0+ f(x) ∈ R and limx→x0− f(x) ∈ R exist and limx→x0+ f(x) =
limx→x0− f(x), then limx→x0 f(x) ∈ R exists and satisfy (2.1.6).

In view of the above notions, we now see that the Heaviside function (2.1.3) satis�es

lim
x→0+

H(x) = 1 and lim
x→0−

H(x) = 0,

thus according to Lemma 2.1.3 we conclude that limx→0H(x) does not exist since the left
and right limits are not identical. As an immediate consequence, we also see that, if either
left limit or right limit does not exist, then we immediately know that the limit does not
exist.

Lemma 2.1.4 (Basic properties of limits). Let a, x0, b ∈ R with a < x0 < b and let
g1 : (a, b) \ {x0} → R as well as g2 : (a, b) \ {x0} → R. If both limits limx→x0 g1(x) and
limx→x0 g2(x) exist in R, then the following holds true:

(a) for each c1 ∈ R and c2 ∈ Rthe limit limx→x0(c1g1(x) + c2g2(x)) exists in R and
satis�es

lim
x→x0

(c1g1(x) + c2g2(x)) = c1 lim
x→x0

g1(x) + c2 lim
x→x0

g2(x) (linearity).

(b) if g1(x) ≤ g2(x) for all x ∈ (a, b) \ {x0}, then

lim
x→x0

g1(x) ≤ lim
x→x0

g2(x) (monotonicity).

(c) the limit limx→x0(g1(x)g2(x)) exists in R and satis�es

lim
x→x0

(g1(x)g2(x)) =

(
lim
x→x0

g1(x)

)(
lim
x→x0

g2(x)

)
.
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(d) if we additionally assume that limx→x0 g2(x) ̸= 0, then the limit limx→x0

g1(x)
g2(x)

exists

in R and satis�es

lim
x→x0

g1(x)

g2(x)
=

limx→x0 g1(x)

limx→x0 g2(x)
.

Similar result also holds true for left and right limits.

In general, it is not easy to check that whether the limit exists or not using a rigorous
mathematical formula, one simple way is to proof the existence by using the existence of
other functions. The following lemma is an immediate consequence of De�nition 2.1.1.

Lemma 2.1.5 (Squeeze theorem). Let a, x0, b ∈ R with a < x0 < b and let g1 : (a, b) \
{x0} → R≥0, g2 : (a, b) \ {x0} → R≥0 as well as f : (a, b) \ {x0} → R≥0. If

g1(x) ≤ f(x) ≤ g2(x) for all x ∈ (a, b) \ {x0},
both limx→x0 g1(x) and limx→x0 g1(x) exist in R satisfying

lim
x→x0

g1(x) = lim
x→x0

g1(x),

then limx→x0 f(x) exists and

lim
x→x0

f(x) = lim
x→x0

g1(x) = lim
x→x0

g1(x).

Similar result also holds true for right and left limits.

However, in many cases, for example the function

(2.1.7) f : R → R, f(x) =

{
1 , x ∈ Q,

0 , x ∈ R \Q,

consider in Example 1.3.19, it is not easy to check that the left and right limits limx→0+ f(x)
and limx→0− f(x) does not exist using a rigorous mathematical formulation, despite it is not
easy to guess intuitively. From De�nition 2.1.1, one sees that

lim
x→x0

f(x) = L ∈ R exists if and only if lim
x→x0

|f(x)− L| = 0,

that is, given any ϵ > 0, there exists a δ = δ(ϵ) > 0 such that

x ∈ Bδ(x0) \ {x0} implies |f(x)− L| < ϵ.

This observation suggests us the following de�nition:

Definition 2.1.6. Let a, x0, b ∈ R with a < x0 < b and let g : (a, b) \ {x0} → R≥0 be a
function. We de�ne the limit superior or upper limit by

(2.1.8) lim sup
x→x0

g(x) := lim
r→0+

(
sup

Br(x0)\{x0}
g

)
,

where
sup

Br(x0)\{x0}
g = inf {M : M > g(x) for all x ∈ Br(x0) \ {x0}} ,

and the in�mum is understood in the limit sense. The limit superior from right or upper
limit from right is de�ned by

lim sup
x→x0+

g(x) := lim
r→0+

(
sup

(x0,x0+r)

g

)
,
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and similarly the limit superior from left or upper limit from left is de�ned by

lim sup
x→x0−

g(x) := lim
r→0+

(
sup

(x0−r,x0)

g

)
.

One sees that the function

ϕ : R>0 → R≥0, ϕ(r) = sup
Br(x0)\{x0}

g

is monotone non-increasing, therefore the limit (2.1.1) always exist in R≥0 in the sense of
De�nition 2.1.1. We now introduce the following powerful lemma (we will extend this lemma
later in Section 2.3):

Lemma 2.1.7. Let a, x0, b ∈ R with a < x0 < b and let f : (a, b)\{x0} → R be a function.

(a) If limx→x0 f(x) = L ∈ R exists, then lim supx→x0
|f(x)− L| = 0.

(b) If lim supx→x0
|f(x) − L| = 0 for some L ∈ R, then limx→x0 f(x) exists and

limx→x0 f(x) = L.
(c) If f ≥ 0 for all x ∈ (a, b) \ {x0} and limx→x0 f(x) = L ∈ R exists, then

lim supx→x0
f(x) = L.

Similar results also hold true for right limit/limit superior from right as well as left limit/limit
superior from left.

Example 2.1.8. We now consider the function given in (2.1.7). If L ≤ 1
2
, then for each

r > 0, one can choose x′ ∈ Br(x0) \ {x0} such that f(x′) = 1, and hence

sup
x∈Br(x0)\{x0}

|f(x)− L| ≥ |f(x′)− L| = 1− L ≥ 1

2
,

and thus lim supx→x0
|f(x)−L| ≥ 1

2
. Otherwise, if L > 1

2
, then for each r > 0, one can choose

x′′ ∈ Br(x0) \ {x0} such that f(x′′) = 0, and hence

sup
x∈Br(x0)\{x0}

|f(x)− L| ≥ |f(x′′)− L| = L ≥ 1

2
,

and thus lim supx→x0
|f(x)− L| ≥ 1

2
. This means that, given any L ∈ R, one always has

lim sup
x→x0

|f(x)− L| ≠ 0,

which concludes that limx→x0 f(x) does not exist according to Lemma 2.1.7. We will later
give a simpler proof in Example 2.3.12 below after expanding the de�nition of limits (De�-
nition 2.1.1 and De�nition 2.1.2).

Exercise 2.1.9. Let a, x0, b ∈ R with a < x0 < b and let g1 : (a, b) \ {x0} → R≥0 as well
as g2 : (a, b) \ {x0} → R≥0.

(a) Show that

(2.1.9) lim sup
x→x0

(g1(x) + g2(x)) ≤ lim sup
x→x0

g1(x) + lim sup
x→x0

g2(x) (subadditivity)

(b) Show that

(2.1.10) lim sup
x→x0

(g1(x)g2(x)) ≤
(
lim sup
x→x0

g1(x)

)(
lim sup
x→x0

g2(x)

)
.
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(c) If g1(x) ≤ g2(x) for all x ∈ (a, b) \ {x0}, show that

(2.1.11) lim sup
x→x0

g1(x) ≤ lim sup
x→x0

g2(x) (monotonicity).

Similar results also hold true for limit suprerior from right and left.

Remark 2.1.10. In general, unlike the linearity property in Lemma 2.1.4(a), we only have
inequality in (2.1.9), see Remark 2.3.11 below for more details. Other than this, basically
limit superior is a replacement for the usual limit to avoid the di�culty to prove the existence
of limits .

Remark 2.1.11 (Standard way to use Exercise 2.1.9). By using the subadditivity property
of Euclidean norm (also known as the triangle inequality), we have

|f1(x)− L| = |f1(x)− f2(x) + f2(x)− L| ≤ |f1(x)− f2(x)|+ |f2(x)− L|,
then the monotonicity property (2.1.11), and then consequently by the subadditivity property
(2.1.9), imply that

lim sup
x→x0

|f1(x)− L| ≤ lim sup
x→x0

(|f1(x)− f2(x)|+ |f2(x)− L|)

≤ lim sup
x→x0

|f1(x)− f2(x)|+ lim sup
x→x0

|f2(x)− L|.

Since the computations only involving inequality, rather than the equality, this gives possi-
bility to simplify some computations.

Example 2.1.12. We consider the function f given in (2.1.7), and de�ne g(x) := |x|f(x)
for all x ∈ R. It is not di�cult to see that

0 ≤ g(x) ≤ |x| for all x ∈ R.
At the moment, since we do not know whether limx→0 g(x) exists or not, one cannot directly
use the monotonicity of limit in Lemma 2.1.4(b) to reach

0 ≤ lim
x→0

g(x) ≤ lim
x→0

|x|.

The proper argument should goes in the following way:

• Method 1: via squeeze theorem (Lemma 2.1.5). Since limx→0 |x| = 0 and
limx→0 0 = 0, then by using the squeeze theorem (Lemma 2.1.5) we conclude that
limx→0 g(x) exists and limx→0 g(x) = 0.

• Method 2: via limit superior criteria (Lemma 2.1.7). Since

|g(x)− 0| = g(x) ≤ |x| for all x ∈ R,
then by monotonicity property (2.1.11) and by part (c) the limit superior criteria
(Lemma 2.1.7) we see that

lim sup
x→0

|g(x)− 0| ≤ lim sup
x→0

|x| = lim
x→0

|x| = 0,

and �nally we conclude that limx→0 g(x) exists and limx→0 g(x) = 0 using part (a) the
limit superior criteria (Lemma 2.1.7). This is just a demonstration of the standard
way how to use the monotonicity property (2.1.11) and the limit superior criteria
(Lemma 2.1.7), we will not going to exhibit all details after this example. We will
give a simpler proof in Example 2.3.13 below after expanding the de�nition of limits
(De�nition 2.1.1 and De�nition 2.1.2).
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2.2. Continuous function

We now consider the very �rst example in Section 2.1: It is not di�cult to see that the
functions f : R \ {1} → R given by f(x) = x2−x

x−1
for all x ∈ R \ {1} has the limit

lim
x→1

f(x) = 1.

We see that the function g : R → R given by g(x) = x for all x ∈ R can be expressed as

g(x) =

{
f(x) , x ∈ R \ {1},
limx→1 f(x) , x = 1.

This observations suggest the following de�nition:

Definition 2.2.1. Let a, x0, b ∈ R with a < x0 < b and let f : (a, b) → R be a function. If
the limit limx→x0 f(x) exists in R and limx→x0 f(x) = f(x0), then we say that f is continuous
at x0. If f : I → R, where I = (a, b), I = (a,+∞) or I = (−∞, b) or I = R, and f is
continuous at all points in I, then we say that f is continuous on I.

Definition 2.2.2. Let x0, b ∈ R with x0 < b and let f : [x0, b) → R be a function. If the
right limit limx→x0+ f(x) exists in R and limx→x0+ f(x) = f(x0), then we say that f is right
continuous at x0.

Definition 2.2.3. Let a, x0 ∈ R with a < x0 and let f : (a, x0] → R be a function. If
the left limit limx→x0− f(x) exists in R and limx→x0− f(x) = f(x0), then we say that f is left
continuous at x0.

Remark 2.2.4. Let f : I1 → I2 and g : I3 → R be functions, where I1, I2 and I3 are
intervals such that I2 ⊂ I3. If g : I3 → R is continuous, and limx→x0 f(x) exists in R for some
x0 ∈ I1, then

lim
x→x0

g(f(x)) = g

(
lim
x→x0

f(x)

)
.

Similar properties also right limits/right continuity as well as left limits/left continuity.

Example 2.2.5. Let a, b ∈ R with a < b and let f : (a, b) → R be a function. If
limx→x0 f(x) exists in R, then the continuity of Euclidean norm (absolute value) implies

lim
x→x0

|f(x)| =
∣∣∣∣ limx→x0

f(x)

∣∣∣∣ .
On the other hand, the continuity of exponential function also implies

lim
x→x0

ef(x) = exp

(
lim
x→x0

f(x)

)
.

The composition of continuous functions is also continuous:

Lemma 2.2.6. Let I1, I2, I3, I4 are open intervals in R, which may unbounded in the sense
of Example 1.2.5. If the functions f : I1 → I2 and g : I3 → I4 are continuous functions, with
I2 ⊂ I3, then the composition g ◦ f : I1 → I4 is also continuous.

It is remarkable to mention the following property of continuous functions.
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Theorem 2.2.7. Let a, b ∈ R with a < b and let f : [a, b] → R be a continuous function.
Then there exists xmax ∈ [a, b] and xmin ∈ [a, b] (not necessarily unique) such that

f(xmax) = sup
[a,b]

f and f(xmin) = inf
[a,b]

f,

that is, f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ [a, b].

Remark. The above theorem may not holds true of we remove a point from [a, b]. For
example, if we consider the continuous function

(2.2.1) f : [−1, 1] \ {0} → R, f(x) :=
1

x
,

we see that both xmax and xmin do not exist.

2.3. Limits at in�nity, limit superior and limit inferior

We now consider the function given in (2.2.1), it is not di�cult to see that the right limit
limx→0+ f(x) does not exist in R. Intuitively, we observe the trend f(x) → +∞ as x → 0+,
but the problem is +∞ /∈ R and −∞ /∈ R, therefore we cannot directly use De�nition 2.1.1.

Definition 2.3.1. Let a, x0, b ∈ R with a < x0 < b and let f : (a, b) \ {x0} → R be a
function. We say that limx→x0 f(x) = +∞ if: Given any M > 0, there exists δ = δ(ϵ) > 0
such that

0 < |x− x0| < δ implies f(x) > M.

Similarly, we say that limx→x0 f(x) = −∞ if: Given any M > 0, there exists δ = δ(ϵ) > 0
such that

0 < |x− x0| < δ implies f(x) < −M.

Similar to De�nition 2.1.2, we also consider the following de�nition.

Definition 2.3.2. Let a, x0, b ∈ R with a < x0 < b and let f : (x0, b) → R and
g : (a, x0) → R be functions. We say that the right limit limx→x0+ f(x) = +∞ (resp.
limx→x0+ f(x) = −∞) if: Given any M > 0, there exists δ = δ(ϵ) > 0 such that

0 < |x− x0| < δ and x > x0 together imply f(x) > M (resp. f(x) < −M).

Similarly, we say that the left limit limx→x0− g(x) = +∞ (resp. limx→x0− g(x) = −∞) if:
Given any M > 0, there exists δ = δ(ϵ) > 0 such that

0 < |x− x0| < δ and x < x0 together imply g(x) > M (resp. g(x) < −M).

In order to unify the notions, we summarize De�nition 2.1.1, De�nition 2.1.2, De�ni-
tion 2.3.1 and De�nition 2.3.2 together in the following de�nition.

Definition 2.3.3. We unify the notion of limits as the followings:

• If either limx→x0 f(x) exists in R or limx→x0 f(x) = +∞ or limx→x0 f(x) = −∞, we
simply say that the limit limx→x0 f(x) exists.

• If either limx→x0+ f(x) exists in R or limx→x0+ f(x) = +∞ or limx→x0+ f(x) = −∞,
we simply say that the limit limx→x0+ f(x) exists.

• If either limx→x0− f(x) exists in R or limx→x0− f(x) = +∞ or limx→x0− f(x) = −∞,
we simply say that the limit limx→x0− f(x) exists.

We now extend the limit superior and also introduce the limit inferior in the following
de�nition, which are always exist in the sense of De�nition 2.3.3 above.
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Definition 2.3.4. Let a, x0, b ∈ R with a < x0 < b and let g : (a, b) \ {x0} → R be any
function. We de�ne the limit superior/upper limit and the limit inferior/lower limit by

lim sup
x→x0

g(x) := lim
r→0+

(
sup

Br(x0)\{x0}
g

)
, lim inf

x→x0

g(x) := lim
r→0+

(
inf

Br(x0)\{x0}
g

)
.

The limit superior from right/upper limit from right and limit inferior from right/lower limit
from right are de�ned by

lim sup
x→x0+

g(x) := lim
r→0+

(
sup

(x0,x0+r)

g

)
, lim inf

x→x0+
g(x) := lim

r→0+

(
inf

(x0,x0+r)
g

)
and similarly the limit superior from left or upper limit from left and limit inferior from
left/lower limit from left are de�ned by

lim sup
x→x0−

g(x) := lim
r→0+

(
sup

(x0−r,x0)

g

)
, lim inf

x→x0−
g(x) := lim

r→0+

(
inf

(x0−r,x0)
g

)
.

Remark 2.3.5. By de�nition, it is easy to see that

lim inf
x→x0±

g(x) ≤ lim sup
x→x0±

g(x)

for arbitrary functions g : (a, b) \ {x0} → R. Therefore,
lim inf
x→x0±

g(x) = +∞ implies lim sup
x→x0±

g(x) = +∞,

lim sup
x→x0±

g(x) = −∞ implies lim inf
x→x0±

g(x) = −∞.

We now can state the following theorem, which is extreme powerful to check whether the
limit exists or not.

Theorem 2.3.6. Let a, x0, b ∈ R with a < x0 < b and let f : (a, b) \ {x0} → R be a
function.

(a) If limx→x0 f(x) exists, then

(2.3.1) lim sup
x→x0

f(x) = lim inf
x→x0

f(x) = lim
x→x0

f(x).

In other words, if lim supx→x0
f(x) ̸= lim infx→x0 f(x), then the limit limx→x0 f(x)

does not exist.
(b) If lim supx→x0

f(x) = lim infx→x0 f(x), then limx→x0 f(x) exists and (2.3.1) holds.

Similar results also hold true for one-side limits/limit superior/limit inferior.

As an immediate consequence, one also can check the continuity of function easily:

Corollary 2.3.7. Let a, x0, b ∈ R with a < x0 < b and let f : (a, b) → R be a function.

(a) If f is continuous at x0, then

lim sup
x→x0

f(x) = lim inf
x→x0

f(x) = lim
x→x0

f(x) = f(x0).

In other words, if either one of the following holds:
• lim supx→x0

f(x) ̸= lim infx→x0 f(x) or
• lim supx→x0

f(x) ̸= f(x0) or
• lim infx→x0 f(x) ̸= f(x0),
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then f is not continuous at x0.
(b) If lim supx→x0

f(x) = lim infx→x0 f(x) = f(x0), then f is continuous at x0.

Similar results also hold true for one-side limits/limit superior/limit inferior.

Remark 2.3.8. The limit superior criteria (Lemma 2.1.7) and the squeeze theorem
(Lemma 2.1.5) are special cases of Theorem 2.3.6.

Using the same arguments as in Exercise 2.1.9, one can show the following proposition.

Proposition 2.3.9. Let a, x0, b ∈ R with a < x0 < b and let g1 : (a, b) \ {x0} → R as
well as g2 : (a, b) \ {x0} → R.

(a) The limit superior satis�es the subadditivity property:

(2.3.2) lim sup
x→x0

(g1(x) + g2(x)) ≤ lim sup
x→x0

g1(x) + lim sup
x→x0

g2(x),

(b) The limit inferior satis�es the superadditivity property:

(2.3.3) lim inf
x→x0

(g1(x) + g2(x)) ≥ lim inf
x→x0

g1(x) + lim inf
x→x0

g2(x),

(c) Both limit superior and limit inferior satisfy the monotonicity property: If g1(x) ≤
g2(x) for all x ∈ (a, b) \ {x0}, then

lim sup
x→x0

g1(x) ≤ lim sup
x→x0

g2(x), lim inf
x→x0

g1(x) ≤ lim inf
x→x0

g2(x).

Similar results also hold true for one-side limits/limit superior/limit inferior.

Remark 2.3.10. Here we remark that the property (2.1.10), that is,

(2.3.4) lim sup
x→x0

(g1(x)g2(x)) ≤
(
lim sup
x→x0

g1(x)

)(
lim sup
x→x0

g2(x)

)
.

only holds true for non-negative functions g1 and g2.

Remark 2.3.11. As we mentioned above, we only have subadditivity/superadditivity
property rather than the additivity. We now show that the linearity holds under extra
assumptions. Suppose that all assumptions in Proposition 2.3.9 hold.

(a) If we additionally assume that limx→x0 g2(x) exists in R, then applying the subaddi-
tivity/superadditivity property on the function g1(x) = (g1(x) + g2(x))− g2(x), one
has lim sup

x→x0

g1(x) ≤ lim sup
x→x0

(g1(x) + g2(x))− lim
x→x0

g2(x),

lim inf
x→x0

g1(x) ≥ lim inf
x→x0

(g1(x) + g2(x))− lim
x→x0

g2(x),

which implieslim sup
x→x0

g1(x) + lim
x→x0

g2(x) ≤ lim sup
x→x0

(g1(x) + g2(x)) ,

lim inf
x→x0

g1(x) + lim
x→x0

g2(x) ≥ lim inf
x→x0

(g1(x) + g2(x)) .

Now combine this with Proposition 2.3.9(a)(b) to conclude the additivity:

(2.3.5)

lim sup
x→x0

(g1(x) + g2(x)) = lim sup
x→x0

g1(x) + lim
x→x0

g2(x),

lim inf
x→x0

(g1(x) + g2(x)) = lim inf
x→x0

g1(x) + lim
x→x0

g2(x).
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(b) If we additionally assume that |g1(x)| ≤ M for all x ∈ Br(x0) for some r > 0 and
limx→x0 g2(x) exists in R≥0, by writing

g1(x)g2(x) = g1(x)

(
lim
t→x0

g2(t)

)
+ g1(x)

(
g2(x)− lim

t→x0

g2(t)

)
from (2.3.5) we see that

(2.3.6)


lim sup
x→x0

(g1(x)g2(x)) =

(
lim sup
x→x0

g1(x)

)(
lim
t→x0

g2(t)

)
,

lim inf
x→x0

(g1(x)g2(x)) =

(
lim inf
x→x0

g1(x)

)(
lim
t→x0

g2(t)

)
.

In the particular case when g2(x) = c ≥ 0 for all x ∈ Br(x0), we see that (2.3.6)
reads lim sup

x→x0

(cg1(x)) = c lim sup
x→x0

g1(x),

lim inf
x→x0

(cg1(x)) = c lim inf
x→x0

g1(x).

One should be aware that, for constant b ≤ 0, one sees that b = −|b| and see that

lim sup
x→x0

(bg1(x)) = lim sup
x→x0

(−|b|g1(x)) = − lim inf
x→x0

(|b|g1(x))

= −|b| lim inf
x→x0

g1(x) = b lim inf
x→x0

g1(x),

and

lim inf
x→x0

(bg1(x)) = lim inf
x→x0

(−|b|g1(x)) = − lim sup
x→x0

(|b|g1(x))

= −|b| lim sup
x→x0

g1(x) = b lim sup
x→x0

g1(x).

This means that in general, the linearity does not hold true for general coe�cients, which only
holds true for positive coe�cients. Similar result also holds true for one-side limit superior
and limit inferior.

Example 2.3.12 (Revisit of Example 2.1.8). We now consider the function given in
(2.1.7), that is,

(2.3.7) f : R → R, f(x) =

{
1 , x ∈ Q,

0 , x ∈ R \Q,

consider in Example 1.3.19. For each x0 ∈ R, it is easy to see that

lim inf
x→x0

f(x) = 0 ̸= 1 = lim sup
x→x0

f(x),

which concludes that limx→x0 f(x) does not exist.

Example 2.3.13 (Revisit of Example 2.1.12). We now consider the function g(x) :=
|x|f(x), where f is the function given in (2.3.7). It is easy to see that

0 ≤ g(x) ≤ |x| for all x ∈ R.
We now see that

0 ≤ lim inf
x→0

g(x) ≤ lim sup
x→0

g(x) ≤ lim sup
x→0

|x| = lim
x→0

|x| = 0,
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which concludes that

lim
x→0

g(x) = lim inf
x→0

g(x) = lim sup
x→0

g(x) = 0.

This example demonstrates another alternative way to use squeeze theorem.

Example 2.3.14. We now consider a di�cult example, exhibited in Example 1.3.19(d):
We consider the function

(2.3.8) f : (0, 1) → R, f(x) =

{
1
q

, if x = p
q
∈ (0, 1) ∩Q, q > 0, gcd(p, q) = 1,

0 , if x ∈ (0, 1) \Q.

In view of Corollary 2.3.7, it is easy to show that f is not continuous at all x1 ∈ (0, 1) ∩Q,
since

lim inf
x→x1

f(x) = 0 < f(x1).

We now show that f is continuous at all x0 ∈ (0, 1) \Q. Since f(x) ≥ 0 for all x ∈ (0, 1) and
f(x0) = 0, it is su�ce to show lim supx→x0

f(x) = 0. For each integer q ∈ N, we de�ne the
set of rational number with denominator at most q, that is,

Qq := Z ∪ 1

2
Z ∪ 1

3
Z ∪ · · · ∪ 1

q
Z.

One sees that (0, 1) ∩ Qq is a �nite set, i.e. there are only �nitely many points in that set.
Since x0 ∈ (0, 1) \Q, then

dist(x0, (0, 1) ∩Qq) = min
x∈(0,1)∩Qq

|x− x0| > 0.

This means that, if we de�ne

rq :=
1

2
dist(x0, (0, 1) ∩Qq),

we see that the set Brq(x0)\{x0} only consists of rational number with denominator ≥ q+1,
therefore

sup
Brq (x0)\{x0}

f ≤ 1

q + 1
.

Hence, we see that

lim sup
x→x0

f(x) = lim
r→0+

(
sup

Br(x0)\{x0}
f

)
≤ sup

Brq (x0)\{x0}
f ≤ 1

q + 1
for all q ∈ N.

Since the left hand side is independent of q, by arbitrariness of q ∈ N, we now conclude that
lim supx→x0

f(x) = 0, and hence f is continuous at x0 ∈ (0, 1) \Q.
Conclusion. The function f given in (2.3.8) is continuous at each irrational point, but
discontinuous at each rational point.

It is also possible to de�ne the limit for x → ±∞:

Definition 2.3.15. Let a ∈ R and let f : (a,+∞) → R be a function. We say that
limx→+∞ f(x) = L ∈ R exists if: Given any ϵ > 0, there exists N = N(ϵ) > 0 such that

x > M implies |f(x)− L| < ϵ.
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We say that limx→+∞ f(x) = +∞ if: Given any M > 0, there exists N = N(M) > 0 such
that

x > M implies f(x) > N,

and the limit limx→+∞ f(x) = −∞ can be de�ned in an analogous way. If either
limx→+∞ f(x) = L ∈ R exists or limx→+∞ f(x) = +∞ or limx→+∞ f(x) = −∞, then we
say that limx→+∞ f(x) exists, or we slightly abuse the notation by saying that limx→+∞ f(x)
exists in [−∞,+∞]. The notions limx→−∞ g(x) for functions g : (−∞, a) → R can be de�ned
using similar manner, here we omit the details.

We also can de�ne the limit superior and limit inferior in a similar manner.

Definition 2.3.16. Let a ∈ R and let f : (a,+∞) → R be a function. We de�ne

lim sup
x→+∞

f(x) := lim
N→+∞

(
sup
x>N

f(x)

)
and lim inf

x→+∞
f(x) := lim

N→+∞

(
inf
x>N

f(x)

)
.

Similarly, for functions g : (−∞, a) → R, we de�ne

lim sup
x→−∞

g(x) := lim
N→−∞

(
sup
x<N

g(x)

)
and lim inf

x→−∞
f(x) := lim

N→−∞

(
inf
x<N

g(x)

)
.

We also have the following theorem.

Theorem 2.3.17. Let a ∈ R and let f : (a,+∞) → R be a function.

(a) If limx→+∞ f(x) exists, then

(2.3.9) lim
x→+∞

f(x) = lim sup
x→+∞

f(x) = lim inf
x→+∞

f(x).

In other words, if lim supx→+∞ f(x) ̸= lim infx→+∞ f(x), then limx→+∞ f(x) does
not exist.

(b) If lim supx→+∞ f(x) = lim infx→+∞ f(x), then limx→+∞ f(x) exists and (2.3.9) holds.

Similar result also holds for the limit as x → −∞.

Using the same arguments as in Exercise 2.1.9, one can show the following proposition.

Proposition 2.3.18. Let a ∈ R and let g1 : (a,+∞) → R and g2 : (a,+∞) → R be
functions.

(a) The limit superior satis�es the subadditivity property:

(2.3.10) lim sup
x→+∞

(g1(x) + g2(x)) ≤ lim sup
x→+∞

g1(x) + lim sup
x→+∞

g2(x),

(b) The limit inferior satis�es the superadditivity property:

(2.3.11) lim inf
x→+∞

(g1(x) + g2(x)) ≥ lim inf
x→+∞

g1(x) + lim inf
x→+∞

g2(x),

(b) Both limit superior and limit inferior satisfy the monotonicity property: If g1(x) ≤
g2(x) for all x ∈ (a, b) \ {x0}, then

lim sup
x→+∞

g1(x) ≤ lim sup
x→+∞

g2(x), lim inf
x→+∞

g1(x) ≤ lim inf
x→+∞

g2(x).

Similar result also holds for the limit as x → −∞.

Remark 2.3.19. Similar results in Remark 2.3.11 also holds true for the limit superior
and limit inferior at in�nity. Here we omit the details.
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Exercise 2.3.20. Using Theorem 2.2.7 to show the followings:

(a) If f : [a,+∞) → R is continuous and limx→+∞ f(x) exists in R, then there exists a
constant C > 0 such that |f(x)| ≤ C for all x ≥ a.

(b) If f : (−∞, a] → R is continuous and limx→−∞ f(x) exists in R, then there exists a
constant C > 0 such that |f(x)| ≤ C for all x ≤ a.

(c) If f : R → R is continuous and both limx→+∞ f(x) and limx→−∞ f(x) exist in R,
then there exists a constant C > 0 such that |f(x)| ≤ C for all x ∈ R.

Remark 2.3.21. Unlike Theorem 2.2.7, the maximum and minima may not attained, for
example the inverse tangent

tan−1 : R → (−π/2, π/2)

satis�es
lim

x→+∞
tan−1 x =

π

2
, lim

x→−∞
tan−1 x = −π

2
.

Example 2.3.22. Finally, by using the uni�ed notations above, we also can do �change
of variables� for limits, which simplify some computations. For example,

lim
x→0+

e−1/x

x
= lim

y→+∞

e−y

1/y
= lim

y→+∞
ye−y,

here we considered the change of variable y = 1/x, and see that x → 0+ if and only if
y → +∞. The above limit is not easy to compute using only the above de�nitions, since

lim
y→+∞

y = +∞ and lim
y→+∞

e−y = 0.

We will resolve this di�culty in Example 3.2.6 of Section 3.2 below.



CHAPTER 3

Di�erentiation

3.1. De�nition of Di�erentiation

We now use the notion of limit above to study the in�nitesimal rate of change of functions,
simply speaking, the slope of the tangent line at each point. Let f : (a, b) → R be a function.
We now pick any two points x0 ̸= x1 ∈ (a, b). The rate of change is given by

f(x1)− f(x0)

x1 − x0

.

It is more convenient to denote x1 = x0 + h for some h ̸= 0, and write

(3.1.1)
f(x0 + h)− f(x0)

h
.

Now it is natural to consider the following de�nition.

Definition 3.1.1. Let a, b ∈ R with a < b and let f : (a, b) → R be a function, and let
x0 ∈ (a, b). We say that f is di�erentiable at x0 if

(3.1.2) lim
h→0

f(x0 + h)− f(x0)

h
exists in R.

In this case, the number (3.1.2) is called the derivative of f at x0, which we usually denoted
as

f ′(x0) or f ′(x)|x=x0
(Lagrange notation),

which is more convenient in di�erentiation, or

df

dx
(x0) or

df

dx
(x)

∣∣∣∣
x=x0

or
d

dx
f(x)

∣∣∣∣
x=x0

(Leibniz notation),

which is more convenient in Riemann/Lebesgue integration (see Chapter 7).

Remark 3.1.2. The notations f ′(x)|x=x0
and d

dx
f(x)

∣∣
x=x0

both emphasize that ��rst

di�erentiate and then evaluate the point x = x0�.We see that the quotient (3.1.1) is not
well-de�ned at h = 0. According to the de�nition of limit (De�nition 2.1.1), we remind the
readers that the limit (3.1.2) does not require the pointwise evaluation at h = 0.

One sees that (3.1.2) is equivalent to

lim sup
h→0

|f(x0 + h)− f(x0)− f ′(x0)h|
|h|

= 0.

We also can rephrase De�nition 3.1.1 in the followings implicit way:

Definition 3.1.3. Let a, b ∈ R with f : (a, b) → R be a function, and let x0 ∈ (a, b). We
say that f is di�erentiable at x0 if there exists L ∈ R such that

(3.1.3) lim
h→0

|f(x0 + h)− f(x0)− Lh|
|h|

= 0.

28
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In this case, the derivative f ′(x0) of f at x0 is de�ned by f ′(x0) := L.

Remark 3.1.4. Unlike De�nition 3.1.1, it is not so obvious that whether the number L
in De�nition 3.1.3 is unique or not. Suppose that (3.1.3) holds true for L = L1 and L = L2.
We see that

|L1 − L2| =
|(f(x0 + h)− f(x0)− L1h)− (f(x0 + h)− f(x0)− L2h)|

|h|

≤ |(f(x0 + h)− f(x0)− L1h)|
|h|

+
|f(x0 + h)− f(x0)− L2h)|

|h|
,

and take limit superior to see that

|L1 − L2| ≤ lim sup
h→0

(
|(f(x0 + h)− f(x0)− L1h)|

|h|
+

|f(x0 + h)− f(x0)− L2h)|
|h|

)
≤ lim sup

h→0

|(f(x0 + h)− f(x0)− L1h)|
|h|

+ lim sup
h→0

|f(x0 + h)− f(x0)− L2h)|
|h|

= 0,

which concludes that L1 = L2. We again remind the readers that the limit superior only
subaddivity property rather than the additivity.

The following lemma is an easy consequence of the de�nitions of continuity and di�eren-
tiability of functions.

Lemma 3.1.5. Let a, x0, b ∈ R with a < x0 < b and let f : (a, b) → R be a function. If f
is di�erentiable at x0, then f is continuous at x0.

Definition 3.1.6. Let a, b ∈ R with a < b, and let f : (a, b) → R be a di�erentiable
function. We say that f is twice-di�erentiable at x0 ∈ (a, b) if the function f ′ : (a, b) → R is
di�erentiable at x0. In this case,

f ′′(x0) :=

(
d

dx
f ′(x)

)∣∣∣∣
x=x0

= lim
h→0

f ′(x+ h)− f ′(x)

h
.

In terms of Lagrange notation, we call f ′(x0) the �rst-order derivative of f at x0 and call
f ′′(x0) the second-order derivative of f at x0.

Definition 3.1.7. Let a, x0, b ∈ R with a < x0 < b. A function f : (a, b) → R is said to
be twice-di�erentiable if it is di�erentiable and f ′ : (a, b) → R is also di�erentiable. In this
case, the function f (0) := f is called the zeroth-order derivative of f , f (1) := f ′ is called the
�rst-order derivative of f , and say that f (2) := f ′′ the second-order derivative of f . In this
case, we also say that the function f : (a, b) → R is di�erentiable 2-times. Inductively, for
each n ∈ N, we say that a function f : (a, b) → R is di�erentiable n-times if the derivatives
f (j) : (a, b) → R are di�erentiable for all j = 0, · · · , n− 1, and we de�ne f (n) := (f (n−1))′. In
terms of Leibniz notation, we write

dnf

dxn
≡
((

d

dx

)n

f(x)

)
:= f (n)(x),

or emphasizing the evaluation of points:

dnf

dxn
(x0) ≡

((
d

dx

)n

f(x)

)∣∣∣∣
x=x0

:= f (n)(x0),
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Remark 3.1.8. Suppose that f : (a, b) → R is di�erentiable n times, according to
Lemma 3.1.5, the derivatives f (j) : (a, b) → R are continuous for all j = 0, · · · , n − 1.
However, in general, the highest order derivative f (n) : (a, b) → R may not continuous. One
should be careful that the set Cn(I), for any interval I, means that

Cn(I) :=
{
f : I → R is di�erentiable n-times : f (n) : I → R is continuous

}
.

Exercise 3.1.9. Let a, b ∈ R with a < b and let f : (a, b) → R be a function, and let
x0 ∈ (a, b). Show that if f is di�erentiable at x0 with derivative f ′(x0), then

lim
h→0

f(x0 + h)− f(x0 − h)

2h
exists in R and it is equal to f ′(x0).

Remark. The converse of Exercise 3.1.9 may not true. For example, we consider the
function f : R → R de�ned by f(x) = |x|, and we consider x0 = 0. One sees that

f(0 + h)− f(0− h)

2h
=

|h| − |h|
2h

= 0 for all h ̸= 0,

and hence

lim
h→0

f(0 + h)− f(0− h)

2h
= 0.

However, one sees that

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

h

h
= 1 ̸= −1 = lim

h→0−

−h

h
= lim

h→0−

f(0 + h)− f(0)

h
,

hence the limit limh→0
f(0+h)−f(0)

h
does not exist, and thus f is not di�erentiable at x0 = 0.

Example 3.1.10. The de�nition of the natural exponential e, which is approximated by
2.71828 · · · , means that

d

dx
ex
∣∣∣∣
x=0

= 1.

From this, one sees that

d

dx
ex = lim

h→0

ex+h − ex

h
= lim

h→0

exeh − ex

h
= ex lim

h→0

eh − 1

h
= ex lim

h→0

d

dx
ex
∣∣∣∣
x=0

= ex for all x ∈ R.

Example 3.1.11. Let n ∈ N, and we consider the power function f : R → R given by
f(x) = xn. By using the binomial theorem, one sees that

(x+ h)n =
n∑

j=0

(
n
j

)
xn−jhj,

where

(
n
j

)
is the number of ways to choose j elements from a set with n elements. For each

h ̸= 0, one sees that

(x+ h)n − xn

h
=

1

h

n∑
j=1

(
n
j

)
xn−jhj =

n∑
j=1

(
n
j

)
xn−jhj−1 = nxn−1 +

n∑
j=2

(
n
j

)
xn−jhj−1.

By the linearity of the limit (Lemma 2.1.4), one sees that

f ′(x) = lim
h→0

(x+ h)n − xn

h
= nxn−1 +

n∑
j=2

(
n
j

)
xn−j lim

h→0
hj−1 = nxn−1 for all x ∈ R.
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Example 3.1.12. We now consider the function f : R → R given by

f(x) =

{
x3 , x < 0,

x2 , x ≥ 0.

By using Example 3.1.11, one has f ′(x) = 3x2 for all x < 0 and f ′(x) = 2x for all x > 0. We
are now asking whether f is di�erentiable at x = 0 or not. We only can check this directly
from the de�nition:

f(0 + h)− f(0)

h
=

h2

h
= h for all h > 0, which gives lim

h→0+

f(0 + h)− f(0)

h
= 0,

f(0 + h)− f(0)

h
=

h3

h
= h2 for all h < 0, which gives lim

h→0−

f(0 + h)− f(0)

h
= 0.

Since the left and right limits exist and coincide, we conclude that the limit limh→0
f(0+h)−f(0)

h

exists and equal to 0, and in fact it means that f ′(0) = 0.

We will give more interesting examples after exhibit some di�erentiation rules in Sec-
tion 3.3 below.

3.2. L' Hôpital's rule

Before continue, let us exhibit some important facts which further motivate the study of
di�erentiation. We see that the limits (3.1.2) and (3.1.3) are both special case of the limit

lim
x→0

f(x)

g(x)
with lim

x→0
f(x) = 0 and lim

x→0
g(x) = 0,

which is not so easy to compute. Despite some authors say that this it is the intermediate
form 0

0
, however personally I strongly suggested not to use this terminology , since it is not

rigorous and may cause ambiguity. Let f, g : (a, b) → R be functions which are di�erentiable
on (a, b) and their derivatives f ′ : (a, b) → R and g′ : (a, b) → R are continuous. In this case.
If there is a point x0 ∈ (a, b) such that

lim
x→x0

f(x) = 0 = f(x0) and lim
x→x0

g(x) = 0 = g(x0) as well as g
′(x0) ̸= 0,

one sees that

lim
x→x0

f(x)

g(x)
= lim

x→x0

f(x)− 0

g(x)− 0
= lim

x→x0

f(x)− f(x0)

g(x)− g(x0)

= lim
x→x0

f(x)−f(x0)
x−x0

g(x)−g(x0)
x−x0

=
limx→x0

f(x)−f(x0)
x−x0

limx→x0

g(x)−g(x0)
x−x0

=
f ′(x0)

g′(x0)
= lim

x→x0

f ′(x)

g′(x)
,

this proves the simplest version of L' Hôpital's rule. Although the rule is often attributed to
de L' Hôpital, the theorem was �rst introduced to him in 1694 by the Swiss mathematician
Johann Bernuolli. We �rst exhibit a version of L' Hôpital's rule in terms of limit superior
and limit inferior.

Theorem 3.2.1 ([Tay52]). Suppose that f : (a, b) → R and g : (a, b) → R are di�er-
entiable functions for some −∞ ≤ a < b ≤ +∞ in the sense of Example 1.2.5. Suppose
that g(x) ̸= 0 and g′(x) ̸= 0 for all x ∈ (a, b). If either one of the following holds for some
x0 ∈ (a, b):

(a) limx→x0 f(x) = 0 and limx→x0 g(x) = 0;
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(b) limx→x0 f(x) = ±∞ and limx→x0 g(x) = ±∞;

then

lim inf
x→x0

f ′(x)

g′(x)
≤ lim inf

x→x0

f(x)

g(x)
≤ lim sup

x→x0

f(x)

g(x)
≤ lim sup

x→x0

f ′(x)

g′(x)
.

Combining this with Theorem 2.3.6, we immediately reach the following version L' Hôpi-
tal's rule:

Corollary 3.2.2. Suppose that all assumptions in Theorem 3.2.1 hold. If we further
assume that

the limit lim
x→x0

f ′(x)

g′(x)
exists,

then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.

Here we also exhibit another version in terms of left and right limits. Despite its proof
involving the Cauchy mean value theorem (Theorem 3.4.6) below, here we still present here
in order to motivate the study, and we will not going to give the proof in this lecture note.

Theorem 3.2.3 ([Rud87, Theorem 5.13]). Suppose that f : (a, b) → R and g : (a, b) → R
are di�erentiable functions for some −∞ ≤ a < b ≤ +∞ in the sense of Example 1.2.5.
Suppose that

the right limit lim
x→a+

f ′(x)

g′(x)
exists,

where we interpret limx→a+ as limx→−∞ if a = −∞. If either one of the following holds:

(a) limx→a+ f(x) = 0 and limx→a+ g(x) = 0;
(b) limx→a+ f(x) = ±∞ and limx→a+ g(x) = ±∞;

then

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
.

Similar results also hold true for the left limit limx→b−, which is interpreted as limx→+∞ when
b = +∞.

Remark 3.2.4. The limits in both Corollary 3.2.2 and Theorem 3.2.3 may take values
±∞, more precisely, they are understood in the sense of De�nition 2.3.3 and De�nition 2.3.15.

Remark 3.2.5. In this calculus course, we only involving functions are quite smooth,
therefore most of the assumptions in the L' Hôpital's rule (Corollary 3.2.2 and Theorem 3.2.3)
can be satis�es easily. However, one always need to emphasize the su�cient condition (a) or
(b) in the L' Hôpital's rule (Corollary 3.2.2 and Theorem 3.2.3) before using the theorem,
otherwise your marks will be deducted signi�cantly .

Example 3.2.6. Now we can compute the limit in Example 2.3.22. We see that

lim
x→0+

e−1/x

x
= lim

y→+∞

e−y

1/y
= lim

y→+∞

y

ey
.
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Since limy→+∞ y = +∞ and limy→+∞ ey = +∞ (as mentioned above, I strongly recommend
not to say that this is an intermediate form +∞

+∞), then by L' Hôpital's rule, one has

lim
y→+∞

y

ey
= lim

y→+∞

d
dy
(y)

d
dy
(ey)

= lim
y→+∞

1

ey
= 0,

which concludes that limx→0+
e−1/x

x
= 0.

3.3. Di�erentiation rules

The main theme of this section is to introduce the product rule, chain rule, implicit
di�erentiation and how to take limit implicitly. We �rst exhibit the main properties of
di�erentiations.

Lemma 3.3.1 ([Rud87, Theorem 5.3]). Let a, b ∈ R with a < b and let f1 : (a, b) → R
and f2 : (a, b) → R be functions.

(a) Linearity. If both f1 and f2 are di�erentiable at x0 ∈ (a, b), then for each c1, c2 ∈ R,
the function

c1f1 + c2f2 : (a, b) → R, (c1f1 + c2f2)(x) := c1f1(x) + c2f2(x) for all x ∈ (a, b)

is also di�erentiable at such point x0, and satisfying

(c1f1 + c2f2)
′(x0) = c1f

′
1(x0) + c2f

′
2(x0).

(b) Product rule. If both f1 and f2 are di�erentiable at x0 ∈ (a, b), then the function
(not to be confused with the composition of functions in De�nition 1.3.6)

f1f2 : (a, b) → R, (f1f2)(x) := f1(x)f2(x) for all x ∈ (a, b)

is also di�erentiable at x0, and satisfying

(f1f2)
′(x0) = f ′

1(x0)f2(x0) + f1(x0)f
′
2(x0).

Lemma 3.3.2 (Chain rule [Rud87, Theorem 5.5]). Let a, b ∈ R with a < b and let
f : (a, b) → I be a continuous function for some open interval I (may unbounded as in
Example 1.2.5). Suppose that f is di�erentiable at x ∈ (a, b) and suppose that g : I → R
is di�erentiable at f(x), then the composition g ◦ f : (a, b) → R (as in De�nition 1.3.6) is
di�erentiable at x and satisfying

(3.3.1) (g ◦ f)′(x) = g′(y)|y=f(x) f
′(x).

Remark 3.3.3. In terms of composition (De�nition 1.3.6), one also sees that

g′(y)|y=f(x) = (g′ ◦ f)(x) = g′(f(x)).

One should be careful about the notations: The term (g ◦ f)′(x) means that we �rst
composite the functions, and then di�erentiate the resulting function, while the term
g′(f(x)) = g′(y)|y=f(x) means that we we �rst di�erentiate g, and then evaluate y = f(x)

after that. In general, (g ◦ f)′(x) and g′(y)|y=f(x) are di�erent. Roughly speaking, chain rule
says that if one interchanging the order of �di�erentiation� and �evaluation�, then the �price�
of doing so is multiplying f ′(x). Personally, I would suggest the notation g′(y)|y=f(x) rather
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than g′(f(x)) (of course this is not mandatory, it is up to you to take the risk or not). The
proper way to write (3.3.1) in terms of Leibniz notation should be

(3.3.2)
d

dx
(g ◦ f) = dg

dy

∣∣∣∣
y=f(x)

df

dx
.

Some authors abuse the notation by ignoring the evaluation y = f(x) to write

(3.3.3)
dg

dx
=

dg

df
· df
dx

,

to formally canceled out the notation df .

Remark 3.3.4. Suppose that both f : (a, b) → I and g : I → R are both twice di�eren-
tiable. By using the Lagrange notations, one sees that

(g ◦ f)′′(x) = ((g′ ◦ f)(x)f ′(x))
′

(chain rule)

= (g′ ◦ f)′(x)f ′(x) + (g′ ◦ f)(x)f ′′(x) (product rule)

= g′′(y)|y=f(x) (f
′(x))2 + g′(y)|y=f(x) f

′′(x) (chain rule).

In terms of Leibniz notation, the above equality reads

(3.3.4)
d2

dx2
(g ◦ f) = d2g

dy2

∣∣∣∣
y=f(x)

(
df

dx

)2

+
dg

dy

∣∣∣∣
y=f(x)

d2f

dx2
.

If we abuse the notation by ignoring the evaluation y = f(x) (like (3.3.3)) to write

d2g

dx2
=

d2g

df 2

(
df

dx

)2

+
dg

df

d2f

dx2
,

which looks strange. Due to this reason, I strongly not recommend to abuse the notation like
(3.3.3).

Remark 3.3.5 (Suggested notation). I would suggest a combination of Lagrange notation
and Leibniz notation, with a lot of parentheses/brackets. For example, I like to write the
chain rule in Lemma 3.3.2 as

(g(f(x)))′ =
d

dy
g(y)

∣∣∣∣
y=f(x)

f ′(x),

and the second order chain rule (3.3.4) as

(g(f(x)))′′ =
d2g

dy2

∣∣∣∣
y=f(x)

(f ′(x))2 +
dg

dy

∣∣∣∣
y=f(x)

f ′′(x)

to remind myself the �evaluation of points�.

The term �implicit di�erentiation� is not really a theorem, which is more like an idea. We
introduce this idea using the below example.

Example 3.3.6 (Quotient rule). Let a, b ∈ R with a < b and let f : (a, b) → R and
g : (a, b) → R be functions, such that both f and g are di�erentiable at x0 with g(x) ̸= 0 for
all x ∈ (a, b). By using product rule and chain rule, one sees that

f

g
: (a, b) → R,

f

g
(x) :=

f(x)

g(x)
= f(x)(g(x))−1 for all x ∈ (a, b)
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is di�erentiable at x0, and an explicit formula can be computed accordingly. Here we exhibit
another simple way to compute it. Write h = f

g
, and we see that

(3.3.5) f(x) = h(x)g(x).

Di�erentiate both sides of (3.3.5) at x = x0, one sees that

f ′(x0) = (h(x)g(x))′|x=x0
= h′(x0)g(x0) + h(x0)g

′(x0),

that is,

(3.3.6) h′(x0) =
f ′(x0)− h(x0)g

′(x0)

g(x0)
.

We now combine (3.3.5) and (3.3.6) to reach(
f

g

)′

(x0) =
f ′(x0)− f(x0)

g(x0)
g′(x0)

g(x0)
=

f ′(x0)g(x0)− f(x0)g
′(x0)

(g(x0))2
,

which is exactly the well-known quotient rule.

Main ideas of implicit di�erentiation. We �rst simplify the equation, then di�erentiate
both sides, and in many case, one can compute it using product rule (Lemma 3.3.1) and
chain rule (Lemma 3.3.2) above.

Example 3.3.7 (Di�erentiation of logarithmic and exponential functions). By the de�-
nition of natural logarithm, one has

x = elnx for all x > 0.

Di�erentiate the above equation, and using chain rule, we see that

1 =
d

dx
x =

d

dx
(elnx) =

d

dy
ey
∣∣∣∣
y=lnx

(lnx)′ = ey|y=lnx

d

dx
lnx = x(lnx)′,

which concludes that

(lnx)′ =
1

x
for all x ∈ R.

From (1.3.5) and the linearity of di�erentiation, it is easy to see that

(loga x)
′ =

(lnx)′

ln a
=

1

ln a

1

x
for all x > 0.

By using (1.3.6), we already know that loga : R>0 → R is the inverse function of the function
f : R → R>0 given by f(x) = ax for all x ∈ R. We now di�erentiate on both sides of

loga(a
x) = x for all x ∈ R

to see that

1 =
d

dx
x =

d

dx
(loga(a

x)) =
d

dy
loga y

∣∣∣∣
y=ax

(ax)′ =
1

ln a

1

x

∣∣∣∣
y=ax

(ax)′ =
1

ln a
a−x(ax)′,

which conclude

(3.3.7) (ax)′ = ax ln a for all x > 0.
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We also give another proof of (3.3.7), which is more direct: Since ax = eln(a
x) = ex ln a, then

using chain rule one sees that

(ax)′ =
d

dy
ey
∣∣∣∣
y=x ln a

d

dx
(x ln a) = ey|y=x ln a ln a = ex ln a ln a = ax ln a.

Example 3.3.8 (Power function). Now one can easily extend Example 3.1.11 using im-
plicit di�erentiation. Let p ∈ R and we consider the function f : R>0 → R>0 given by
f(x) = xp. According to the spirit of implicit di�erentiation, we �rst simplify the equation
as

ln(f(x)) = ln(xp) = p lnx.

Now di�erentiate the above equation, and using product rule and chain rule to see that

p
1

x
=

d

dx
(p lnx) =

d

dx
(ln(f(x))) =

d

dy
ln y

∣∣∣∣
y=f(x)

f ′(x) =
1

y

∣∣∣∣
y=f(x)

f ′(x) =
f ′(x)

f(x)
,

which implies

f ′(x) = pf(x)x−1 = pxp−1 for all x > 0.

Example 3.3.9. We de�ne the function f : R>0 → R>0 by f(x) = xx for all x > 0,
which is di�erentiable. According to the spirit of implicit di�erentiation, we �rst simplify the
equation as

(3.3.8) ln(f(x)) = ln(xx) = x lnx.

Now di�erentiate the above equation, and using product rule and chain rule to see that

lnx+ 1 =
d

dx
(x lnx) =

d

dx
(ln(f(x))) =

d

dy
ln y

∣∣∣∣
y=f(x)

f ′(x) =
1

y

∣∣∣∣
y=f(x)

f ′(x) =
f ′(x)

f(x)
,

which implies

(3.3.9) f ′(x) = f(x)(lnx+ 1) for all x > 0.

One also can write (3.3.9) as f ′(x) = xx(lnx + 1) for all x > 0. It is much convenient to
compute second derivative from (3.3.9):

(3.3.10) f ′′(x) = (f(x)(lnx+1))′ = f ′(x)(lnx+1)+ f(x)(lnx)′ = f ′(x)(lnx+1)+ f(x)x−1

for all x > 0, which also can be further simplify as

f ′′(x) = f(x)(lnx+ 1)(lnx+ 1) + f(x)
1

x
= f(x)((lnx+ 1)2 + x−1) = xx((lnx+ 1)2 + x−1).

Again, it is more convenient to compute third derivative from (3.3.10), and the procedure
can be done for arbitrary order of derivative.

Exercise 3.3.10. We de�ne the function g : R>0 → R>0 by g(x) = xxx
for all x > 0.

Compute its derivative g′ : R>0 → R.

Similar ideas also works for taking limit. which is also an e�cient way to proof the
existence of limits:
Taking limit implicitly. We �rst simplify the equation using continuous function, and
then taking limit (L' Hôpital's rule is helpful). Finally solve the resulting equation.
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Example 3.3.11. Let f be the function given in Example 3.3.9. We want to show that
limx→0+ f(x) exists and compute its value by writing (3.3.8). Since limx→0+ lnx = −∞ and
limx→0+ x−1 = +∞, by using L' Hôpital's rule, we take limit on (3.3.8) to see that

lim
x→0+

ln(f(x)) = lim
x→0+

x lnx = lim
x→0+

lnx

x−1
= lim

x→0+

(lnx)′

(x−1)′
= lim

x→0+

x−1

−x−2
= − lim

x→0+
x = 0.

Note that we cannot directly use the continuity of ln : R>0 → R to obtain ln(limx→0+ f(x))
since we do not know whether limx→0+ f(x) exists or not at the moment. The proper way to
argue this is to use the continuity of exp : R → R>0 to see that

1 = exp(0) = exp

(
lim
x→0+

ln(f(x))

)
= lim

x→0+
exp (ln(f(x))) = lim

x→0+
f(x),

which conclude our result.

Exercise 3.3.12. Show that
lim
x→0

(1 + x)1/x = e.

We now consider the derivative of trigonometric functions. We begin the our discussion
from the following lemma.

Lemma 3.3.13. One has

d

dθ
sin θ

∣∣∣∣
θ=0

= lim
h→0

sinh

h
= 1 and

d

dθ
cos θ

∣∣∣∣
θ=0

= lim
h→0

cosh− 1

h
= 0.

Proof. Regarding the �rst result, since

sinh

h
=

sin(−h)

−h
for all h ̸= 0,

it is su�ce to show the right limit

(3.3.11) lim
h→0+

sinh

h
= 1.

By using the de�nition of angle (in radian), one observes that

sinh ≤ h ≤ tanh =
sinh

cosh
for all 0 < h <

π

2
,

see Figure 1.3.3, which implies that

cosh ≤ sinh

h
≤ 1 for all 0 < h <

π

2
,

hence

1 = lim
h→0+

cosh = lim inf
h→0+

cosh ≤ lim inf
h→0+

sinh

h
≤ lim sup

h→0+

sinh

h
= 1,

which conclude (3.3.11) by Theorem 2.3.6.
We now prove the second result from the �rst result. One sees that

lim
h→0

cosh− 1

h
= lim

h→0

(
cosh− 1

h

cosh+ 1

cosh+ 1

)
= lim

h→0

(cosh)2 − 1

h(cosh+ 1)

= lim
h→0

−(sinh)2

h(cosh+ 1)
= −

(
lim
h→0

sinh

h

)(
lim
h→0

sinh

cosh+ 1

)
= 0,

which conclude our result. □
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We now ready to compute the derivatives of trigonometric functions.

Lemma 3.3.14. One has

(sin θ)′ = cos θ and (cos θ)′ = sin θ.

Proof. We recall the sum-to-product rule (can be easily proved using de Moivre theo-
rem):

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2,

which holds true for all θ1, θ2 ∈ R. By using the linearity of limits, one computes that

(sin θ)′ = lim
h→0

sin(θ + h)− sin θ

h
= lim

h→0

cos θ sinh+ sin θ cosh− sin θ

h

= lim
h→0

(
sin θ

(
cosh− 1

h

)
+ cos θ

(
sinh

h

))
= sin θ lim

h→0

(
cosh− 1

h

)
+ cos θ lim

h→0

(
sinh

h

)
= cos θ

and

(cos θ)′ = lim
h→0

cos(θ + h)− cos θ

h
= lim

h→0

cos θ cosh− sin θ sinh− cos θ

h

= lim
h→0

(
cos θ

(
cosh− 1

h

)
− sin θ

(
sinh

h

))
= cos θ lim

h→0

(
cosh− 1

h

)
− sin θ lim

h→0

(
sinh

h

)
= − sin θ,

which concludes the lemma. □

The derivative of the trigonometric functions tan θ, cot θ, sec θ and csc θ can be easily
proved using product rule, chain rule as well as implicit di�erentiation, here we omit the
details. Now lets summarize the ideas before using the following examples.

Example 3.3.15. We de�ne the function f : R → R by

f(x) =

{
x2 sin(1/x) , x ̸= 0,

0 , x = 0.

We compute

f ′(x) = 2x sin(1/x) + x2(sin(1/x))′ (product rule)

= 2x sin(1/x) + x2 cos(1/x)(−x−2) (chain rule)

= 2x sin(1/x)− cos(1/x) for all x ∈ R \ {0}.

By using the additivity property (Remark 2.3.11), one sees that

lim sup
x→0

f ′(x) = 1 ̸= −1 = lim inf
x→0

f ′(x),
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which shows that limx→0 f
′(x) does not exist. We now show that f is di�erentiable at x = 0.

We also compute that

lim sup
h→0

∣∣∣∣h2 sin(1/h)− 0

h

∣∣∣∣ = lim sup
h→0

|h sin(1/h)| ≤ lim sup
h→0

|h| = 0,

which conclude that

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0

h2 sin(1/h)− 0

h
= 0.

Thus f ′ : R → R is a well-de�ned function, which is not continuous at x = 0.

The ideas in Example 3.3.7 can be further generalized:

Example 3.3.16. Let f : I1 → I2 be a bijective function, which is di�erentiable. Suppose
that its inverse function f−1 : I2 → I1 is also di�erentiable. The de�nition of inverse function
gives

x = f(f−1(x)) for all x ∈ I2.

Di�erentiate the above equation, and using chain rule, we see that

1 =
d

dx
x =

d

dx
(f(f−1(x))) =

df

dy

∣∣∣∣
y=f−1(x)

(f−1(x))′,

that is,

(3.3.12) (f−1(x))′ =
1

df
dy

∣∣∣
y=f−1(x)

.

Indeed, Example 3.3.7 is nothing but just a special case f = exp : R → R>0 with f−1 = ln :
R>0 → R:

(lnx)′ =
1

ey|y=ln(x)

=
1

x
for all x > 0.

Remark. Some authors may abuse the notation by writing (3.3.12) as

dx

dy
=

1
dy
dx

,

especially while performing the change of variables in Riemann/Lebesgue integral. I suggest
not to abuse the notation like this .

Example 3.3.17 (Di�erentiation of inverse trigonometric functions). Here we only exhibit
the di�erentiation of sin−1 : (−1, 1) → (−π/2, π/2) based on the principal in Example 3.3.16.
Di�erentiate the equation

x = sin(sin−1 x) for all x ∈ (−1, 1),

one sees that

1 =
d

dx
x =

d

dx
(sin(sin−1 x)) = cos(sin−1 x)(sin−1 x)′.

Since −π/2 < sin−1 x < π/2 for all x ∈ (−1, 1), then cos(sin−1 x) > 0 for all x ∈ (−1, 1),
therefore dividing the above equation by cos(sin−1 x) implies (one has to make sure not to
divide by 0 )

(3.3.13) (sin−1 x)′ =
1

cos(sin−1 x)
for all x ∈ (−1, 1).
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In fact, one can further simplify (not necessary) the formula: By choosing θ = sin−1 x in the
formula (cos θ)2 + (sin θ)2 = 1, one sees that

(cos(sin−1 x))2 = 1− x2 for all x ∈ (−1, 1).

Since both 1− x2 > 0 and cos(sin−1 x) > 0 for all x ∈ (−1, 1), then

(3.3.14) cos(sin−1 x) =
√
1− x2 for all x ∈ (−1, 1).

Combining (3.3.13) and (3.3.14) we reach

(sin−1 x)′ =
1√

1− x2
for all x ∈ (−1, 1).

Exercise 3.3.18. Compute the derivative of cos−1 : (−1, 1) → (0, π).

3.4. Mean value theorem

Definition 3.4.1 (Local extrema in interior). Let a, b ∈ R with a < b. We say that
x0 ∈ (a, b) is a local maximum (resp. local minimum) of f : (a, b) → R if there exists δ > 0
such that f(x0) ≥ f(x) (resp. f(x0) ≤ f(x)) for all x ∈ Bδ(x0).

In order to unify the notations, here we also introduce the following de�nition.

Definition 3.4.2 (Local extrema at boundary). Let a, b ∈ R with a < b. We say that
x0 = a is a local maximum (resp. local minimum) of f : [a, b] → R if there exists δ > 0 such
that f(x0) ≥ f(x) (resp. f(x0) ≤ f(x)) for all a ≤ x < a + δ. Similarly, we say that x0 = b
is a local maximum (resp. local minimum) of f : [a, b] → R if there exists δ > 0 such that
f(x0) ≥ f(x) (resp. f(x0) ≤ f(x)) for all b− δ < x ≤ b.

In particular, the above de�nitions are just special case of the following general notion.

Definition 3.4.3. Let E be any set in R. We say that x0 ∈ E is a local maximum
(resp. local minimum) of f : E → R if there exists δ > 0 such that f(x0) ≥ f(x) (resp.
f(x0) ≤ f(x)) for all x ∈ Bδ(x0)∩E. In contrast, we say that f has a global maximum (resp.
local minimum) at x0 ∈ E if f(x0) ≥ f(x) (resp. f(x0) ≤ f(x)) for all x ∈ E.

Remark. Obviously, if x0 is a global maximum/minimum, then it is also a local maxi-
mum/minimum.

Example 3.4.4. We de�ne the function f : [−1, 1] → R by

f(x) =

{
x+ 1 −1 < x ≤ 0,

x− 1 0 < x ≤ 1.

One sees that x = 0 is a global maximum of f : [−1, 1] → R with value f(0) = 1. According
to the above unify notations, we see that x = 1 is a local maximum of f : [−1, 1] → R
with value f(1) = 0. However, x = 1 is not a local maximum of f : [−1, 1) → R because
1 /∈ [−1, 1), this reminds the readers that one always need to write down the domain of
functions carefully. One also sees that x = −1 is a local minimum of f : [−1, 1] → R, but it
is not global since

lim
x→0−

f(x) = −2 < 0 = f(−1).

The following lemma suggests that one can �nd some candidate of local maxi-
mum/minimum using di�erentiation.
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Lemma 3.4.5. Let a, b ∈ R with a < b and let f : (a, b) → R. If f has a local maximum
or local minimum at x0 ∈ (a, b) and if f is di�erentiable at x0, then f ′(x0) = 0.

Proof. Suppose that f has a local maximum at x0 ∈ (a, b). By de�nition, there exists
δ > 0 such that f(x0) ≥ f(x) for all x ∈ Bδ(x0). We now see that

f(x)− f(x0)

x− x0

≤ 0 for all x0 < x < x0 + δ,

f(x)− f(x0)

x− x0

≥ 0 for all x0 − δ < x < x0.

Since f ′(x0) = limx→x0

f(x)−f(x0)
x−x0

exists, then our lemma immediately follows. □

Theorem 3.4.6 (Cauchy mean value theorem). Let a, b ∈ R with a < b. Suppose that
f1 : [a, b] → R and f2 : [a, b] → R are continuous functions, where the continuity at boundary
points are understood as fj(a) = limx→a+ fj(x) and fj(b) = limx→b− fj(x) for each j = 1, 2,
such that it is di�erentiable on (a, b). Then there exists a point x0 ∈ (a, b) such that

(f1(b)− f1(a))f
′
2(x0) = (f2(b)− f2(a))f

′
1(x0).

Proof. We de�ne the function h : [a, b] → R by

h(t) := (f1(b)− f1(a))f2(t)− (f2(b)− f2(a))f1(t) for all t ∈ [a, b]

which is also di�erentiable on (a, b), and one can check that h(a) = h(b). It is remains to
show that h′(x0) = 0.
Case 1: Suppose that there exists t ∈ (a, b) such that h(t) > h(a). By using

Theorem 2.2.7, there exists x0 ∈ [a, b] such that

h(x0) ≥ h(x) for all x ∈ [a, b].

In this case, one has x0 ̸= a and x0 ̸= b, therefore Lemma 3.4.5 gives h′(x0) = 0.
Case 2: Suppose that there exists t ∈ (a, b) such that h(t) < h(a). By using Theo-
rem 2.2.7, there exists x0 ∈ [a, b] such that

h(x0) ≤ h(x) for all x ∈ [a, b].

In this case, one has x0 ̸= a and x0 ̸= b, therefore Lemma 3.4.5 gives h′(x0) = 0.
Case 3: Suppose that both Case 1 and Case 2 do not hold. By de�nition of
di�erentiation, one has h(t) = h(a) for all t ∈ [a, b], thus h′(x) = 0 for all x ∈ (a, b). □

The following corollary corresponding to the special case f1(x) = f(x) and f2(x) = x in
Theorem 3.4.6.

Corollary 3.4.7. Let a, b ∈ R with a < b. Suppose that f : [a, b] → R is a continuous
functions such that it is di�erentiable on (a, b). Then there exists a point x0 ∈ (a, b) such
that

f(b)− f(a) = (b− a)f ′(x0).

The following corollary corresponding to the special case f1(x) = f(x) and f2(x) = x in
Theorem 3.4.6 with f(a) = f(b).

Corollary 3.4.8 (Rolle's theorem). Let a, b ∈ R with a < b. Suppose that f : [a, b] → R
is a continuous functions such that f(a) = f(b) and it is di�erentiable on (a, b). Then there
exists a point x0 ∈ (a, b) such that f ′(x0).
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By using Corollary 3.4.7, one immediately sees that:

Corollary 3.4.9. Let a, b ∈ R with a < b and let f : (a, b) → R be a di�erentiable
function.

(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is nondecreasing. If one has the strict inequality
f(x) > 0 for all x ∈ (a, b), then f is strictly increasing.

(b) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is nonincreasing. If one has the strict inequality
f(x) < 0 for all x ∈ (a, b), then f is strictly decreasing.

(c) If f ′(x) = 0 for all x ∈ (a, b), then f is a constant function.

Proof. In order to proof (a), we want to show f(t1) ≤ f(t2) for all a < t1 < t2 < b. By
using the mean value theorem (Corollary 3.4.7) on [t1, t2], there exists t3 ∈ (t1, t2) such that

f(t2)− f(t1) = (t2 − t1)f
′(t3) ≥ 0,

which conclude the �rst result in (a). One sees that the second result in (a) can be easily
proof as well. The proof of (b) can be done similarly. Combining (a) and (b) we obtain
(c). □

3.5. Extreme values

We now consider the problem of �nding maximums as well as minimums. We will see
that this problem is actually extremely di�cult for general function. Rather than solving
the problem directly, we �rst �nd some �candidates�. You can think about the election
of president: We �rst nominate candidates �rst, and then vote for present among these
candidates. Suggested by Lemma 3.4.5, we restricted ourselves for di�erentiable functions in
this course.

Definition 3.5.1. Let a, b ∈ R with a < b and let f : (a, b) → R. If f is di�erentiable at
x0 and f ′(x0) = 0, then x0 is called a critical point of f .

Example 3.5.2. Let f(x) = (x − x0)
3 for all x ∈ R, which satis�es f ′(x0) = 0. Since

f : R → R is non-decreasing, therefore x0 is neither local maximum nor minimum of f .

Definition 3.5.3. Let E be a set in R. We de�ne the (topological) boundary ∂E of E
by

∂E := {x ∈ R : Br(x) ∩ E ̸= ∅ and Br(x) ∩ (R \ E) ̸= ∅ for all r > 0}.

Example 3.5.4. Let a, b ∈ R with a < b. We see that a is a boundary point of (a, b). We
see that a is also a boundary point of [a, b]. This notion also works for unbounded set, for
example, a is a boundary point of (a,+∞), as well as a boundary point of [a,+∞).

Algorithm 3.5.5 (See also Algorithm 3.5.11 below for a re�nement). Let E be a set in
R and let f : E → R be a function. Suppose that f : E0 → R is di�erentiable for some
E0 ⊂ E. All candidates must be either one of the followings:

(a) critical points in E0 (i.e. among all points which are di�erentiable), which is based
on Lemma 3.4.5.

(b) those points in E \ E0, that is, those points which are not di�erentiable. (Note: the
boundary points which are in E are element in E \ E0)

The boundary points which is not in E are not candidates, but its left limit/right limit/limit
superior/limit inferior is helpful to decide whether the local maximum/minimum is global or
not.
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We now explain how to use Algorithm 3.5.5 in the following example.

Example 3.5.6. We de�ne the function f : [−1, 2) → R given by

f(x) =

{
(x− 1/2)2 , 0 ≤ x < 2,
1
2
x+ 1 ,−1 ≤ x < 0.

We now �nd all candidates as in Algorithm 3.5.5:

(1) Critical point. We �rst observe that f is di�erentiable on (−1, 0)∪ (0, 1), and note
that

f ′(x) =

{
2(x− 1/2) , 0 < x < 2,

1/2 ,−1 < x < 0.

We see that the only critical described in Algorithm 3.5.5 is x0 = 1
2
, and one sees

that

x0 =
1

2
is a local minimum of f : [−1, 1) → R with f(x0) = 0.

(2) Nondi�erentiable points. We see that f is not di�erentiable at x1 = −1 (bound-
ary point) and x3 = 0. One sees that

x1 = −1 is a local minimum of f : [−1, 1) → R with f(x1) =
1

2
.

On the other hand, since

f(x3) = lim
x→x3+

f(x) =
1

2
, lim

x→x3−
f(x) = 1,

and this is helpful to see that x3 = 0 is neither local maximum nor local minimum.
Note that the boundary point x2 = 2 /∈ [−1, 2), therefore it is not a candidate, but
it is helpful to decide whether other candidate is local maximum/minimum or not.
We will use the following fact later: limx→x2− f(x) = 9/4.

Other than the above three types of points are all not candidate, and they are not possible to
be local maximum/minimum at all. We now conclude that all local extrema of f : [−1, 1) → R
is:

(i) Local minimum: x0 =
1
2
and x1 = −1.

(ii) Local maximum: none.

In order to decide whether the local extrema are global, we list all values of candidates as
well as interesting points:

f(x0) = 0, f(x1) =
1

2
, lim

x→x2−
f(x) =

9

4
, f(x3) = lim

x→x3+
f(x) =

1

2
, lim

x→x3−
f(x) = 1.

We see that f(x0) = 0 takes the smallest value, and thus we know that x0 = 1
2
is indeed a

global minimum. But however, we see that limx→x2− f(x) = 9
4
takes the largest value, and

since x2 /∈ [−1, 2), thus we conclude that there is no global maximum (another way to see
this is there is no local maximum). In terms of election, the candidates are

x0 =
1

2
, x1 = −1, x3 = 0.



3.5. EXTREME VALUES 44

After the �voting�, x0 =
1
2
becomes local minimum, x1 = −1 becomes global minimum, and

x3 is failed to be chosen (due to x2, which is not a candidate). Even though x2 is not a
�candidate�, but it can a�ect the result of the �election�.

As promised at the beginning, we now exhibit an example to explain the di�culties of
the problem consider in this section.

Example 3.5.7. Let a, b ∈ R with a < b and let f : (a, b) → R. If x0 ∈ (a, b) satis�es

(3.5.1) f ′(x) ≤ 0 for all x ∈ (x0 − δ, x0] and f ′(x) ≥ 0 for all x ∈ [x0x0 + δ)

for some δ > 0, then it is easy to see that x0 is a local minimum of f : (a, b) → R. However,
the converse may false. For example, we consider the function

f : R → R, f(x) =

{
x2(2 + sin(1/x)) , x ∈ R \ {0},
0 , x = 0,

since 2 + sin(1/x) ≥ 1for all x ∈ R \ {0}, then f(x) ≥ x2 for all x ∈ R \ {0}, which implies
that

f(x) > 0 = f(x) for all x ∈ R \ {0},
which implies that x0 = 0 is the unique global minimum of f . By using product rule and
chain rule, one can compute

f ′(x) = 4x+ 2x sin(1/x))− cos(1/x) for all x ∈ R \ {0}.
As mentioned in Example 3.3.15 before, one can prove that f is di�erentiable at x = 0 with
f ′(0) = 0, which is not possible to prove using product rule and chain rule. We now see that
the derivative reads

f ′(x) =

{
4x+ 2x sin(1/x))− cos(1/x) , x ∈ R \ {0}
0 , x = 0,

which is not continuous since lim supx→0 f
′(x) = 1 ̸= 0 = f ′(0) and it does not satisfy (3.5.1).

Despite Example (3.5.7) says that it is not possible to determine all local minimum by
using only the intuitively criteria (3.5.1), but however the condition (3.5.1) is already good
enough in many practical case. One way to guarantee (3.5.1) is that f ′ : (x0− δ, x0+ δ) → R
is non-decreasing and f ′(x0) = 0. If f : (x0−δ, x0+δ) → R is twice di�erentiable, this means
that f ′′(x) ≥ 0 for all x ∈ (x0 − δ, x0 + δ). In fact, one have the following theorem (see also
Lemma 4.5.1 below).

Theorem 3.5.8 (Second derivative test). Let a, b ∈ R with a < b. Suppose that f ∈
C2((a, b)), which means that f : (a, b) → R is twice di�erentiable and f ′′ : (a, b) → R is
continuous, then the following holds:

(a) If f ′(x0) = 0 and the strict inequality f ′′(x0) > 0 hold for some x0 ∈ (a, b), then x0

is a local minimum of f : (a, b) → R.
(b) If f ′(x0) = 0 and the strict inequality f ′′(x0) < 0 hold for some x0 ∈ (a, b), then x0

is a local maximum of f : (a, b) → R.

Example 3.5.9. The strict inequality in Theorem 3.5.8 is necessary. For example, if we
consider the function f : R → R given by f(x) = x3 for all x ∈ R, we see that f ′(0) = 0 and
f ′′(0) = 0, but x = 0 is neither local maximum nor local minimum.
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Definition 3.5.10. Let a, x0, b ∈ Rwith a < x0 < b and let f : (a, b) → R be a function.
We say that f is C2 near x0 if there exists δ > 0 such that Bδ(x0) ⊂ (a, b) and f ∈ C2(Bδ(x0)).

In view of Theorem 3.5.8, we may slightly enhance Algorithm 3.5.5 for C2-functions (we
highlight the re�nements in blue text).

Algorithm 3.5.11. Let E be a set in R and let f : E → R be a function. Suppose that
f : E0 → R is di�erentiable for some E0 ⊂ E. All candidates must be either one of the
followings:

(a) critical points in E0 (i.e. among all points which are di�erentiable). If f is C2 near
a critical point, says x0, then we can use Theorem 3.5.8 to check whether it is a local
maximum/minimum or not .

(b) those points in E \ E0, that is, those points which are not di�erentiable. (Note: the
boundary points which are in E are element in E \ E0)

Exercise 3.5.12. Let f : R → R de�ned by

f(x) =

{
−x2 , x < 0,

x3 , x ≥ 0.

Show that f ′(0) exists, but f ′′(0) does not exist. [Note: One cannot assume the continuity
of f ′ in a valid argument]



CHAPTER 4

Riemann integrals

4.1. De�nition of Riemann integrals and fundamental theorems of calculus

Let a, b ∈ R with a < b and let f : [a, b] → R be a function. Suppose that

(4.1.1) f : [a, b] → R is continuous and f(x) ≥ 0 for all x ∈ [a, b],

we want to compute the area of the region under the graph f and above the interval [a, b],
more precisely, the area of the set

S =
{
(x, y) ∈ R2 : a ≤ x ≤ b, 0 ≤ y ≤ f(x)

}
,

see also Figure 4.1.1 below:

a b x

y

f(x)

S

Figure 4.1.1. Motivation of Riemann integral: 4C, CC BY-SA 3.0, via Wiki-
media Commons

Before giving a rigorous de�nition, we �rst approximate the area S intuitively.

Definition 4.1.1. Let [a, b] be a given interval. By a partition Γ of [a, b] we mean a �nite
set of points x0, x1, · · · , xn, where

a = x0 < x1 < · · · < xn−1 < xn = b.

In order to shorten the notations, we abuse the notation (throughout this course) by denoting
the partition as Γ = {a = x0 < x1 < · · · < xn−1 < xn = b}. We also de�ne the partition
norm as

|Γ| := max
i=1,··· ,n

(xi − xi−1),

which is the length of the largest (closed) interval [xi−1, xi].

46
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For each i ∈ {1, · · · , n}, we randomly choose a point x∗
i ∈ [xi, xi−1], and we approximate

the area S by the Riemann sum

R(f,Γ, {yi}ni=1) =
n∑

i=1

f(x∗
i )(xi − xi−1)(4.1.2)

= f(x∗
1)(x1 − x0) + f(x∗

2)(x2 − x1) + · · ·+ f(x∗
n)(xn − xn−1),

where we observe that see f(x∗
i )(xi − xi−1) is exactly the area of the rectangle with base

[xi−1, xi] and height f(x∗
i ), see Figure 4.1.2 below for i = 3:

Figure 4.1.2. The area of the rectangle with base [x2, x3] and height f(x∗
3):

Juliusross~commonswiki, CC BY 2.5, via Wikimedia Commons

Under assumptions (4.1.1),

R(f,Γ, {yi}ni=1) will give a "fairly good" approximate

for the area of S when |Γ| is "small",(4.1.3)

see Figure 4.1.3 below:

Figure 4.1.3. Approximate the area using Riemann sum: Julius-
ross~commonswiki, CC BY 2.5, via Wikimedia Commons
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We now see that the �gures in Figure 4.1.1, Figure 4.1.2 and Figure 4.1.3 are all drawn for
the case when f satis�es (4.1.1). However, we see that the Riemann sum (4.1.2) is actually
well-de�ned without assumption �f(x) ≥ 0 for all x ∈ [a, b]�, which means that we actually
can de�ne the �signed area� by using Riemann sum (4.1.2). For example, if we consider
f(x) = sinx for all x ∈ [−π/2, π/2], the Riemann sum will suggests that the area between f
and the interval [−π/2.π/2] will be 0.

In order to give a precise statement, the terms �fairly good� and �small� in the idea (4.1.3)
need to be clarify. This can be done by using similar ideas for de�ne limits (without assuming
the redundant assumptions in (4.1.1)).

Definition 4.1.2 (Riemann integral via Riemann sum). Let a, b ∈ R with a < b. We
say that f : [a, b] → R is Riemann integrable on [a, b] if there exists a number L ∈ R such
that the following holds: Given any ϵ > 0, there exists δ = δ(ϵ) > 0 such that

|R(f,Γ, {x∗
i }ni=1)− L| < ϵ

for all partition Γ = {a = x0 < x1 < · · · < xn = b} with |Γ| < δ and for all x∗
i ∈ [xi−1, xi]. In

this case, we denote L =
∫ b

a
f(x) dx. Here the variable �x� can be replaced by other variables,

for example,
∫ b

a
f(x) dx =

∫ b

a
f(t) dt.

Remark 4.1.3. In order to unify our notations, we use the convention∫ a

b

f(x) dx := −
∫ b

a

f(x) dx,

so that
∫ a

b
f(x) dx = 0 if a = b.

In fact, one can simplify De�nition 4.1.2 which looks rather complicated. Rather than
consider arbitrary Riemann sum, we now always overestimate/underestimate the area: For
any partition Γ = {a = x0 < x1 < · · · < xn = b}, we de�ne

U(f,Γ) :=
n∑

i=1

(
sup

y∈[xi−1,xi]

f(y)

)
(xi − xi−1) (upper sum),

L(f,Γ) :=
n∑

i=1

(
inf

y∈[xi−1,xi]
f(y)

)
(xi − xi−1) (lower sum).

It is clear that

L(f,Γ) ≤ R(f,Γ, {x∗
i }ni=1) ≤ U(f,Γ) for any partition Γ of [a, b].

In fact, by using [Rud87, Theorem 6.6], De�nition 4.1.2 is equivalent to the following
de�nition.

Definition 4.1.4 (An equivalent de�nition of Riemann integral: Darboux de�nition).
Let a, b ∈ R with a < b. We say that f : [a, b] → R is (Riemann) integrable on [a, b] if: Given
any ϵ > 0, there exists a partition Γϵ) of [a, b] such that

U(f,Γϵ)− L(f,Γϵ) < ϵ.

Remark. The partition norm |Γϵ| of the partition Γϵ in De�nition 4.1.4 need not to be
small. Therefore it is much more convenient to use the equivalent formulation in De�ni-
tion 4.1.4 in mathematical proof.
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Example 4.1.5 (Areas between Curves). Let a, b ∈ R with a < b. Let f : [a, b] → R and
g : [a, b] → R are integrable functions such that

f(x) ≤ g(x) for all x ∈ [a, b].

Then the area between curves f and g, more precisely, the area of the set

{(x, y) ∈ [a, b]× R : f(x) ≤ y ≤ g(x)},

is simply given by ∫ b

a

(g(x)− f(x)) dx.

Example 4.1.6 (Volume via slicing method). Let Ω be a bounded domain in R3 with
smooth boundary1. For each x ∈ R, we de�ne the slice (or cross-section) by

Ωx := {(y, z) ∈ R2 : (x, y, z) ∈ Ω},

which forms a bounded smooth domain in R2, so that its area can be computed. Since Ω is
bounded, then there exists a, b ∈ R with a < b such that

Ω =
⋃

x∈[a,b]

Ωx.

We de�ne A : [a, b] → R by

A(x) := area (Ωx) for all x ∈ [a, b].

Then the volume of Ω is given by

volume (Ω) =

∫ b

a

A(x) dx.

In practical, we need multivariable calculus (and even more advance calculus as well as Rie-
mannian geometry) to compute the volume in R3, or Lebesgue measure for higher dimensional
case as well as in Riemannian manifold. This is a special case of coarea formula, see e.g. the
advance monograph [Cha06].

Even though the continuity of function is not necessary to ensure the integrability of
functions, but it serves as a simple su�cient condition.

Theorem 4.1.7. Let a, b ∈ R with a < b and let f : [a, b] → R be a function. If

(a) there exists a number M > 0 such that |f(x)| ≤ M for all x ∈ [a, b], and
(b) f is continuous except on at most �nitely many points on [a, b],

then f : [a, b] → R is Riemann integrable.

By using Theorem 2.2.7, we immediately obtain the following corollary.

Corollary 4.1.8. Let a, b ∈ R with a < b. If f : [a, b] → R is continuous, then it is also
Riemann integrable.

1Its rigorous de�nition requires quite advance calculus, here roughly understood that the domain is �regular�.
Think about the space-�lling curve (or known as Peano curve).
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Example 4.1.9. It is important to have condition (a) in Theorem 4.1.7. For example,
we now consider the function f : [0, 1] → R de�ned by

f(x) =

{
x−1/2 , 0 < x ≤ 1,

0 , x = 0.

Given any partition Γ = {0 = x0 < x1 < · · · < xn = 1}, one sees that

U(f,Γ) ≥

(
sup

y∈[x0,x1]

f(y)

)
(x1 − x0) = +∞

and

L(f,Γ) ≤
n∑

i=1

f(x1)(xi − xi−1) = f(x1) < +∞,

which shows that

U(f,Γ)− L(f,Γ) = +∞ for any partition Γ on [0, 1],

therefore f : [0, 1] → R is not Riemann integrable. Despite it is not Riemann integrable, but
it may be integrate in the sense of improper integral as in Section 4.4 below.

Example 4.1.10. The boundedness (i.e. condition (a) in Theorem 4.1.7) itself is not
enough to ensure the Riemann integrability. For example, we now consider the function
f : R → R de�ned by

f(x) =

{
1 , x ∈ Q,

0 , x ∈ R \Q.

We now restrict the function on [0, 1]. It is easy to see that

U(f,Γ)− L(f,Γ) = 1 for any partition Γ on [0, 1],

therefore f : [0, 1] → R is not Riemann integrable. In fact, Q has Lebesgue measure zero, and
f : [0, 1] → R is Lebesgue integrable with area 0. This example shows that Riemann integral
is actually not good enough for practical application (including statistics), but however, we
will not going to introduce this during this course.

From now on, the term �integrable� will refers the �Riemann integrable�.

Lemma 4.1.11 (Basic properties of Riemann integral). Let a, b ∈ R with a < b.

(a) Linearity. If f1 : [a, b] → R and f2 : [a, b] → R are integrable, then for any
constants c1, c2 ∈ R the function c1f1 + c2f2 : [a, b] → R is also integrable and∫ b

a

(c1f1(x) + c2f2(x)) dx = c1

∫ b

a

f1(x) dx+ c2

∫ b

a

f2(x) dx.

(b) Monotonicity. If f1 : [a, b] → R and f2 : [a, b] → R are integrable such that
f1(x) ≤ f2(x) for all x ∈ [a, b], then∫ b

a

f1(x) dx ≤
∫ b

a

f2(x) dx.
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(c) If f : [a, x0] → R and f : [x0, b] → R are integrable for some x0 ∈ [a, b], then
f : [a, b] → R is also integrable and∫ b

a

f(x) dx =

∫ x0

a

f(x) dx+

∫ b

x0

f(x) dx.

(d) If f : [a, b] → R is integrable, then |f | : [a, b] → R is integrable and∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

(e) If f1 : [a, b] → R and f2 : [a, b] → R are integrable, then fg : [a, b] → R is also
integrable.

Example 4.1.12. The integrablity of |f | : [a, b] → R does not guarantee the integrability
of f : [a, b] → R. For example, we consider the function

f : [0, 1] → R, f(x) =

{
1 , x ∈ [0, 1] ∩Q,

−1 , x ∈ [0, 1] \Q,

which is not integrable (see Example 4.1.10), but one sees that |f(x)| = 1 for all x ∈ [0, 1],
which shows that |f | : [0, 1] → R is integrable. This example also explains the �defectness�
of Riemann integrable. As a comparison,

f : [a, b] → R is Lebesgue integrable if and only if |f | : [a, b] → R is Lebesgue integrable.

After explaining the mathematical aspect of integration, we now asking how to compute
it. It is impractical to compute the integral by directly partition the intervals. Instead, we
compute it via di�erentiation.

Theorem 4.1.13 (Fundamental theorem of calculus, part I [Rud87, Theorem 6.20]). Let
a, b ∈ R with a < b and let f : [a, b] → R be a continuous function. We de�ne a continuous
function

F : [a, b] → R, F (x) :=

∫ x

a

f(t) dt.

Then F : (a, b) → R is di�erentiable and satis�es F ′(x) = f(x) for all x ∈ (a, b).

Example 4.1.14. Theorem 4.1.13 cannot be extended for arbitrary integrable functions.
For example, we consider the Heaviside function

f : R → R, f(x) =

{
1 , x ≥ 0,

0 , x < 0,

which is integrable on [−1, 1]. We see that the function

F : [−1, 1] → R, F (x) :=

∫ x

−1

f(t) dt =

{
x , x ≥ 0

0 , x < 0

is continuous, but it is not di�erentiable at x = 0.

Theorem 4.1.15 (Fundamental theorem of calculus, part II [Rud87, Theorem 6.21]).
Let a, b ∈ R with a < b and let f : [a, b] → R be an (Riemann) integrable function. If there
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exists a δ > 0 and a function F : (a− δ, b+ δ) → R such that it is di�erentiable on [a, b] with
F ′ = f , then

(4.1.4)

∫ b

a

f(x) dx = F (b)− F (a).

Remark. We write

(4.1.5) F (x)

∣∣∣∣x=b

x=a

:= F (b)− F (a).

From (4.1.4) we have

(4.1.6)

∫ b

a

F ′(x) dx = F (x)

∣∣∣∣x=b

x=a

.

This means that the total rate of change in [a, b] is equal to the �ux across the boundary of
[a, b], which is exactly the two-points set {a, b}. For example, if we want to count the number
of people in a building, we only need to count the people across all doors. We see that, at
the boundary point x = b of [a, b], the outward direction is right (i.e. positive), while at the
boundary point x = a of [a, b], the outward direction is left (i.e. negative), therefore there is
a negative sign in (4.1.5). In fact, (4.1.6) is exactly the divergence theorem for 1-dimensional
case. The divergence theorem is a fundamental result in partial di�erential equations, one
also can refer to my lecture note [Kow24] for more details.

Let I be a connected open interval (may or may not bounded, i.e. either (a, b) or (−∞, b)
or (a,+∞) or R). We now consider the functor

(4.1.7) D : C1(I) → C0(I), DF := F ′ for all F ∈ C1(I).

Here we recall that C0(I) is the collection of continuous functions I → R, while C1(I) is the
collection of di�erentiable functions with continuous derivative I → R. Similar to sets, we
can interpret functions as a �level-0� objects, while functors as �level-1� objects. We now �x
any x0 ∈ I. For each f ∈ C0(I), we de�ne (with the convention 4.1.3)

F (x) :=

∫ x

x0

f(t) dt for all x ∈ I.

By using Theorem 4.1.13, we see that F ∈ C1(I) with F ′ = f , which shows that the functor
(4.1.7) is surjective. However, since

(4.1.8) F + C ∈ C1(I) and (F + C)′ = F ′ for all C ∈ R,

one sees that the functor (4.1.7) is not injective. By using Corollary 3.4.9(c), it is easy to see
the following lemma.

Lemma 4.1.16. Let I be a connected open set. Let F1 : I → R and F2 : I → R are
di�erentiable functions. If F ′

1(x) = F ′
2(x) for all x ∈ I, then there exists a constant C ∈ R

such that F1(x) = F2(x) + C for all x ∈ I.

In view of (4.1.8), for each F ∈ C1(I), we now consider the equivalence class

{F + C}C∈R := {F + C : C ∈ R}.
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We now de�ne a mapping, which is similar to (4.1.7), by

D̃ :
{
{F + C}C∈R : F ∈ C1(I)

}
→ C0(I),(4.1.9)

D̃ ({F + C}C∈R) := F ′ for any F ∈ {F + C}C∈R.

By using (4.1.8), one sees that (4.1.9) is a well-de�ned function (as mentioned in Section 1.3).
Since (4.1.7) is surjective, then so is (4.1.9). By using Lemma 4.1.16, one sees that (4.1.9)
is injective. Now we conclude that the mapping (4.1.9) is bijective, therefore the inverse
mapping

D̃−1 : C0(I) →
{
{F + C}C∈R : F ∈ C1(I)

}
is well-de�ned. This suggests the following de�nition.

Definition 4.1.17. Let I be a connected open interval. The antiderivative of a contin-
uous function f : I → R is the equivalence class {F + C}C∈R such that F ′(x) = f(x) for all
x ∈ I.

Remark. We also slightly abuse the notation by referring an element in {F + C}C∈R
the antiderivative. If we abuse the notation in this way, the antiderivative does not unique,
and one should use �an� rather than �the�. For example, we know that the antiderivative of
cos : R → R is the {sin+C : R → R}C∈R, where a

(sin+C)(x) = sin x+ C for all x ∈ R.

If we abuse the notation in this way, we also say that sinx is �an� antiderivative of cosx. In
view of fundamental theorem of calculus, this kind of abuse of notation is acceptable, and we
will abuse the notation for �antiderivative� in this way.

Remark. Since

(F (x) + C)

∣∣∣∣x=b

x=a

= (F (b) + C)− (F (a) + C) = F (b)− F (a) = F (x)

∣∣∣∣x=b

x=a

,

we also can write (4.1.4) as ∫ b

a

f(x) dx = (F (x) + C)

∣∣∣∣x=b

x=a

.

This suggests many authors to abuse the notation by writing

(4.1.10)

∫
f(x) dx = F (x) + C,

but this may cause some ambiguity (see Section 4.2), therefore personally I strongly suggests
not to abuse the notation like (4.1.10).

Exercise 4.1.18. Let a, b ∈ R with a < b. Let f be a continuous function on [a, b], and
let α, β ∈ C1(R) be such that

a < α(x) < b, a < β(x) < b for all x ∈ R.

We de�ne g(x) :=
∫ β(x)

α(x)
f(t) dt for all x ∈ R. Show that

g′(x) = f(β(x))β′(x)− f(α(x))α′(x) for all x ∈ R.
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4.2. Integration by parts and substitution rule

The main di�culty to compute
∫ b

a
f(x) dx is to �nd an antiderivative F (x) of f(x). For

example, even though we know an antiderivatives F (x) for f(x), and an antiderivatives G(x)
for g(x), but it is not easy to guess the antiderivative of f(x)g(x). By using the product rule,
one sees that

(F (x)G(x))′ = F ′(x)G(x) + F (x)G′(x) = f(x)G(x) + F (x)g(x) for all x ∈ (a, b).

Under some suitable assumptions on F and G, one may use the fundamental theorem of
calculus (Theorem 4.1.15) to see that

F (x)G(x)

∣∣∣∣x=b

x=a

=

∫ b

a

(F (x)G(x))′ dx =

∫ b

a

f(x)G(x) dx+

∫ b

a

F (x)g(x) dx,

that is, ∫ b

a

F (x)g(x) dx = F (x)G(x)

∣∣∣∣x=b

x=a

−
∫ b

a

f(x)G(x) dx.

We now summarize the above observations in the following theorem.

Theorem 4.2.1 (Integration by parts [Rud87, Theorem 6.22]). Let a, b ∈ R with a < b
and let I be an open interval such that [a, b] ⊂ I. We consider functions F : I → R and
G : I → R. If both F and G are di�erentiable on [a, b], such that F ′ : [a, b] → R and
G′ : [a, b] → R are Riemann integrable, then

∫ b

a

F (x)G′(x) dx = F (x)G(x)

∣∣∣∣x=b

x=a

−
∫ b

a

F ′(x)G(x) dx.

We see that integration by part is nothing but just an integral version of product rule.

Example 4.2.2. We now compute
∫ 1

0
xex dx. In view of the fundamental theorem of

calculus (Theorem 4.1.15), the most di�cult part here is to �nd a function F such that
F ′(x) = xex. Integration by parts (Theorem 4.2.1) suggests us that one can simplify the
problem by guessing the antiderivative of the function x of the antiderivative of the function
ex. Since (ex)′ = ex, then one sees that

∫ 1

0

xex dx =

∫ 1

0

x(ex)′ dx

= xex
∣∣∣∣x=1

x=0

−
∫ 1

0

(x)′ex dx (integration by parts)

= e−
∫ 1

0

ex dx = e− ex
∣∣∣∣x=1

x=0

= 1,
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which means that we compute the integral
∫ 1

0
xex dx without directly guessing an antideriv-

ative of xex. Suggested by (1
2
x2)′ = x, one may also consider the following attempt:

∫ 1

0

xex dx =
1

2

∫ 1

0

(x2)′ex dx

=
1

2
x2ex

∣∣∣∣x=1

x=0

− 1

2

∫ 1

0

x2(ex)′ dx (integration by parts)

=
1

2
e− 1

2

∫ 1

0

x2ex dx,

which somehow make the problem even worse. This failed attempt demonstrates that there is
no standard way to use integration by parts, and this is highly depends on personal experience.

Example 4.2.3. One can compute
∫ π/2

0
(sinx)3 dx using trigonometric identities. We now

give another alternative way by using integration by parts (Theorem 4.2.1). We write

∫ π/2

0

(sinx)3 dx =

∫ π/2

0

(sinx)2 sinx dx = −
∫ π/2

0

(sinx)2(cosx)′ dx

= −

=0︷ ︸︸ ︷
(sinx)2 cosx

∣∣∣∣x=π/2

x=0

+

∫ π./2

0

((sinx)2)′ cosx dx

=

∫ π./2

0

(2 sinx cosx) cosx dx

= 2

∫ π/2

0

sinx(cosx)2 dx = 2

∫ π/2

0

sinx(1− (sinx)2) dx

= 2

∫ π/2

0

sinx dx− 2

∫ π/2

0

(sinx)3 dx,

hence

(4.2.1) 3

∫ π/2

0

(sinx)3 dx = 2

∫ π/2

0

sinx dx,

which implies

∫ π/2

0

(sinx)3 dx =
2

3

∫ π/2

0

sinx dx = −2

3
cosx

∣∣∣∣x=π/2

x=0

=
2

3
.
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Example 4.2.4. The idea in (4.2.1) can be extend to a more general settings. For any
real numbers α ≥ 2, one sees that∫ π/2

0

(sinx)α dx =

∫ π/2

0

(sinx)α−1 sinx dx = −
∫ π/2

0

(sinx)α−1(cosx)′ dx

= −

=0︷ ︸︸ ︷
(sinx)α−1 cosx

∣∣∣∣x=π/2

x=0

+

∫ π./2

0

((sinx)α−1)′ cosx dx

=

∫ π./2

0

((α− 1)(sinx)α−2 cosx) cosx dx = (α− 1)

∫ π./2

0

(sinx)α−2(cosx)2 dx

= (α− 1)

∫ π./2

0

(sinx)α−2(1− (sinx)2) dx

= (α− 1)

∫ π./2

0

(sinx)α−2 dx− (α− 1)

∫ π./2

0

(sinx)α dx,

and hence

α

∫ π./2

0

(sinx)α dx = (α− 1)

∫ π./2

0

(sinx)α−2 dx.

One can, at least, compute the precise formula of∫ π./2

0

(sinx)n dx

for all integer n ≥ 1 by using the idea.

We now recall the chain rule:

(f(φ(x)))′ = f ′(y)|y=φ(x)φ
′(x) = f ′(φ(x))φ′(x).

for some suitable di�erentiable function f and φ. Under some assumptions, by using the
fundamental theorem of calculus (Theorem 4.1.15), one sees that∫ B

A

f ′(φ(x))φ′(x) dx =

∫ B

A

(f(φ(x)))′ dx = f(φ(B))− f(φ(A))

= f(x)

∣∣∣∣x=φ(B)

x=φ(A)

=

∫ φ(B)

φ(A)

f ′(x) dx.

If we write F = f ′, then ∫ B

A

F (φ(x))φ′(x) dx =

∫ φ(B)

φ(A)

F (x) dx.

We now write a = φ(A) and b = φ(B). If φ : [A,B] → [a, b] is bijective (note: since φ is
di�erentiable, this implies that either φ is strictly increasing or strictly decreasing) then∫ φ−1(b)

φ−1(a)

F (φ(t))φ′(t) dt =

∫ φ−1(b)

φ−1(a)

F (φ(x))φ′(x) dx

=

∫ B

A

F (φ(x))φ′(x) dx =

∫ φ(B)

φ(A)

F (x) dx =

∫ b

a

F (x) dx.

In fact, the following theorem holds true:
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Theorem 4.2.5 (Integration by parts [Rud87, Theorems 6.17 and 6.19]). Let φ : [a, b] →
R be a strictly increasing (or strictly decreasing) function, which is di�erentiable on (a, b).
Suppose that φ′ can be extend to function [a, b] → R such that it is Riemann integrable. If
a function F : [a, b] → R is Riemann integrable, then t 7→ F (φ(t))φ′(t) is integrable on
[φ−1(a), φ−1(b)] and ∫ b

a

F (x) dx =

∫ φ−1(b)

φ−1(a)

F (φ(t))φ′(t) dt.

Remark. It is convenient to write φ(t) = x(t), so that

(4.2.2)

∫ b

a

F (x) dx =

∫ φ−1(b)

φ−1(a)

F (x(t))x′(t) dt =

∫ φ−1(b)

φ−1(a)

F (x(t))
dx

dt
dt,

which is quite convenient to memorize.

Example 4.2.6 (Revisit of Example 4.2.3). One can compute
∫ π/2

0
(sinx)3 dx using

trigonometric identities or using the integration by parts formula in Example 4.2.3. We
again write ∫ π/2

0

(sinx)3 dx =

∫ π/2

0

(sinx)2 sinx dx =

∫ π/2

0

(1− (cosx)2) sinx dx.

We now consider the change of variable cosx(t) = t. One sees that

x = 0 ↔ t = 1,

x =
π

2
↔ t = 0,

and acting d
dt

on the equation cosx(t) = t to see that

−(sinx(t))
dx

dt
=

d

dt
(cosx(t)) =

d

dt
t = 1.

Now from (4.2.2) we see that∫ π/2

0

(sinx)3 dx =

∫ x=π/2

x=0

(1− (cosx)2) sinx dx

=

∫ t=0

t=1

(1− t2)

=−1︷ ︸︸ ︷
(sinx(t))

dx

dt
dt = −

∫ t=0

t=1

(1− t2) dt

= −
(
t− 1

3
t3
) ∣∣∣∣t=0

t=1

=
2

3
.

Example 4.2.7. Let's do a generalization similar to Example 4.2.4. For any real numbers
α > 1, one sees that∫ π/2

0

(sinx)α dx =

∫ π/2

0

(sinx)α−1 sinx dx =

∫ π/2

0

(1− (cosx)2)
α−1
2 sinx dx,
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since sinx > 0 for all x ∈ (0, π.2) and that sinx = (1− (cosx)2)1/2. By considering the same
change of variables in Example 4.2.6, one sees that∫ π/2

0

(sinx)α dx =

∫ x=π/2

x=0

(1− (cosx)2)
α−1
2 sinx dx

=

∫ t=0

t=1

(1− t2)
α−1
2

=−1︷ ︸︸ ︷
(sinx(t))

dx

dt
dt = −

∫ t=0

t=1

(1− t2)
α−1
2 dt

=

∫ 1

0

(1− t2)
α−1
2 dt.

This method allow use to compute the formula of
∫ π/2

0
(sinx)n dx at least for odd integer

n ∈ N.

Remark 4.2.8. It is important to check whether the mapping φ : [a, b] → R is strict
increasing/decreasing. We illustrate this precaution by the following simple integral∫ π/2

−π/2

(sinx)2 dx =

∫ π/2

−π/2

(sinx)(sinx) dx,

which is obviously > 0. If we consider the �change of variable� cosx(t) = t, and we see that

x = −π/2 ↔ t = 0,

x =
π

2
↔ t = 0,

and acting d
dt

on the equation cosx(t) = t to see that

−(sinx(t))
dx

dt
=

d

dt
(cosx(t)) =

d

dt
t = 1.

Hence ∫ π/2

−π/2

(sinx)2 dx
(×)
= −

∫ t=0

t=0

(sinx(t)) dt = 0,

which is obviously not true. The main reason in the above �argument� is the mapping
cos : [−π/2, π/2] → [0, 1] is not bijective. We now show the correct way to do this: by
writing ∫ π/2

−π/2

(sinx)2 dx =

∫ 0

−π/2

(sinx)2 dx+

∫ π/2

0

(sinx)2 dx,

we consider the change of variable x(t) = −y, we see that∫ x=0

x=−π/2

(sinx)2 dx = −
∫ y=0

y=π/2

(sin(−y))2 dy =

∫ π/2

0

(sin y)2 dy =

∫ π/2

0

(sinx)2 dx,

and hence ∫ π/2

−π/2

(sinx)2 dx = 2

∫ π/2

0

(sinx)2 dx.

Then the rest can be argued as in Example 4.2.4.
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4.3. Integration by Partial Fractions

The main theme of this section is to introduce the rational form of the form

(4.3.1)
f(x)

g(x)
for all x ∈ R \ Zg,

where Zg := {x ∈ R : g(x) = 0}. First of all, we need to ensure that Zg is not �too big� in
order to make sure that the rational form (4.3.1) is meaningful.

Definition 4.3.1. Let I be an open interval in R (may or may not bounded) and we
consider a function g : I → R. If x0 ∈ I satis�es g(x0) = 0, then we say that such x0 is a
zero of g in I.

Let g(x) =
∑n

k=0 ckx
k be a polynomial. If the leading coe�cient cn ̸= 0, then we say

that the degree of g is n, and we denote by deg(g) = n. By using the fundamental theorem
of algebra (see e.g. [Kow23, Theorem 4.3.6] and some further computations, one has the
following corollary.

Corollary 4.3.2. Let g : R → R be a nontrivial polynomial of degree n with leading
coe�cient cn ̸= 0, then one can factorize

(4.3.2) g(x) = cn(x− x1) · · · (x− xℓ)(x
2 + y1x+ z1) · · · (x2 + ypx+ zp)

for some ℓ ∈ N, for some p ∈ Z≥0, for some x1, · · · , xℓ ∈ R and for some y1, z1, · · · , yp, zp ∈ R
with 2p+ ℓ = n. Here, the coe�cients xj, yj and zj are not necessarily distinct.

Remark 4.3.3 (Some advance remarks). For those who familiar with complex analysis
[Kow23], the fundamental theorem of algebra says that the analytic polynomial g(z) =∑n

k=0 ckz
k with cn ̸= 0 always can be written as g(z) = cn(z − z1) · · · (z − zn) for some

z1, · · · , zn ∈ C. We now assume that the coe�cients c0, · · · , cn ∈ R. In this case, if g(w0) = 0,
then one sees that

0 = g(w0) =
n∑

k=0

ckwk
0 =

n∑
k=0

ckw0
k = g(w0).

This shows that, for the case when c0, · · · , cn ∈ R, the analytic polynomial g(z) =
∑n

k=0 ckz
k

with cn ̸= 0 always can be written as

g(z) = cn(z − w1)(z − w1) · · · (z − wp)(z − wp)(z − x1) · · · (z − xn−2p)

for some w1, · · · , wp ∈ C \ R and x1, · · · , xn−2p ∈ R. If p = n
2
, this means that f(z) =

cn(z − w1)(z − w1) · · · (z − wp)(z − wp). We also see that

(z − wj)(z − wj) = z2 − (wj + wj)z + wjwj = z2 − 2ℜwjz + |wj|.
Corollary 4.3.2 is simply a restriction on R.

Example 4.3.4. The polynomial g(x) = x2 + x = x(x + 1) has zeros 0 and −1. The
polynomial g(x) = x2 − 2x + 1 = (x − 1)2 has one repeated zero 1 ∈ R. The polynomial
g(x) = x2 + 1 has no zero in R.

Since Zg is a �nite set, then we now see the rational form (4.3.1) is meaningful. First of
all, we consider the case when deg(f) ≥ deg(g) ≥ 2, and we want to write (4.3.1) as

(4.3.3)
f(x)

g(x)
= P (x) +

f̃(x)

g(x)
for all x ∈ R \ Zg,
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for some polynomials P and f̃ such that 0 ≤ deg(f̃) < deg(g). This can be done by the long
division described by the following algorithm:

Algorithm 1 Long division for polynomials

1: if deg(f) < deg(g) then

2: Set f̃(x) = f(x) and P (x) = 0 for all x ∈ R.
3: else
4: Set j = 0, x0 ̸= 0 be the leading coe�cient of g, and set f0(x) := f(x) for all x ∈ R.
5: while deg(fj) ≥ deg(g) do
6: Set Aj ̸= 0 be the leading coe�cient of fj.

7: De�ne fj+1(x) := fj(x)− Aj

c0
xdeg(fj)−deg(g)g(x) for all x ∈ R.

8: Set j = j + 1.
9: end while
10: Set f̃(x) = fj(x) and P (x) =

∑j−1
k=0

Ak

c0
xdeg(fk)−deg(g) for all x ∈ R.

11: end if

Lemma 4.3.5. Algorithm 1 must terminate within �nite steps and it solves (4.3.3).

Proof. The case when deg(f) < deg(g) is trivial. We now consider the case when
deg(f) ≥ deg(g). Since deg(fj+1) ≤ deg(fj)−1, then we see that Algorithm 1 must terminate
within �nite steps, says at j = j0, then we compute that

f̃(x) = fj0+1(x) = fj0(x)−
Aj0

c0
xdeg(fj0 )−deg(g)g(x)

= fj0−1(x)−
j0∑

j=j0−1

Aj

c0
xdeg(fj)−deg(g)g(x)

...

= f0(x)−
j0∑
j=0

Aj

c0
xdeg(fj)−deg(g)g(x)

= f(x)−
j0∑
j=0

Aj

c0
xdeg(fj)−deg(g)g(x) for all x ∈ R,

and then divide the above equation by g(x) we reach

f̃(x)

g(x)
=

f(x)

g(x)
−

=P (x)︷ ︸︸ ︷
j0∑
j=0

Aj

c0
xdeg(fj)−deg(g) for all x ∈ R \ Zg,

which conclude our lemma. □

We now give an example.
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Example 4.3.6. We now divide f(x) = 4x4 + 1 by using g(x) = 2x2 + 1 (with c0 = 2).
Set f0(x) = f(x) = 4x4 + 1 (with A0 = 4), then we reach

f1(x) = f0(x)−
A0

c0
xdeg(f0)−deg(g)g(x)

= 4x4 + 1− 2x2(2x2 + 1) = −2x2 + 1 (with A1 = −2).

Now we check that deg(f1) = 2 ≥ 2 = deg(g), then the algorithm still continue:

f2(x) = f1(x)−
A1

c0
xdeg(f1)−deg(g)g(x)

= −2x2 + 1 + (2x2 + 1) = 2.

Now we see that deg(f2) = 0 < 2 = deg(g), thus the while loop is terminate at j = 2.
According to Algorithm 1, we now output

f̃(x) := f2(x) = 2

and

P (x) =
1∑

k=0

Ak

c0
xdeg(fk)−deg(g) =

A0

c0
xdeg(f0)−deg(g) +

A1

c0
xdeg(f1)−deg(g)

=
4

2
x2 +

−2

2
= 2x2 − 1.

As a demonstration, we verify that

P (x) +
f̃(x)

g(x)
= 2x2 − 1 +

2

2x2 + 1
=

(2x2 − 1)(2x2 + 1) + 2

2x2 + 1
=

4x4 − 1 + 2

2x2 + 1
=

f(x)

g(x)
.

We now focus on the rational form

(4.3.4)
f̃(x)

g(x)
for all x ∈ R \ Zg,

with deg(f̃) < deg(g). In fact, the above rational form can be further decomposed as follows:

Theorem 4.3.7 (A special case of [Kow23, Theorem 5.2.7]). We now consider the ra-

tional form (4.3.4) with deg(f̃) < deg(g). If the polynomial g can be decomposed by Corol-
lary 4.3.2 as

g(x) = cn(x− x1)
m(x1) · · · (x− xℓ)

m(xℓ)(x2 + y1x+ z1)
m(y1,z1) · · · (x2 + ypx+ zp)

m(yp,zp)

for some ℓ ∈ N, for some p ∈ Z≥0, for some x1, · · · , xℓ ∈ R and for some y1, z1, · · · , yp, zp ∈ R
so that {x1, · · · , xℓ} are all distinct and all the pairs {(y1, z1), · · · , (yp, zp)} are all distinct.
Then the rational form (4.3.4) can be uniquely decomposed as

f̃(x)

g(x)
=

ℓ∑
j=1

m(xj)∑
r=1

Ajr

(x− xj)r
+

p∑
j=1

m(yj ,zj)∑
r=1

Bjrx+ Cjr

(x2 + y1x+ z1)r
for all x ∈ R \ Zg,

for some Ajr, Bjr, Cjr ∈ R.

Remark. Now one can easily compute the antiderivative of
Ajr

(x−xj)r
. It is di�cult to

compute the antiderivative of
Bjrx+Cjr

(x2+y1x+z1)r
by using real numbers itself: In fact, this can be

easily handle by using complex analysis.
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We now close this section by the following example.

Example 4.3.8. By using Theorem 4.3.7, one has a unique decomposition

(4.3.5)
1

(x+ 1)2(x2 + 1)
=

A

x+ 1
+

B

(x+ 1)2
+

Cx+D

x2 + 1
for all x ∈ R \ {−1}.

It is recommend to begin with terms for those easy to handle. We �rst multiply (4.3.5) by
(x+ 1)2 to see that

1

x2 + 1
= A(x+ 1) +B + (x+ 1)2

Cx+D

x2 + 1
for all x ∈ R \ {−1},

and consequently by taking the limit x → −1 (note. we cannot directly take x = −1 since
the above equation is not well-de�ned at it) we see that

B =
1

2
.

Now from (4.3.5) we have

A

x+ 1
+

Cx+D

x2 + 1
=

1

(x+ 1)2(x2 + 1)
− 1

2(x+ 1)2

=
2− (x2 + 1)

2(x+ 1)2(x2 + 1)
=

−x2 + 1

2(x+ 1)2(x2 + 1)

=
−(x+ 1)(x− 1)

2(x+ 1)2(x2 + 1)
=

1− x

2(x+ 1)(x2 + 1)
for all x ∈ R \ {−1}.(4.3.6)

Now we multiply the above equation by (x+ 1) to see that

A+ (x+ 1)
Cx+D

x2 + 1
=

1− x

2(x2 + 1)
for all x ∈ R \ {−1},

and consequently by taking the limit x → −1 we see that

A =
1

2
.

Now from (4.3.6) we see that

Cx+D

x2 + 1
=

1− x

2(x+ 1)(x2 + 1)
− 1

2(x+ 1)

=
1− x− (x2 + 1)

2(x+ 1)(x2 + 1)
=

−x− x2

2(x+ 1)(x2 + 1)

=
−x(x+ 1)

2(x+ 1)(x2 + 1)
=

−x

2(x2 + 1)
for all x ∈ R \ {−1}.

Multiplying the above equation by (x2 + 1), we now see that

Cx+D = −1

2
x.

By taking x = 0 and x = 1 (or a less rigorous statement �comparing the coe�cients�) we
conclude that

C = −1

2
, D = 0.
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Now we put everything into (4.3.5) to conclude that

1

(x+ 1)2(x2 + 1)
=

1

2(x+ 1)
+

1

2(x+ 1)2
− x

2(x2 + 1)
for all x ∈ R \ {−1}.

4.4. Improper Integrals

As motivated by Example 4.1.9 above, we see that the function f : [0, 1] → R de�ned by

f(x) =

{
x−1/2 , 0 < x ≤ 1,

0 , x = 0,

is not Riemann integrable on [0, 1]. We see that f is continuous on (0, 1]. This suggests us
to approximate the area of the unbounded area by∫ 1

ϵ

f(x) dx =

∫ 1

ϵ

x−1/2 dx = 2x1/2

∣∣∣∣x=1

x=ϵ

= 2− 2
√
ϵ

for a �small� parameter ϵ > 0. This suggests us to consider the limit ϵ → 0+ to obtain

lim
ϵ→0+

∫ 1

ϵ

f(x) dx = 2.

This is called the improper integral of f : (0, 1] → R. We see that the above improper integral
does nothing with the value f(0). We now summarize the above observation by the following
de�nition.

Definition 4.4.1. Let a, b ∈ R with a < b.

(a) Suppose that f : (a, b] → R is a continuous function. If limϵ→0+

∫ b

a+ϵ
f(x) dx exists,

then we de�ne the improper integral by∫ b

a

f(x) dx := lim
ϵ→0+

∫ b

a+ϵ

f(x) dx.

(b) Suppose that f : [a, b) → R is a continuous function. If limϵ→0+

∫ b−ϵ

a
f(x) dx exists,

then we de�ne the improper integral by∫ b

a

f(x) dx := lim
ϵ→0+

∫ b−ϵ

a

f(x) dx.

(c) Let a < c < b. Suppose that f : [a, b] \ {c} → R is a continuous function. If

both limϵ2→0+

∫ c−ϵ2
a

f(x) dx and limϵ1→0+

∫ b

c+ϵ1
f(x) dx exist and the following two

situations do not happen:

• limϵ2→0+

∫ c−ϵ2
a

f(x) dx = +∞ and limϵ1→0+

∫ b

c+ϵ1
f(x) dx = −∞,

• limϵ2→0+

∫ c−ϵ2
a

f(x) dx = −∞ and limϵ1→0+

∫ b

c+ϵ1
f(x) dx = +∞,

then we de�ne the improper integral by

(4.4.1)

∫ b

a

f(x) dx := lim
ϵ2→0+

∫ c−ϵ2

a

f(x) dx+ lim
ϵ1→0+

∫ b

c+ϵ1

f(x) dx.

Remark 4.4.2. If f : [a, b] → R is continuous (hence integrable), the its Riemann integral
is identical to the improper integrals above.



4.4. IMPROPER INTEGRALS 64

Example 4.4.3. A closely related notion is called the principal value integration:

(4.4.2) pv

∫ b

a

g(x) dx := lim
ϵ→0+

(∫ c−ϵ

a

g(x) dx+

∫ b

c+ϵ

g(x) dx

)
.

This is di�erent to the improper integral in De�nition 4.4.1: the improper integral in (4.4.1)
means we �rst take limit on each term, and then summing the resulting numbers, while the
principal value integration in (4.4.2) means that we �rst sum the truncated integral with
same truncation level, and then take the limit. If the improper integral of g : [a, b] \ {c} → R
exists in the sense of (4.4.1), then∫ b

a

g(x) dx = pv

∫ b

a

g(x) dx.

However, it is possible that pv
∫ b

a
f(x) dx exists but its improper integral does not exist. For

example, we consider the function

f : R \ {0} → R, f(x) =
1

x
for all x ∈ R \ {0}.

For each 0 < ϵ < 1, we compute that∫ 1

ϵ

1

x
dx = lnx

∣∣∣∣x=1

x=ϵ

= − ln ϵ,

and by the change of variable formula one sees that∫ −ϵ

−1

1

x
dx = −

∫ 1

ϵ

1

y
dy = ln ϵ.

Hence one sees that ∫ −ϵ

−1

1

x
dx+

∫ 1

ϵ

1

x
dx = 0 for all 0 < ϵ < 1,

which gives

pv

∫ 1

−1

f(x) dx = lim
ϵ→0+

(∫ −ϵ

−1

1

x
dx+

∫ 1

ϵ

1

x
dx

)
= 0.

However, since

lim
ϵ→0+

∫ 1

ϵ

1

x
dx = +∞, lim

ϵ→0

∫ −ϵ

−1

1

x
dx = −∞,

thus the improper integral of f on [−1, 1] \ {0} does not exist. In fact, for each c1 > 0 and
c2 > 0, one sees that

lim
ϵ→0+

(∫ −c1ϵ

−1

1

x
dx+

∫ 1

c2ϵ

1

x
dx

)
= lim

ϵ→0+
(ln(c1ϵ)− ln(c2ϵ)) = lim

ϵ→0+
ln

c1ϵ

c2ϵ
= ln

c1
c2
,

this means that the limit is even depends on the �speed of convergence�, which shows that
the area of unbounded regions may not well-de�ned without any restrictions . If the limit is
independent of the �speed of convergence�, then the area of unbounded region is well-de�ned
as described in De�nition 4.4.1 above. We use the notations ϵ1 and ϵ2 there to emphasize the
convergence rate of two limits may arbitrary.

We now generalize Example 4.1.9 in the following example.
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Example 4.4.4. Let p > 0 and we consider the function f : (0,∞) → R by f(x) = x−p.
For each ϵ > 0, one computes that∫ 1

ϵ

f(x) dx =

∫ 1

ϵ

x−p dx =

{
1

1−p
(1− ϵ1−p) for all p > 0 with p ̸= 1,

− ln ϵ when p = 1.

Hence we compute the improper integral by

lim
ϵ→0+

∫ 1

ϵ

f(x) dx =

{
1

1−p
for all p < 1,

+∞ for all p ≥ 1.

We see that p = 1 is a critical value.

Exercise 4.4.5. Let p > 0 and we consider the continuous function

f : (0, 1/e] → R, f(x) =
1

x| lnx|p
=

1

x(− lnx)p
for all x ∈ (0, 1/e].

Compute the improper integral

lim
ϵ→0+

∫ 1/e

ϵ

f(x) dx

for each p > 0.

Another similar notion of improper integrals can be de�ned as follows:

Definition 4.4.6. Given a real number a ∈ R.
(a) Suppose that f : [a,+∞) → R is a continuous function. If limM→+∞

∫M

a
f(x) dx

exists, then we de�ne the improper integral by∫ +∞

a

f(x) dx := lim
M→+∞

∫ M

a

f(x) dx.

(b) Suppose that f : (−∞, a] → R is a continuous function. If limM→+∞
∫ a

−M
f(x) dx

exists, then we de�ne the improper integral by∫ a

−∞
f(x) dx := lim

M→+∞

∫ a

−M

f(x) dx.

(c) Suppose that f : R → R is continuous function. If there exists b ∈ R such that

both limM1→+∞
∫ b

−M1
f(x) dx and limM2→+∞

∫M2

b
f(x) dx exist and the following two

situations do not happen:

• limM→+∞
∫ b

−M1
f(x) dx = +∞ and limM2→+∞

∫M2

b
f(x) dx = −∞,

• limM→+∞
∫ b

−M1
f(x) dx = −∞ and limM2→+∞

∫M2

b
f(x) dx = +∞,

then we de�ne the improper integral by

(4.4.3)

∫ +∞

−∞
f(x) dx := lim

M1→+∞

∫ b

−M1

f(x) dx+ lim
M2→+∞

∫ M2

b

f(x) dx.

Remark 4.4.7. The integral (4.4.3) is independent of the choice of b, therefore it is
well-de�ned. We also can similar de�ne the principal value integration centered at b0 by

pv

∫ +∞

−∞
f(x) dx := lim

M→+∞

∫ b0+M

b0−M

f(x) dx.
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In general, the principal value integration may depends on the choice b. It is important to
mention that: If the improper integral (4.4.3) of f : R → R is well-de�ned, then∫ +∞

−∞
f(x) dx = pv

∫ +∞

−∞
f(x) dx

and its value is independent of the center b0. Similar to above, the converse may false without
any restriction.

In view of De�nition 4.4.6(c), one should expect the area under non-negative function
is always well-de�ned in [0,+∞]. In fact, this is con�rmed by the monotone convergence
theorem (for Lebesgue integral). Here we formulate a more precise statement in terms of
Riemann integral.

Lemma 4.4.8 (Monotone convergence theorem for improper integrals). Let I be an un-
bounded interval. If f : I → R is a continuous function such that f(x) ≥ 0 for all x ∈ R.
Then the improper integral ∫

I

f(x) dx

is always well-de�ned (in the sense of (4.4.3)) with value in [0,+∞].

Exercise 4.4.9. Let p > 0. Show that∫ +∞

1

x−p dx < +∞ if and only if p ≥ 1.

Determine a necessary and su�cient condition for which∫ +∞

1

1

x| lnx|p
dx < +∞.

Exercise 4.4.10 (Gamma function). Given any x > 0, show that the improper integral∫ +∞

0

tx−1e−t dt := lim
τ→0+

∫ 1

τ

tx−1e−t dt+ lim
M→+∞

∫ M

1

tx−1e−t dt < +∞.

Example 4.4.11 (Factorial and gamma function). In view of Exercise 4.4.10, one can
de�ne the function Γ : (0,+∞) → (0,+∞) by

Γ(x) :=

∫ +∞

0

tx−1e−t dt,

which is the well-known Gamma function. By using integration by parts, one sees that

Γ(x) = −
∫ +∞

0

tx−1(e−t)′ dt

= −

=0︷ ︸︸ ︷
tx−1e−t

∣∣∣∣t→+∞

t→0+

+(x− 1)

∫ +∞

0

tx−2(e−t)′ dt

= (x− 1)Γ(x− 1) for all x > 1.(4.4.4)

We also have Γ(1) =
∫ +∞
0

e−t dt = 1. We now demonstrate how to use mathematical induc-
tion to show that

(4.4.5) Γ(n+ 1) = n! for all n ∈ N ∪ {0},



4.4. IMPROPER INTEGRALS 67

where the factorial n! is de�ned by 0! := 1 and

n! := n(n− 1)(n− 2) · · · · · 1 for all n ∈ N.
We remark that the earliest uses of the factorial function involve counting permutations:
there are n! di�erent ways of arranging n distinct objects into a sequence.

Basic case. We �rst see that Γ(1) = 1 = 0! and from (4.4.4) we also have Γ(2) = 1Γ(1) =
1 = 1!, which con�rms (4.4.5) for n = 0 and n = 1.

Induction step. We now assume that (4.4.5) holds true when n = k for some k ∈ N. From
(4.4.4) we see that

Γ(k + 2) = (k + 1)Γ(k + 1)

= (k + 1)k! (by induction hypothesis)

= (k + 1)!.

Combining the basic case and the induction step, we conclude the identity (4.4.5) by using
mathematical induction.

Example 4.4.12 (Normal distribution). Given constants µ > 0 and σ > 0, and we de�ne
the continuous function

pµ,σ : R → R>0, pµ,σ(x) :=
1

σ
√
2π

e−
(x−µ)2

2σ2 for all x ∈ R.

By using Lemma 4.4.8, the improper integral
∫ +∞
−∞ pµ,σ(x) dx exists. In fact, one has (unfor-

tunately, it is not possible to be computed using only the knowledge until at this point, we
will prove this in Example 7.5.8 in Chapter 7 below)∫ +∞

−∞
pµ,σ(x) dx = 1.

This shows that pµ,σ is a density of a probability distribution.

Exercise 4.4.13. For each m ∈ N, show that the improper integral
∫ +∞
−∞ xmpµ,σ(x) dx

exists. In addition, compute

(a) the mean E(pµ,σ) :=
∫ +∞
−∞ xpµ,σ(x) dx; and

(b) the variance var(pµ,σ) :=
∫ +∞
−∞ (x− E(pµ,σ))2 pµ,σ(x) dx,

of the normal distribution mentioned above.

Example 4.4.14 (Exponential distribution). Given a constant λ > 0, and we de�ne the
continuous function

pλ : [0,+∞) → R>0, pλ(x) = λe−λx for all x ∈ R≥0.

By using Lemma 4.4.8, the improper integral
∫ +∞
0

pλ(x) dx exists. It is easy to compute that∫ +∞

0

pλ(x) dx = lim
M→+∞

∫ M

0

λe−λx dx = lim
M→+∞

(−e−λx)

∣∣∣∣x=M

x=0

= 1,

which shows that pλ is a density of a probability distribution. In fact, pλ is the density of
the exponential distribution, which can be used to model e.g. the time between production
errors or length along a roll of fabric in the weaving manufacturing process. It is interesting
to compare this with Example 5.5.12 below.
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Exercise 4.4.15. Compute

(a) the mean E(pλ) :=
∫ +∞
0

xpλ(x) dx; and

(b) the variance var(pλ) :=
∫ +∞
0

(x− E(pλ))2 pλ(x) dx,
of the exponential distribution mentioned above.

Finally, we close this section by giving a remark that, unfortunately there is no uni�ed
de�nition for De�nition 4.4.1 and De�nition 4.4.6 in terms of Riemann integral. In fact, a
consistent and unify framework can be given in terms of Lebesgue integral, see Chapter 7
below.

4.5. Some fundamental inequalities

We begin this section by the following fact, which can be found in [BV04, Section 3.1.4]
(note that the second derivative test in Theorem 3.5.8 is an immediate consequence of this
fact).

Lemma 4.5.1. Let a, b ∈ R with a < b and let f : (a, b) → R which is twice di�erentiable.
The following are equivalent:

(1) f is concave, that is, f(αt1 + βt2) ≥ αf(t1) + βf(t2) for all t1, t2 ∈ (a, b) and for all
α ≥ 0, β ≥ 0 with α + β = 1.

(2) f ′′(x) ≤ 0 for all x ∈ (a, b).

We now consider the logarithmic function ln : (0,∞) → R. One sees that
(lnx)′′ = (x−1)′ = −x−2 < 0 for all x ∈ (0,∞),

then Lemma 4.5.1 says that ln : (0,∞) → R is convex, that is,

ln(αt1 + βt2) ≥ α ln(t1) + β ln(t2) for all t1, t2 > 0 and for all α ≥ 0, β ≥ 0 with α+ β = 1.

Let p > 1, q > 1 be such that 1
p
+ 1

q
= 1, and we choose α = 1

p
and β = 1

q
in the above

inequality to reach

ln

(
1

p
t1 +

1

q
t2

)
≥ 1

p
ln(t1) +

1

q
ln(t2) = ln(t

1/p
1 t

1/q
2 ) for all t1, t2 > 0.

We now write s1 = t
1/p
1 > 0 and s2 = t

1/q
2 > 0 to see that ln

(
1
p
sp1 +

1
q
sp2

)
≥ ln(s1s2) for all

s1 > 0 and s2 > 0. Since exp : R → R>0 is strictly increasing, then we see that

1

p
sp1 +

1

q
sp2 ≥ s1s2 for all s1 > 0 and s2 > 0.

The above inequality obviously holds true for either s1 = 0 or s2 = 0 as well, and we now
conclude the following lemma.

Lemma 4.5.2 (Young's inequality). For each p > 1 and q > 1 such that 1
p
+ 1

q
= 1, we

have the inequality

s1s2 ≤
1

p
sp1 +

1

q
sp2 for all a ≥ s1 and s2 ≥ 0.

For simplicity, let I be any connected interval in R, and we consider any continuous
functions f : I → R and g : I → R. By Lemma 4.4.8, the improper integral

∥f∥Lp(I) :=

(∫
I

|f(x)|p dx
)1/p

and ∥g∥Lq(I) :=

(∫
I

|g(x)|q dx
)1/q

both exist.
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Suppose that ∥f∥Lp(I) ̸= 0 and ∥g∥Lq(I) ̸= 0. For each x ∈ I we choose

s1 :=
|f(x)|
∥f∥Lp(I)

and s2 :=
|g(x)|
∥g∥Lq(I)

in the Young's inequality (Lemma 4.5.2) to see that

|f(x)g(x)|
∥f∥Lp(I)∥g∥Lq(I)

≤ 1

p

|f(x)|p

∥f∥pLp(I)

+
1

q

|g(x)|q

∥g∥qLq(I)

for all x ∈ I.

Integrate both sides on I ∩ [−M,M ], we see that∫
I∩[−M,M ]

|f(x)g(x)| dx
∥f∥Lp(I)∥g∥Lq(I)

≤ 1

p

∫
I∩[−M,M ]

|f(x)|p dx
∥f∥pLp(I)

+
1

q

∫
I∩[−M,M ]

|g(x)|q dx
∥g∥qLq(I)

≤ 1

p

∫
I
|f(x)|p dx
∥f∥pLp(I)

+
1

q

∫
I
|g(x)|q dx
∥g∥qLq(I)

=
1

p
+

1

q
= 1.

Again, by Lemma 4.4.8 the improper integral
∫
I
|f(x)g(x)| dx exists, then taking limit M →

+∞ and we reach ∫
I
|f(x)g(x)| dx

∥f∥Lp(I)∥g∥Lq(I)

≤ 1,

that is,

∥fg∥L1(I) =

∫
I

|f(x)g(x)| dx ≤ ∥f∥Lp(I)∥g∥Lq(I).

One sees that ∥f∥Lp(I) = 0 if and only if f(x) = 0 for all x ∈ I, and similarly, ∥g∥Lq(I) = 0
if and only if g(x) = 0 for all x ∈ I. Therefore the above inequality also holds true if either
∥f∥Lp(I) = 0 or ∥g∥Lq(I) = 0. It is easy to see that

∥fg∥L1(I) ≤ ∥f∥L∞(I)∥g∥L1(I) if we write ∥f∥L∞(I) = sup
y∈I

|f(y)|.

We now summarize the above computations in the following theorem.

Theorem 4.5.3 (Hölder's inequality). Let I be a connected interval in R, then

∥fg∥L1(I) ≤ ∥f∥Lp(I)∥g∥Lq(I) for all p ≥ 1, q ≥ 1 with
1

p
+

1

q
= 1

for all continuous functions f : I → R and g : I → R.

Remark 4.5.4 (Optimality). When p > 1 (if and only if q > 1), we choose g = |f |
p
q , then

we see that

∥f∥Lp(I)∥g∥Lq(I) = ∥f∥Lp(I)

(∫
I

|f(x)|p dx
)1/q

= ∥f∥Lp(I)∥f∥
p
q

Lp(I) = ∥f∥
1+ p

q

Lp(I) = ∥f∥pLp(I)

and

∥fg∥L1(I) =

∫
I

|f(x)|1+
p
q dx =

∫
I

|f(x)|p dx = ∥f∥pLp(I).

Combining the above two equations, we reach ∥f∥Lp(I)∥g∥Lq(I) = ∥fg∥L1(I) when g = |f |
p
q .

This shows that the exponents in Hölder's inequality (Theorem 4.5.3) are optimal, but how-
ever, the regularity of functions are not optimal: the continuity of functions and the connect-
ness of domain are actually not required.
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By using triangle inequality of the absolute value (1-dimensional Euclidean norm), one
can easily check that

∥f + g∥L1(I) ≤ ∥f∥L1(I) + ∥g∥L1(I),

and

∥f + g∥L∞(I) ≤ ∥f∥L∞(I) + ∥g∥L∞(I),

for all continuous functions f : I → R and g : I → R. For 1 < p < +∞, we see that

|f(x) + g(x)|p = |f(x) + g(x)|p−1|f(x) + g(x)|
≤ |f(x) + g(x)|p−1|f(x)|+ |f(x) + g(x)|p−1|g(x)| for all x ∈ I.(4.5.1)

By using Hölder's inequality (Theorem 4.5.3), for each M > 0, we compute that∫
I∩[−M,M ]

|f(x) + g(x)|p−1|f(x)| dx ≤
(∫

I∩[−M,M ]

|f(x) + g(x)|q(p−1) dx

)1/q

∥f∥Lp(I)

=

(∫
I∩[−M,M ]

|f(x) + g(x)|p dx
)1/q

∥f∥Lp(I) = ∥f + g∥
p
q

Lp(I∩[−M,M ])∥f∥Lp(I)

and similarly,∫
I∩[−M,M ]

|f(x) + g(x)|p−1|g(x)| dx ≤ ∥f + g∥
p
q

Lp(I∩[−M,M ])∥f∥Lp(I).

Integrating (4.5.1) on I ∩ [−M,M ] and then combining the resulting inequality with these
two inequalities, we now see that

∥f + g∥pLp(I∩[−M,M ]) =

∫
I∩[−M,M ]

|f(x) + g(x)|p dx

≤ ∥f + g∥
p
q

Lp(I∩[−M,M ])∥f∥Lp(I) + ∥f + g∥
p
q

Lp(I∩[−M,M ])∥g∥Lp(I)

= ∥f + g∥
p
q

Lp(I∩[−M,M ])(∥f∥Lp(I) + ∥g∥Lp(I)).

Since f : I → R and g : I → R are continuous, then ∥f + g∥Lp(I∩[−M,M ]) < +∞. If
∥f + g∥Lp(I∩[−M,M ]) ̸= 0, then we divide both sides by ∥f + g∥Lp(I∩[−M,M ]) to see that

∥f + g∥Lp(I∩[−M,M ]) = ∥f + g∥
p− p

q

Lp(I∩[−M,M ]) ≤ ∥f∥Lp(I) + ∥g∥Lp(I).

The above inequality obviously hold trues when ∥f + g∥Lp(I∩[−M,M ]) = 0. By using
Lemma 4.4.8, we can take the limit M → +∞ to obtain

∥f + g∥Lp(I) ≤ ∥f∥Lp(I) + ∥g∥Lp(I).

We now summaraize the above discussions in the following theorem.

Theorem 4.5.5 (Minkowski's inequality). Let I be a connected interval in R, then for
each 1 ≤ p ≤ +∞ one has

∥f + g∥Lp(I) ≤ ∥f∥Lp(I) + ∥g∥Lp(I)

for all continuous functions f : I → R and g : I → R.
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The results in Theorem 4.5.5 does not hold true for 0 < p < 1. For this case, we need
di�erent treatments. For any numbers a > 0 and b > 0, one sees that

1 =
a

a+ b
+

b

a+ b
≤
(

a

a+ b

)p

+

(
b

a+ b

)p

,

then

(4.5.2) (a+ b)p ≤ ap + bp for all a > 0 and b > 0.

The above inequality obviously holds true for the case when a = 0 or b = 0. Now we choose

a = |f(x)| and b = |g(x)|,
and we reach

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p ≤ |f(x)|p + |g(x)|p for all x ∈ I.

By using Lemma 4.4.8, we can integrate both sides on I to conclude the following theorem.

Theorem 4.5.6 (Minkowski's inequality). Let I be a connected interval in R, then for
each 0 < p < 1 one has

∥f + g∥pLp(I) ≤ ∥f∥pLp(I) + ∥g∥pLp(I)

for all continuous functions f : I → R and g : I → R.

Minkowski's inequalities are exactly the triangle inequality, which says that the notion of
�length� also can be introduced to function spaces, that is, by viewing functions as points,
we can de�ne the �distance between them�. Here we close this section by remarking that the
results in Theorem 4.5.3, Theorem 4.5.5 and Theorem 4.5.6 are not optimal, and they are far
away from optimal. The optimal version has to be formulated in terms of Lebesgue integral
[WZ15]. Finally, we end this semester by giving a remark that the results in this section
also can be proved for series, see Section 5.6 below.
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CHAPTER 5

Numerical sequences and series

5.1. Convergence of sequences

We begin this semester by the following de�nitions.

Definition 5.1.1. A sequence in R is a function a : N → R. For convenience, we usually
denote

a(i) = ai for all i ∈ N,
and we slightly abuse the notation by writing {ai}i∈N or {ai}+∞

i=1 .

Definition 5.1.2. Let {ai}+∞
i=1 be a sequence in R.

(a) We say that the sequence {ai}+∞
i=1 converges to some a ∈ R if: Given any ϵ > 0, there

exists N = N(ϵ) > 0 such that

i ≥ N implies |ai − a| < ϵ.

In this case, we also say that limi→+∞ ai exists in R, or we simply write limi→+∞ ai =
a for some a ∈ R.

(b) We say that the sequence {ai}+∞
i=1 convergence to +∞ if: Given any M > 0, there

exists N = N(M) > 0 such that

i ≥ N implies ai ≥ M.

In this case, we also write limi→+∞ ai = +∞.
(c) We say that the sequence {ai}+∞

i=1 convergence to −∞ if: Given any M > 0, there
exists N = N(M) > 0 such that

i ≥ N implies ai ≤ −M.

In this case, we also write limi→+∞ ai = −∞.
(d) If either (a), (b) or (c) holds, we unify the notations by saying that limi→+∞ ai exists,

or by slightly abuse the notation by saying that limi→+∞ ai exists in [−∞,+∞].
(c) Otherwise, if (d) does not hold, then we say the sequence {ai}+∞

i=1 diverges.

We see that De�nition 5.1.2 is nothing by just a special case of the usual limit for functions
(see De�nition 2.3.15 above). Therefore, similar properties will holds as well:

Lemma 5.1.3. Let {ai}+∞
i=1 and {bi}+∞

i=1 be a sequences in R.
(a) If both {ai}+∞

i=1 and {bi}+∞
i=1 converge and the following two situations do not happen:

• limi→+∞ ai = +∞ and limi→+∞ bi = −∞;
• limi→+∞ ai = −∞ and limi→+∞ bi = +∞;

then limi→+∞(ai + bi) exists and

lim
i→+∞

(ai + bi) = lim
i→+∞

ai + lim
i→+∞

bi.
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(b) If {ai}+∞
i=1 converges, then for each c ∈ R the sequence {cai}+∞

i=1 converges and

lim
i→+∞

(cai) = c lim
i→+∞

ai.

(c) If both {ai}+∞
i=1 and {bi}+∞

i=1 converge and the following two situations do not happen:
• limi→+∞ ai = ±∞ and limi→+∞ bi = 0;
• limi→+∞ ai = 0 and limi→+∞ bi = ±∞;

then limi→+∞(aibi) exists and

lim
i→+∞

(aibi) =

(
lim

i→+∞
ai

)(
lim

i→+∞
bi

)
.

(d) If ai ̸= 0 for all i ∈ N and {ai}+∞
i=1 converges in [−∞,+∞] \ {0}, then

lim
i→+∞

1

an
=

1

limi→+∞ a
.

We �rst remark that one can use continuous function to proof the existence of limits and
compute it, similar to Example 3.3.11 above. For reader's convenience, here we rewrite the
ideas in the following example, in terms of sequences.

Example 5.1.4. We consider the sequence {i1/i}+∞
i=1 . By using L' Hôpital's rule in Sec-

tion 3.2 above (remember to check su�cient conditions!), one sees that

lim
i→+∞

ln(i1/i) = lim
i→+∞

1

i
ln i = 0.

One cannot use the continuity of ln : (0,+∞) → R to write ln(limi→+∞ i1/i), since we do not
know whether limi→+∞ i1/i exists or not at the moment. The proper way to argue this is to
use the continuity of exp : R → (0,+∞) and see that

1 = e0 = exp

(
lim

i→+∞
ln(i1/i)

)
= lim

i→+∞
exp

(
ln(i1/i)

)
= lim

i→+∞
i1/i = lim

i→+∞
i1/i,

which completes the proof.

We �rst introduce a simple criteria to check whether the limit exists or not.

Lemma 5.1.5 (Monotone convergence theorem). Let {ai}+∞
i=1 be a sequence in R.

(a) If {ai}+∞
i=1 is non-decreasing and there exists a number b ∈ R such that ai ≤ b for all

i ∈ N, then limi→+∞ ai = a for some a ∈ R with a ≤ b.
(b) If {ai}+∞

i=1 is non-increasing and there exists a number b ∈ R such that ai ≥ b for all
i ∈ N, then limi→+∞ ai = a for some a ∈ R with a ≥ b.

(c) If {ai}+∞
i=1 is monotone (that is, either non-decreasing or non-increasing), then

limi→+∞ ai converges in [−∞,+∞].

While taking limit, we always need to check whether it exists or not, which is very
inconvenient. For future convenience, we similarly introduce the notion of limit superior and
limit inferior for sequences. Here we follow [Rud76, De�nition 3.16].

The above lemma only guarantees the existence, but the exact value of the limit is un-
known. We demonstrate this in the following example.

Example 5.1.6. Let {ai}+∞
i=1 be a sequence in R, which de�ned by the recurrence relation

(5.1.1) a1 =
√
2, ai+1 =

√
2 +

√
ai for all i = 2, 3, 4, · · · .
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We �rst check 0 < ai < 2 for all i = 1, 2, · · · by using mathematical induction. The base case
is immediately veri�ed by 0 < a1 =

√
2 < 2. It remains to show the following:

induction hypothesis︷ ︸︸ ︷
0 < ai < 2 for some i ∈ N =⇒ 0 < ai+1 < 2.

Since
√
· : [0,+∞) → [0,+∞) is strictly increasing, it is not di�cult to see this, and the

details are left to the readers as exercises. Now the mathematical induction implies that

(5.1.2) 0 < ai < 2 for all i ∈ N.

We now want to show that {ai}+∞
i=1 is strictly increasing. First of all, from a1 > 0 we check

that

a2 =
√
2 +

√
a1 >

√
2 +

√
0 =

√
2 = a1,

which con�rmed the base case. It remains to show the following:

induction hypothesis︷ ︸︸ ︷
ai+1 > ai for some i ∈ N =⇒ ai+2 > ai+1.

Since
√
· : [0,+∞) → [0,+∞) is strictly increasing, From ai+1 > ai, we see that

√
ai+1 >

√
ai,

and consequently one sees that 2+
√
ai+1 > 2+

√
ai. Now, again using the strictly increasing

function
√
· : [0,+∞) → [0,+∞), we now see that

ai+2 =
√

2 +
√
ai+1 >

√
2 +

√
ai = ai+1.

Now the mathematical induction implies that

(5.1.3) ai > ai for all i ∈ N.

In view of (5.1.2) and (5.1.3), now the monotone convergence theorem (Lemma 5.1.5) guar-
antees that there exists a number 0 ≤ a ≤ 2 such that

(5.1.4) lim
i→+∞

ai = a.

At this moment, we do not know the precise value of a. By taking the limit i → +∞ in the
recurrence relation ai+1 =

√
2 +

√
ai, from the continuity of

√
· : [0,+∞) → [0,+∞) one

sees that a =
√

2 +
√
a, and thus

(
√
a)4 = 2 +

√
a.

This means that
√
a solves the polynomial y4 − y− 2 = 0. In this case, by taking account to

the condition 0 ≤ a ≤ 2, by using advance algebra, one can compute that

a =
1

9

(
1− 2 3

√
2

47 + 3
√
249

+
3

√
1

2
(47 + 3

√
249)

)2

≈ 1.831177 · · · .

We �nally remark that the limit a is called the �xed point of the recurrence relation (5.1.1),
and it may not unique! Even though the limit (5.1.4) follows by taking the limit i → +∞
in the recurrence relation ai+1 =

√
2 +

√
ai, it actually also depends on the initial condition

a1, that is why we always need to check base case in mathematical induction (even though it
may looks trivial).
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Definition 5.1.7. Given any sequence {ai}+∞
i=1 in R, we de�ne

lim sup
i→+∞

ai := lim
i→+∞

sup
j≥i

aj ≡ inf
i∈N

sup
j≥i

aj,

lim inf
n→+∞

ai := lim
i→+∞

inf
j≥i

aj ≡ sup
i∈N

inf
j≥i

aj.

This is nothing by just a special case of De�nition 2.3.16. Unlike limit, the monotone
convergence theorem (Lemma 5.1.5) implies that both limit superior and limit inferior always
exist (because supj≥i aj and infj≥i aj are monotone as the index i increasing) in [−∞,+∞].
It is clear that

lim inf
i→+∞

ai ≤ lim sup
i→+∞

ai

and if ai ≤ bi for all i ≥ N for some N > 0 one has

lim sup
i→+∞

ai ≤ lim sup
i→+∞

bi, lim inf
i→+∞

ai ≤ lim inf
i→+∞

bi.

In addition, one has

lim
i→+∞

ai = a ∈ R ⇐⇒ lim sup
i→+∞

ai = lim inf
i→+∞

ai = a ∈ R ⇐⇒ lim sup
i→+∞

|ai − a| = 0,

lim
i→+∞

ai = +∞ ⇐⇒ lim inf
i→+∞

ai = +∞,

lim
i→+∞

ai = −∞ ⇐⇒ lim sup
i→+∞

ai = −∞.

Example 5.1.8 (Oscillating sequences). We consider the sequence {(−1)i}+∞
i=1 . One sees

that

lim sup
i→+∞

(−1)i = 1 ̸= −1 = lim inf
i→−∞

(−1)i,

which shows that the sequence {(−1)i}+∞
i=1 is divergent.

We also consider the sequence {i(−1)i}+∞
i=1 . One sees that

lim sup
i→+∞

i(−1)i = +∞ ≠ −∞ = lim inf
i→−∞

i(−1)i,

which shows that the sequence {i(−1)i}+∞
i=1 is divergent. This example shows that the se-

quence may oscillating with magnitude +∞.

Example 5.1.9. We consider the sequence {ai}+∞
i=1 de�ned by

ai =

{
i−1 for all odd i ∈ N,
i−2 for all even i ∈ N.

Since limi→+∞ i−1 = 0 and limi→+∞ i−2 = 0, then

lim sup
i→+∞

|ai − 0| = lim sup
i→+∞

ai = 0,

which concludes that limi→+∞ ai = 0.

However, one has to be careful that, we only have subadditivity (resp. superaddivity)
property for limit supremum (resp. limit in�mum):

(5.1.5)

{
lim sup

i→∞
(ai + bi) ≤ lim sup

i→∞
ai + lim sup

i→∞
bi

lim inf
i→∞

(ai + bi) ≥ lim inf
i→∞

ai + lim inf
i→∞

bi
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holds whenever the right hand side is not ∞−∞ or −∞+∞. For the case when limi→∞ bi
exists and �nite, by writing ai = (ai + bi) + (−bi), using (5.1.5) we obtain{

lim sup
i→∞

ai ≤ lim sup
i→∞

(ai + bi)− lim
i→∞

bi

lim inf
i→∞

ai ≥ lim inf
i→∞

(ai + bi)− lim
i→∞

bi

which implies {
lim sup

i→∞
ai + lim

i→∞
bi ≤ lim sup

i→∞
(ai + bi),

lim inf
i→∞

ai + lim
i→∞

bi ≥ lim inf
i→∞

(ai + bi).

Combining this with (5.1.5), we reach

(5.1.6)

{
lim sup

i→∞
(ai + bi) = lim sup

i→∞
ai + lim

i→∞
bi

lim inf
i→∞

(ai + bi) = lim inf
i→∞

ai + lim
i→∞

bi
when lim

i→∞
bi exists and �nite.

If {ai} is bounded and limi→∞ bi exists which converges to some b ≥ 0, by writing
aibi = aib+ ai(bi − b) and using (5.1.6), one sees that

(5.1.7)


lim sup

i→∞
(aibi) = lim sup

i→∞
(aib)

(∵b≥0)
≡

(
lim sup

i→∞
ai

)(
lim
i→∞

bi

)
,

lim inf
i→∞

(aibi) = lim inf
i→∞

(aib)
(∵b≥0)
≡

(
lim inf
i→∞

ai

)(
lim
i→∞

bi

)
.

If we choose trivial sequence bi = b ≥ 0 for all i ∈ N, then we reach

(5.1.8) lim sup
i→∞

(bai) = b lim sup
i→∞

ai for b ≥ 0.

However, one should be aware that when b ≥ 0, we have

lim sup
i→∞

(bai) = − lim inf
i→∞

(|b|ai) = −|b| lim inf
i→∞

ai = b lim inf
i→∞

ai for b ≤ 0.

Exercise 5.1.10. Compute lim supi→∞(aibi) and lim infi→∞(aibi) when {ai} is bounded
and limi→∞ bi exists which converges to some b ≤ 0.

If both {ai} and {bi} are non-negative, one also has

(5.1.9)


lim sup

i→∞
(aibi) ≤

(
lim sup

i→∞
ai

)(
lim sup

i→∞
bi

)
lim inf
i→∞

(aibi) ≥
(
lim inf
i→∞

ai

)(
lim inf
i→∞

bi

) for non-negative {ai}+∞
i=1 , {bi}+∞

i=1

holds whenever the right hand side is not 0 · ∞ or ∞ · 0.

5.2. Absolute and conditional convergence of series

Let {ai}+∞
i=1 be a sequence in R. We now asking whether we can summing up all the

elements in {ai}+∞
i=1 . If we de�ne the function f : R → R by

f(x) =

{
ai x ∈ [i− 1, i),

0 otherwise,

then for each N ∈ N we see that
N∑
i=1

ai := a1 + · · ·+ aN =

∫ N

0

f(x) dx.
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We now introduce the following de�nition, which is a analogue to the improper integral
(De�nition 4.4.6).

Definition 5.2.1. Let {ai}+∞
i=1 be a sequence in R, for each N ∈ N we de�ne the partial

sum by

sN :=
N∑
i=1

ai.

Note that {sN}+∞
N=1 is also a sequence in R. We say that the series

∑+∞
i=1 ai converges in

[−∞,+∞] if {sN}+∞
N=1 converges in [−∞,+∞] and we write

+∞∑
i=1

ai := lim
N→+∞

sN = lim
N→+∞

N∑
i=1

ai.

Let us introduce the following technical lemma before begin our discussions.

Lemma 5.2.2 (Alternating series test). If the sequence {ai}+∞
i=1 in R is nonincreasing and

satis�es limi→+∞ ai = 0, then the alternating series
∑+∞

i=1 (−1)iai converges to some a ∈ R
in the sense of De�nition 5.2.1.

Example 5.2.3. We now consider the sequence {ai}+∞
i=1 in R given by

ai = (−1)i
1

i
for all i ∈ N.

The alternating series test (Lemma 5.2.2) guarantees that
∑+∞

i=1 ai converges to some a ∈ R,
more precisely,

(5.2.1) lim
N→+∞

N∑
i=1

(−1)i
1

i
= a,

In fact a = − ln 2, but the computation requires further advance tools, see Example 5.5.14
below. We begin with the series written in usual order:

ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
−+ · · · .

We now collect the positive terms {b1, b2, b3, · · · } := {1, 1
3
, 1
5
, · · · } and negative terms

{c1, c2, c3, · · · } := {−1
2
,−1

4
,−1

6
, · · · }. We now rearrange the terms as described by the fol-

lowing algorithm:

Algorithm 2 One way of rearranging alternating harmonic series

1: for i = 1, 2, 3, · · · do
2: De�ne ã3i−2 = bi, ã3i−1 = c2i−1 and ã3i = c2i
3: end for
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The resulting sequence {ãi}+∞
i=1 is a rearrangement of {ai}+∞

i=1 , and the corresponding series
is

(i=1)︷ ︸︸ ︷(
1− 1

2
− 1

4

)
+

(i=2)︷ ︸︸ ︷(
1

3
− 1

6
− 1

8

)
+ · · ·+

(
1

2i− 1
− 1

2(2i− 1)
− 1

4i

)
+ · · ·

= lim
N→+∞

N∑
i=1

(
1

2i− 1
− 1

2(2i− 1)
− 1

4i

)
(precise meaning)

= lim
N→+∞

N∑
i=1

(
1

2(2i− 1)
− 1

4i

)

= lim
N→+∞

1

2

N∑
i=1

(
1

2i− 1
− 1

2i

)

=
1

2

(
lim

N→+∞

2N∑
i=1

(−1)i
1

i

)
=

1

2
a (using (5.2.1)).

This example shows that the order of series cannot be change in general . If we go back to
the de�nition of series (De�nition 5.1.1), the precise meaning of the sequences {ai}+∞

i=1 and
{ãi}+∞

i=1 are functions a : N → R and ã : N → R. These two functions are di�erent, but there
exists a bijection between their ranges, in other words {ai}+∞

i=1 and {ãi}+∞
i=1 are identical as

sets.

Even though the above example demonstrates some ambiguity may appear if we abuse
the notation like De�nition 5.1.1, but however this does not cause major problem in practical
due to the following theorem.

Theorem 5.2.4 (A su�cient condition). Let {ai}+∞
i=1 be a sequence in R. If the series∑+∞

i=1 |ai| converges in R, then
∑+∞

i=1 ai converges in R and

+∞∑
i=1

ai =
+∞∑
i=1

aσ(i) for all bijection σ : N → N.

Remark 5.2.5. If
∑+∞

i=1 |ai| converges in R, then we also has

(5.2.2)

∣∣∣∣∣
+∞∑
i=1

ai

∣∣∣∣∣ ≤
+∞∑
i=1

|ai|

which is valid as
∑+∞

i=1 ai converges in R.

Remark 5.2.6. For non-negative sequence {bi}+∞
i=1 , one sees that its partial sum {SN}+∞

N=1

given by

SN =
N∑
i=1

bi
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is a nondecreasing sequence. By using the monotone convergence theorem (Lemma 5.1.5), one
sees that limN→+∞ SN converges in [0,+∞], which means that there only two possibilities:

+∞∑
i=1

bi = b for some b ∈ R or
+∞∑
i=1

bi = +∞.

Since {SN}+∞
N=1 is nondecreasing, then

(5.2.3)
+∞∑
i=1

bi = b for some b ∈ R ⇐⇒
+∞∑
i=1

bi < +∞.

The notation (5.2.3) is only valid for nonnegative sequence {bi}+∞
i=1 . Therefore, the assumption

in Theorem 5.2.4 can be written as

+∞∑
i=1

|ai| < +∞.

Together with (5.2.2), we also see that

(5.2.4)

∣∣∣∣∣
+∞∑
i=1

ai

∣∣∣∣∣ ≤
+∞∑
i=1

|ai| < +∞.

Example 5.2.7. We now give an example to demonstrate the notation (5.2.3) may not
valid for arbitrary series. For example, we consider

ai = (−1)i for all i ∈ N.

The partial sum SN =
∑N

i=1 ai is given by

SN =

{
−1 for all odd i ∈ N,
0 for all even i ∈ N.

Since lim supN→+∞ SN = 1 ̸= 0 = lim infN→+∞ SN , thus limN→+∞ SN does not exist, in other

words, the series
∑+∞

i=1 ai diverges. However, one sees that∣∣∣∣∣
N∑
i=1

ai

∣∣∣∣∣ ≤ 1 for all N ∈ N,

it is illegal to denote
∣∣∑+∞

i=1 ai
∣∣ ≤ 1 for divergence series

∑+∞
i=1 ai. It is interesting to compare

this example with (5.2.4).

In view of Theorem 5.2.4, we �nally end this section by introducing some de�nitions.

Definition 5.2.8. Let {ai}+∞
i=1 be a sequence in R.

(a) We say that the series
∑+∞

i=1 ai is absolutely convergent if
∑+∞

i=1 |ai| < +∞.

(b) We say that the series
∑+∞

i=1 ai is conditionally convergent if
∑+∞

i=1 |ai| = +∞ but∑+∞
i=1 ai converges in R in the sense of De�nition 5.2.1.
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Example 5.2.9. The sequence in Example 5.2.3 is conditionally convergent. In fact, one
can see this by the estimate

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

≥ 1 +
1

2
+

1

2
+

1

2
+ · · · = +∞.

We will later give a more systematic way in Example 5.3.2.

5.3. Convergence of nonnegative sequence

In many practical situation, we are interested in absolutely convergent series rather than
the conditionally convergent one. As we discussed above, the convergence of series also can
be understood as the well-de�neness of improper integral. This suggests us to consider non-
negative sequences {bi}+∞

i=1 , which is the main theme of this section. Throughout this section,
we will use the notation in (5.2.3). We already introduce a criteria, called the monotone
convergence theorem (Lemma 5.1.5), to check the convergence of the series

∑+∞
i=1 bi. We

exhibit some other way to check the convergence of non-negative series.

5.3.1. Integral test. By using the monotone convergence theorems in Lemma 4.4.8
and Lemma 5.1.5, we see that the series

∑+∞
i=1 bi for non-negative sequences {bi}+∞

i=1 is exactly
identical to the improper integral∫ +∞

0

f(x) dx where f(x) =

{
bi x ∈ [i− 1, i) for all i ∈ N,
0 otherwise.

In view of the upper sum and lower sum with the special partition ΓN = {0 < 1 < 2 < · · · <
N} on [0, N ], we immediately reach the following useful test:

Lemma 5.3.1 (Integral test for nonnegative series). Suppose that {ai}+∞
i=1 is a nonnegative

nonincreasing sequence. For each nonnegative continuous function f : [1,+∞) → R with
f(i) = ai for all i ∈ N, one has

+∞∑
i=1

ai < +∞ if and only if

∫ +∞

1

f(x) dx < +∞.

Example 5.3.2 (p-series). For each p > 0, we want to study the convergence of the
positive series

∑+∞
i=1 i

−p, which is the so-called p-series. The case when p = 1 corresponding
to the harmonic series mentioned in Example 5.2.9 above. From Exercise 4.4.9 we know that∫ +∞

1

x−p dx < +∞ if and only if p ≥ 1.
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Since {i−p}+∞
i=1 is a nonnegative nonincreasing sequence, then the integral test is valid with

continuous function f : [1,+∞) → R f(x) = x−p, so that we conclude that

+∞∑
i=1

i−p < +∞ if and only if p ≥ 1.

Example 5.3.3. We now give a examples to demonstrate that, even with the �positivity�
condition, the integral test may fails for both directions without �nonincreasing� assumption
on f : [1,+∞) → R.

(1) We �rst consider the function

f(x) = (sin(πx))2 +
1

x2
with ai := f(i) =

1

i2
for all i ∈ N.

One sees that
+∞∑
i=1

ai < +∞ but

∫ +∞

1

f(x) dx ≥
∫ +∞

1

(sin(πx))2 dx = +∞.

(2) We now de�ne the continuous function ϕ : R → R given by

ϕ(x) :=


1 + x ,−1 ≤ x ≤ 0,

1− x , 0 < x ≤ 1,

0 , otherwise.

It is easy to see that
∫ +∞
−∞ ϕ(x) dx =

∫ 1

−1
ϕ(x) dx = 1 with ϕ(0) = 1. We now de�ne

the function f : (−∞,+∞) → +∞ by

f(x) :=
+∞∑
j=1

j−1ϕ(2j(x− j)),

which is non-negative and continuous. We now write ai := f(i) = i−1 for all i ∈ N.
We see that (this can be determined by solving the equations 2j(x− j) = ±1)∫ +∞

−∞
f(x) dx =

+∞∑
j=1

j−1

∫ j+2−j

j−2−j

ϕ(2j(x− j)) dx =
+∞∑
j=1

j−12−j < +∞

but however
∑+∞

i=1 ai = +∞.

5.3.2. Limit comparison test. Let {ai}+∞
i=1 and {bi}+∞

i=1 are non-negative sequences. If
there exists positive constants C and N such that

(5.3.1) ai ≤ Cbi for all i ≥ N,

then we immediately see that (which sometimes referred as comparison test):

+∞∑
i=1

bi < +∞ implies
+∞∑
i=1

ai < +∞.

However, it is di�cult to check (5.3.1) in many practical case. Instead, the following theorem
is helpful:

Theorem 5.3.4 (Limit comparison test). Assume that {ai}+∞
i=1 and {bi}+∞

i=1 are positive
sequences.
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(a) If there exists c ∈ R \ {0} such that limi→+∞
ai
bi
= c, then

+∞∑
i=1

ai < +∞ if and only if
+∞∑
i=1

bi < +∞.

(b) If limi→+∞
ai
bi
= 0, then

+∞∑
i=1

bi < +∞ implies
+∞∑
i=1

ai < +∞.

Roughly speaking, the condition in Theorem 5.3.4(a) means that ai looks very similar to bi
up to a multiplicative constant, and the theorem con�rms our intuition that the convergence
behavior of the series

∑+∞
i=1 ai < +∞ and

∑+∞
i=1 bi < +∞ are the same. The condition in

Theorem 5.3.4(b) means that the the convergence ai to 0 is signi�cantly faster than bi, and
the theorem con�rms our intuition as well.

Example 5.3.5. We now consider the sequence {ai}+∞
i=1 given by

ai =
ei − 10

eii2 + 1
for all i ∈ N.

We see that ai > 0 for all i = 3, 4, 5, · · · , and we consider the sequence {ai}+∞
i=3 . By observing

that

ai =
1− 10e−i

i2 + e−i
for all i ∈ N,

this suggests us to consider the positive sequence {bi}+∞
i=3 given by

bi =
1

i2
for all i ∈ N,

Now since

lim
i→+∞

ai
bi

= lim
i→+∞

1− 10e−i

1 + i−2e−i
= 1 and

+∞∑
i=3

bi < +∞,

the limit comparison test guarantees that
∑+∞

i=3 ai < +∞, and thus we conclude that

+∞∑
i=1

ai converges.

Intuitively, we can interpret the sequence {bi}+∞
i=3 be the principal part of {ai}+∞

i=3 .

5.4. Root test

In many cases, especially for sequences that change sign for in�nitely many times, the
monotone convergence theorem (Lemma 5.1.5), the integral test (Section 5.3.1) and limit
comparison test (Section 5.3.2) are not applicable. At this point, we only introduced al-
ternating series test for changing-sign sequence, which is still quite restrictive in practical
applications. There are some other tests for general sequences as well, for example, the
Dirichlet test [Apo74, Theorem 8.28] and the Abel test [Apo74, Theorem 8.29]. We are
not going to introduce them during this course. Instead, we will introduce a criteria which
is quite fundamental, especially for those interested in complex analysis, see e.g. my lecture
note [Kow23]. In order to motivate the criteria, lets begin with the following example.
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Example 5.4.1 (Geometric sequence). Let r ∈ R, we now consider the sequence {ai}+∞
i=0

given by ai = ari, which is the well-known geometric sequence with ratio r. If r = 1, then
ai = a for all i ∈ N, in which obviously that

∑+∞
i=1 ai = +∞. If r = −1, then

∑+∞
i=1 ai diverges

as demonstrated as in Example 5.2.7. We now consider the case when −1 < r < 1. In this
case, for each N ∈ N, one sees that

(1− |r|)
N∑
i=0

|ai| = |a|
N∑
i=0

(|r|i − |r|i+1) = |a|(1− |r|N+1).

Since |r| < 1, then one has
N∑
i=0

|ai| =
|a|(1− |r|N+1)

1− |r|
,

which gives

lim
N→+∞

N∑
i=0

|ai| =
|a|

1− |r|
< +∞,

in other words,
∑+∞

i=0 ai absolutely when −1 < r < 1. Similar arguments show that

(1− r)
N∑
i=0

ai = a
N∑
i=0

(ri − ri+1) = a(1− rN+1),

and thus

(5.4.1)
N∑
i=0

ai =
a(1− rN+1)

1− r
,

thus we know that the absolutely convergent series
∑+∞

i=0 ai takes the value

+∞∑
i=0

ai =
a

1− r
.

We now consider the case when r < −1 or r > 1. In this case, from (5.4.1) it is not di�cult
to see that

lim sup
N→+∞

N∑
i=0

ai = +∞ ≠ −∞ = lim inf
N→+∞

N∑
i=0

ai,

which demonstrates that
∑+∞

i=0 ai diverges.

In the geometric sequence (Example 5.4.1), one sees that the convergence only depends
on the absolute value of the ratio. We observe that

lim
i→+∞

|ai|1/i = lim
i→+∞

|a|1/i|r| = |r|,

which suggests the absolute value of the �ratio� of a general sequence {ai}+∞
i=1 should be given

by limi→+∞ |ai|1/i. In fact, this idea works even the when the limit limi→+∞ |ai|1/i does not
exist:

Theorem 5.4.2 (Root test, a special case of [Apo74, Theorem 8.26]). Given a sequence
{ai}+∞

i=1 in R, and let

(5.4.2) ρ := lim sup
i→+∞

|ai|1/i.



5.4. ROOT TEST 85

(a) If ρ < 1, then
∑+∞

i=1 |ai| < +∞.

(b) If ρ > 1, then either
∑+∞

i=1 ai = ±∞ or
∑+∞

i=1 ai diverges.

Remark 5.4.3. The case when ρ = 1 is inconclusive, which we will give examples in
Section 5.5 later.

If we consider the geometric sequence in Example 5.4.1, one also see that

|ai+1|
|ai|

=
|ari+1|
|airi|

= |r| for all i ∈ N,

which suggests another characterization of the �ratio� of a general sequence {ai}+∞
i=1 should

be given by limi→+∞
|ai+1|
|ai| . In fact, one has the following fact:

Lemma 5.4.4 ([Apo74, Exercise 8.4]). Given a sequence {ai}+∞
i=1 in R such that ai ̸= 0

for all i ∈ N, one has

lim inf
i→+∞

|ai+1|
|ai|

≤ lim inf
i→+∞

|ai|1/i ≤ lim sup
i→+∞

|ai|1/i ≤ lim sup
i→+∞

|ai+1|
|ai|

.

We now exhibit the following corollary, which gives a widely-used way to check the su�-
cient condition in the root test (Theorem 5.4.2).

Corollary 5.4.5. Given a sequence {ai}+∞
i=1 in R such that ai ̸= 0 for all i ∈ N. If

(5.4.3) lim
i→+∞

|ai+1|
|ai|

exists in [0,+∞],

then limi→+∞ |ai|1/i exists and the generalized radius ρ in (5.4.2) satis�es

ρ = lim
i→+∞

|ai|1/i = lim
i→+∞

|ai+1|
|ai|

.

We sometimes refer the �ratio test� if we check the criteria (5.4.3). Here we give an
example to demonstrate that the root test is stronger than ratio test.

Example 5.4.6. De�ne a sequence {ai}+∞
i=1 by

ai =

{
2−(i+1) if i is odd,

2−i if i is even.

One sees that

|ai|1/i =

{
2−

i+1
i if i is odd,

2−1 if i is even,

and thus

lim
i→+∞

|ai|1/i =
1

2
< 1,

and thus by root test (Theorem 5.4.2) one conclude that
∑+∞

i=1 |ai| < +∞. Since for each
odd i we have ai = ai+1 = 2−(i+1) for all odd i, and for each even i we have ai = 2−i and
ai+1 = 2−(i+2), thus we have

lim inf
i→+∞

|ai+1|
|ai|

=
1

4
< 1 = lim sup

i→+∞

|ai+1|
|ai|

,

which shows that (5.4.3) does not hold, in other words, the ratio test fails.
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5.5. Power series: approximating functions by polynomials

We recall that a polynomial is a function f : R → R for which takes the form f(x) =∑N
i=0 cix

i for some N ∈ N. If cN ̸= 0, then we say that the polynomial has degree N . For
each �xed x ∈ R, one sees that {cixi}+∞

i=0 is actually a sequence in R, therefore it is possible
to discuss the �polynomial with degree +∞� more precisely, the power series. This idea can
be done by using root test (Theorem 5.4.2).

Theorem 5.5.1 (A special case of [Kow23, Theorem 2.2.2], see also [Rud87]). Given a
sequence {ci}+∞

i=0 in R. We de�ne the number

ρ := lim sup
i→+∞

|ci|1/i.

(a) If ρ = 0, then
∑+∞

i=0 |ci||x|i < +∞ for each x ∈ R.
(b) If ρ = +∞, then

∑+∞
i=1 cix

i = ±∞ or
∑+∞

i=1 cix
i diverges for each x ∈ R \ {0}.

(c) If 0 < ρ < +∞, then
∑+∞

i=0 |ci||x|i < +∞ for each x ∈ R with |x| < ρ−1 and∑+∞
i=0 cix

i = ±∞ or
∑+∞

i=0 cix
i diverges for each x ∈ R with |x| > ρ−1.

Definition 5.5.2. If 0 < ρ < +∞, we de�ne R := ρ−1; If ρ = 0, we de�ne R := +∞; If
ρ = +∞, we de�ne R := 0. In many cases, we simply abuse the notation by simply writing

R := ρ−1 for ρ ∈ [0,+∞],

and the number R is called the radius of convergence. If R = +∞, we interpret BR = R.

We also have the following properties similar to polynomials.

Theorem 5.5.3 (A special case of [Kow23, Theorem 2.2.9]). Suppose that the power
series

∑+∞
i=0 cix

i has the radius of convergence R ∈ (0,+∞], then it de�nes a di�erentiable

function on BR → R. In addition, the radius of convergence of the power series
∑+∞

i=1 ciix
i−1

is ≥ R and the following identity holds:

d

dx

(
+∞∑
i=0

cix
i

)
=

+∞∑
i=1

ciix
i−1 for all x ∈ BR.

Corollary 5.5.4. Any power series is in�nitely di�erentiable within its radius of con-
vergence.

If we look into Theorem 5.5.1(c), we see that the statement do not mention any result on
|x| = ρ−1. We now explain the situation here by using the following example.

Example 5.5.5. We now give examples to demonstrate in the case Theorem 5.5.1(c) that
it is inconclusive at |x| = R. This also serves as examples mentioned in Remark 5.4.3

(1) By using Example 5.1.4, we see that the power series
∑+∞

i=1 ix
i has the radius of

convergence

R =

(
lim

i→+∞
i1/i
)−1

= 1.

We see that
∑+∞

i=1 ix
i = +∞ when x = 1 and

∑+∞
i=1 ix

i diverges when x = −1
(similar to Example 5.2.7).
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(2) We also see that the power series
∑+∞

i=1 i
−2xi has the radius of convergence

R =

(
lim

i→+∞
i1/i
)2

= 1.

We see that
∑+∞

i=1 i
−2xi converges absolutely at x = ±1.

(3) Similarly, we also see that the power series
∑+∞

i=1 i
−1xi has the radius of convergence

R = lim
i→+∞

i1/i = 1.

From Example 5.2.9 we see that
∑+∞

i=1 i
−1xi = +∞ at x = 1, but from Example 5.2.3

we see that
∑+∞

i=1 i
−1xi converges at x = −1.

We see that all above three three cases are not distinguishable by the criteria of root test
(Theorem 5.4.2) as well as Theorem 5.5.1, but they have di�erent convergence behavior at
|x| = 1. In other words, the results in the root test (Theorem 5.4.2) as well as Theorem 5.5.1
are already somehow optimal.

However, if one can prove the convergence at x = R or x = −R, then we have the
following remarkable result.

Theorem 5.5.6 (Abel's limit theorem, [Apo74, Theorem 9.31]). Suppose that the power
series f(x) =

∑+∞
i=0 cix

i has the radius of convergence R ∈ (0,+∞]. If
∑+∞

i=0 ciR
i converges,

then

lim
x→R−

f(x) =
+∞∑
i=0

ciR
i.

Similarly, if
∑+∞

i=0 ci(−R)i converges, then

lim
x→−R+

f(x) =
+∞∑
i=0

ci(−R)i.

Let f : (x0 − ϵ, x0 + ϵ) → R be an in�nitely di�erentiable function, with derivatives
f (n) : (x0 − ϵ, x0 + ϵ) → R of order n. We now want to approximate f using the power series∑+∞

i=0 ci(x − x0)
i. If we consider the function g : (−ϵ, ϵ) → R de�ned by g(x) := f(x + x0),

then one sees that g(n)(x) = f (n)(x + x0). If we can approximate g using a power series∑+∞
i=0 cix

i, then
∑+∞

i=0 ci(x− x0)
i is an approximation of f .

Before we make things rigorous, let's do some formal computation �rst. If we formally
write

(5.5.1) f(x) =
+∞∑
i=0

ci(x− x0)
i.

In view of Corollary 5.5.4, one immediately know that one necessary condition to do so is
the function f must in�nitely di�erentiable. We now take x = x0 in (5.5.1) to see that
c0 = f(x0). In view of Theorem 5.5.3, we formally write

f ′(x) =
+∞∑
i=1

ici(x− x0)
i−1.
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Now taking x = x0 we see that c1 = f ′(x0). In view of Theorem 5.5.3, we formally write

f ′′(x) =
+∞∑
i=2

i(i− 1)ci(x− x0)
i−2.

Now taking x = x0 we see that c2 = f ′′(x0). Repeating the above process, one can obtain

ci =
f (i)(x0)

i!
for all i = 0, 1, 2, · · · .

In other words, if we formally approximate f like (5.5.1), it is necesarily to have the formula

(5.5.2) f(x) =
+∞∑
i=0

f (i)(x0)

i!
(x− x0)

i.

However, the above ideas fail in general, which can be demonstrated by the following example.

Example 5.5.7. We de�ne the continuous function f : R → R by

f(x) =

{
e−|x|−2

, x > 0,

0 , x ≤ 0.

In fact, by using the mathematical induction, one can verify that f : R → R is in�nitely
di�erentiable with ith-order derivatives

f (i)(x) =

{
Pi(x)e

−|x|−2
, x > 0,

0 , x ≤ 0,

for some polynomial Pi(x). This implies that f (n)(0) = 0 for all n = 0, 1, 2, · · · , so that the

power series
∑+∞

i=0
f (i)(0)

i!
xi has radius of convergent R = +∞ with

+∞∑
i=0

f (i)(0)

i!
xi = 0 for all x ∈ R.

This shows that the above ideas fail in general even within the radius of convergence.

The above idea is still holds true for some function. Before we state some condition, we
need the following de�nition.

Definition 5.5.8. Let f : R → R be an in�nitely di�erentiable function. We say that f

is real analytic near x0 ∈ R if there exists ϵ > 0 such that
∑+∞

i=0
f (i)(x0)

i!
(x− x0)

i converges for
all x ∈ Bϵ(x0) and the representation (5.5.2) holds for all x ∈ Bϵ(x0). If f is real analytic at
all points in R, then we say that f : R → R is real analytic or entire.

We now described the following criteria for which the above ideas work properly:

Theorem 5.5.9. Let f : R → R be an in�nitely di�erentiable function. The the following
are equivalent:

(a) f : R → R is real analytic;
(b) For each M > 0, there exists a constant CM > 0, which depends on M , such that

(5.5.3) sup
x∈[−M,M ]

|f (i)(x)| ≤ Ci+1
M i! for all i = 0, 1, 2, · · · .

Here the constant CM is independent of i.
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In this case, for each x0 ∈ R, let R = R(x0) > 0 be the radius of convergence of the

power series
∑+∞

i=0
f (i)(x0)

i!
(x− x0)

i, then the power series representation (5.5.2) holds for all
x ∈ BR(x0).

Roughly speaking, this means that the above ideas only works when the derivatives f (n)

does not grow too fast. Combining Theorem 5.5.9 with Theorem 5.5.3, we immediately reach
the following corollary:

Corollary 5.5.10. If f : R → R is an analytic function, then its derivative f ′ : R → R
is also analytic.

There are quite a lot examples of analytic function, for example, Bessel functions, and
their spherical versions. Here we will only exhibit some basic examples.

Example 5.5.11. Let exp : R → R be the exponential function. For each M > 0, it is
easy to see that

sup
x∈[−M,M ]

| exp(i)(x)| ≤ sup
x∈[−M,M ]

|ex| ≤ eM ,

which veri�es (5.5.3) with CM = eM . For each x0 ∈ R, we see that the radius of convergence of∑+∞
i=0

ex0 (x−x0)i

i!
is +∞ (the details left as exercises), and therefore Theorem 5.5.2 guarantees

that

ex =
+∞∑
i=0

ex0(x− x0)
i

i!
for all x ∈ R.

If write y = x− x0, this is exactly equivalent to the well-known formula

(5.5.4) ey =
+∞∑
i=0

yi

i!
for all y ∈ R.

If we take y = 1, the transcendental number e ≈ 2.718 · · · also can be written as the

e =
+∞∑
i=0

1

i!
.

Example 5.5.12 (Poisson distribution). For each �xed parameter λ > 0, we de�ne p :
Z≥0 → R>0 by

p(i) :=
λie−λ

i!
.

By using (5.5.4), one sees that

+∞∑
i=0

p(i) = e−λ

+∞∑
i=0

λi

i!
= 1,

which shows that p : Z≥0 → R>0 is a density of a probability distribution. In fact, it is the
density of the Poisson distribution is a discrete probability distribution that expresses the
probability of a given number of events occurring in a �xed interval of time if these events
occur with a known constant mean rate and independently of the time since the last event.
We can compute its mean:

Ep :=
+∞∑
i=0

ip(i) =
+∞∑
i=1

λie−λ

(i− 1)!
= λ

+∞∑
i=1

λi−1e−λ

(i− 1)!
= λ.
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We can compute its variance as well:

var (p) :=
+∞∑
i=0

(i− Ep)2p(i)

=
+∞∑
i=0

i2p(i)− 2Ep
+∞∑
i=0

ip(i) + (Ep)2
+∞∑
i=0

p(i)

=
+∞∑
i=0

i2p(i)− λ2 = −λ2 +
+∞∑
i=1

i
λie−λ

(i− 1)!

= −λ2 + λ

=Ep=λ︷ ︸︸ ︷
+∞∑
i=1

(i− 1)
λi−1e−λ

(i− 1)!
+λ

=1︷ ︸︸ ︷
+∞∑
i=1

λi−1e−λ

(i− 1)!

= λ.

It is interesting to compare this with Example 4.4.14.

Exercise 5.5.13. Prove that sin : R → R and cos : R → R are real analytic functions,
and prove that

sinx =
+∞∑
k=0

(−1)kx1+2k

(1 + 2k)!
for all x ∈ R.

By using Corollary 5.5.10, we immediately see that cos : R → R is real analytic. Use
Theorem 5.5.3 to compute the power series of cosx centered at x0 = 0.

Example 5.5.14. We de�ne f : (−1, 1) → R by f(x) := ln(1− x). One sees that

f (i)(x) = (−1)i+1(i− 1)!(x− 1)−i for all i = 1, 2, · · · ,
and for each 0 < M < 1 one has

sup
−M≤x≤M

|f (i)(x)| = (1−M)−i(i− 1)! for all i = 1, 2, · · ·

and a generalized version of Theorem 5.5.9 shows that f : (−1, 1) → R is real analytic, and
one has the power series representation

ln(1− x) =
+∞∑
i=0

f (i)(0)

i!
xi = −

+∞∑
i=1

(i− 1)!

i!
xi = −

+∞∑
i=1

xi

i
for all x ∈ (−1, 1),

since f(0) = 0 and f (i)(0) = (−1)i+1(i−1)!(−1)−i = −(i−1)! for all i = 1, 2, 3, · · · . Since the
power series

∑+∞
i=1

xi

i
converges at x = −1 (Example 5.2.3), then the Abel's limit theorem

(Theorem 5.5.6) guarantees that

ln 2 = lim
x→−1+

ln(1− x) = −
+∞∑
i=1

(−1)i

i
,

which concludes that
+∞∑
i=1

(−1)i

i
= − ln 2.

We �nally end this section by the following example.
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Example 5.5.15 (Gamma function). In fact, the gamma function Γ : (0,+∞) → (0,+∞)
given in Example 4.4.11is a real analytic function. It even can be extended on complex plane,
see e.g. my other lecture note [Kow23, Chapter 6] for more details.

5.6. Some fundamental inequalities

We now introduce some fundamental inequalities for series which are analogue to Sec-
tion 4.5.

Definition 5.6.1. For each sequence {ai}+∞
i=1 , we write

∥{ai}+∞
i=1 ∥ℓp :=

(
+∞∑
i=1

|ai|p
)1/p

for each 0 < p < +∞,

∥{ai}+∞
i=1 ∥ℓ∞ := sup

i∈N
|ai|.

We say that {ai}+∞
i=1 ∈ ℓp if ∥{ai}+∞

i=1 ∥ℓp < +∞.

We now show the following result, which is analogue to the Hölder's inequality for integral
(Theorem 4.5.3).

Theorem 5.6.2 (Hölder's inequality for series). For each p ≥ 1 and q ≥ 1 with 1
p
+ 1

q
= 1,

one has

∥{aibi}+∞
i=1 ∥ℓ1 ≤ ∥{ai}+∞

i=1 ∥ℓp∥{bi}+∞
i=1 ∥ℓq

for all {ai}+∞
i=1 ∈ ℓp and {bi}+∞

i=1 ∈ ℓq.

Proof. The case when (p, q) = (1,+∞) or (p, q) = (+∞, 1) are easy, we left the details
for readers as an exercise. We now consider the case when p > 1 (if and only if q > 1). The
result is trivial when either ∥{ai}+∞

i=1 ∥ℓp = 0 or ∥{bi}+∞
i=1 ∥ℓq = 0, we again left the details for

readers as an exercise.
If ∥{ai}+∞

i=1 ∥ℓp ̸= 0 and ∥{bi}+∞
i=1 ∥ℓq ̸= 0, then for each i we can choose

s1 =
|ai|

∥{ai}+∞
i=1 ∥ℓp

and s2 =
|bi|

∥{bi}+∞
i=1 ∥ℓq

in the Young's inequality (Lemma 4.5.2) to reach

|aibi|
∥{ai}+∞

i=1 ∥ℓp∥{bi}+∞
i=1 ∥ℓq

≤ 1

p

|ai|p

∥{ai}+∞
i=1 ∥

p
ℓp

+
1

q

|bi|q

∥{bi}+∞
i=1 ∥ℓq

.

For each N ∈ N, we sum the above inequality from i = 1 to i = N to reach∑N
i=1 |aibi|

∥{ai}+∞
i=1 ∥ℓp∥{bi}+∞

i=1 ∥ℓq
≤ 1

p

∑N
i=1 |ai|p

∥{ai}+∞
i=1 ∥

p
ℓp

+
1

q

∑N
i=1 |bi|q

∥{bi}+∞
i=1 ∥ℓq

≤ 1

p
+

1

q
= 1,

because
N∑
i=1

|ai|p ≤ ∥{ai}+∞
i=1 ∥

p
ℓp and

N∑
i=1

|bi|q ≤ ∥{bi}+∞
i=1 ∥ℓq .

Thus, we have
N∑
i=1

|aibi| ≤ ∥{ai}+∞
i=1 ∥ℓp∥{bi}+∞

i=1 ∥ℓq for all N ∈ N.
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Since {
∑N

i=1 |aibi|}
+∞
N=1 is a nondecreasing sequence in R, by using the monotone convergence

theorem (Lemma 5.1.5) one sees that the limit limN→+∞
∑N

i=1 |aibi| exists, and hence we
conclude our result by taking the limit N → +∞ in the above inequality. □

Remark 5.6.3. Similar to Remark 4.5.4, when p > 1 (if and only if q > 1), we can check

the equality holds if one chooses bn = |an|
p
q .

We also can obtain the following result, which is analogue to the Minkowski's inequaltiy
for integral (Theorem 4.5.5).

Theorem 5.6.4 (Minkowski's inequality for series). If 1 ≤ p ≤ +∞, then one has

∥{ai + bi}+∞
i=1 ∥ℓp ≤ ∥{ai}+∞

i=1 ∥ℓp + ∥{bi}+∞
i=1 ∥ℓp

for all {ai}+∞
i=1 ∈ ℓp and {bi}+∞

i=1 ∈ ℓp.

Proof. Then case p = 1 and the case p = +∞ are easy, we left the details for readers
for an exercise. We now consider the case when 1 < p < +∞. We write

|ai + bi|p = |ai + bi|p−1|ai + bi| ≤ |ai + bi|p−1|ai|+ |ai + bi|p−1|bi|.

Let q > 1 with 1
p
+ 1

q
= 1. By using the Hölder's inequality (Theorem 5.6.2), for each N ∈ N

we see that

N∑
i=1

|ai + bi|p−1|ai| ≤

(
N∑
i=1

|ai + bi|q(p−1)

)1/q

∥{ai}+∞
i=1 ∥ℓp

=

(
N∑
i=1

|ai + bi|p
)1/q

∥{ai}+∞
i=1 ∥ℓp ,

and similarly,

N∑
i=1

|ai + bi|p−1|ai| ≤

(
N∑
i=1

|ai + bi|p
) 1

q

∥{bi}+∞
i=1 ∥ℓp .

Combining all the equations above, we now see that

N∑
i=1

|ai + bi|p ≤

(
N∑
i=1

|ai + bi|p
) 1

q (
∥{ai}+∞

i=1 ∥ℓp + ∥{bi}+∞
i=1 ∥ℓp

)
,

which gives(
N∑
i=1

|ai + bi|p
) 1

p

=

(
N∑
i=1

|ai + bi|p
)1− 1

q

≤ ∥{ai}+∞
i=1 ∥ℓp + ∥{bi}+∞

i=1 ∥ℓp .

Since

{(∑N
i=1 |ai + bi|p

) 1
p

}+∞

N=1

is a nondecreasing sequence in R, by using the monotone con-

vergence theorem (Lemma 5.1.5) one sees that the limit limN→+∞

(∑N
i=1 |ai + bi|p

) 1
p
exists,

and hence we conclude our result by taking the limit N → +∞ in the above inequality. □

The case when 0 < p < 1 also can be discussed similar as in Theorem 4.5.6.
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Theorem 5.6.5 (Minkowski's inequality for series). If 0 < p < 1, then

∥{ai + bi}+∞
i=1 ∥

p
ℓp ≤ ∥{ai}+∞

i=1 ∥
p
ℓp + ∥{bi}+∞

i=1 ∥
p
ℓp

for all {ai}+∞
i=1 ∈ ℓp and {bi}+∞

i=1 ∈ ℓp.

Proof. By choosing a = |ai| and b = |bi| in (4.5.2), we reach

|ai + bi|p ≤ (|ai|+ |bi|)p ≤ |ai|p + |bi|p for all i ∈ N.

Since
{∑N

i=1 |ai + bi|p
}+∞

N=1
is a nondecreasing sequence in R, by using the monotone conver-

gence theorem (Lemma 5.1.5) one sees that the limit limN→+∞
∑N

i=1 |ai + bi|p exists. Thus

acting the operator
∑+∞

i=1 on the above inequality gives our desired theorem. □

5.7. A quick introduction of Fourier series

A Fourier series is an expansion of a periodic function into a sum of trigonometric func-
tions. The Fourier series is an example of a trigonometric series, but not all trigonometric
series are Fourier series. The Fourier series has many such applications in electrical engi-
neering, vibration analysis, acoustics, optics, signal processing, image processing etc. Here
we will only give a very rough introduction, one can see e.g. my lecture note [Kow22] for
more details, via a modern approach, which requires Lebesgue integral (Chapter 7). We �rst
exhibit some results in terms of Riemann integral.

We now de�ne the normalized L2-inner product on (−π, π) by

(5.7.1) (f, g)L2(−π,π) :=
1

π

∫ π

−π

f(x)g(x) dx,

and one we de�ne the normalized L2-norm on (−π, π) by

(5.7.2) ∥f∥L2(−π,π) := (f, f)
1
2

L2(−π,π) :=

(
1

π

∫ π

−π

|f(x)|2 dx
) 1

2

.

In view of the Minkowski's inequality for integral (Theorem 4.5.5), one can interpret
∥f∥L2(−π,π) be the �length� of the function f . Similar to the Euclidean space, we also can
interpret

cos−1

(
f

∥f∥L2(−π,π)

,
g

∥g∥L2(−π,π)

)
L2(−π,π)

be the �angle� between functions f and g. We say that f is perpendicular to g if
(f, g)L2(−π,π) = 0, or we simply denoted by f ⊥ g.
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By using the product-to-sum formula (Example 1.3.19), for each n ∈ N and m ∈ N, one
sees that

(sin(n·), sin(m·))L2(−π,π) =
1

π

∫ π

−π

sin(nx) sin(mx) dx

=
1

2π

∫ π

−π

(cos((n−m)x)− cos((n+m)x)) dx =
1

2π

∫ π

−π

cos((n−m)x) dx

=


1
2π

∫ π

−π
1 dx when n = m

1
2π

1
n−m

sin((n−m)x)

∣∣∣∣x=π

x=−π

when n ̸= m

=

{
1 when n = m,

0 when n ̸= m.

Similarly, for each n ∈ N ∪ {0} and m ∈ N ∪ {0}, one sees that

(cos(n·), cos(m·))L2(−π,π) =
1

π

∫ π

−π

cos(nx) cos(mx) dx

=
1

2π

∫ π

−π

(cos((n−m)x) + cos((n+m)x)) dx =
1

2π

∫ π

−π

cos((n−m)x) dx

=

{
1 when n = m

0 when n ̸= m.

For each n ∈ N ∪ {0} and m ∈ N, we also see that

(cos(n·), sin(m·))L2(−π,π) =
1

π

∫ π

−π

cos(nx) sin(mx) dx

=
1

2π

∫ π

−π

(sin((n+m)x)− sin((n−m)x)) dx = 0.

We now can summarize the above in the following lemma.

Lemma 5.7.1. The set {cos(n·)}+∞
n=0∪{sin(m·)}+∞

m=1 forms an orthonormal set with respect
to the normalized inner product (5.7.1). In other words, the elements in {cos(n·)}+∞

n=0 ∪
{sin(m·)}+∞

m=1 are perpendicular to each other, and each of them has length 1 with respect to
the norm (5.7.2).

Let's do some formula computations in order to motivate the Fourier series. Suppose that
a function f : (−π, π) → R takes the form

(5.7.3a) f(x) =
1

2
b0 +

+∞∑
n=1

bn cos(nx) +
+∞∑
m=1

am sin(nx) for all x ∈ (−π, π).
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In view of Lemma 5.7.1, one has

1

π

∫ π

−π

f(x) dx = (f, 1)L2(−π,π) =

(
1

2
b0, 1

)
L2(−π,π)

= b0,

1

π

∫ π

−π

f(x) cos(nx) dx = (f, cos(n·))L2(−π,π) = (bn cos(n·), cos(n·))L2(−π,π) = bn,

1

π

∫ π

−π

f(x) sin(mx) dx = (f, sin(m·))L2(−π,π) = (an sin(m·), sin(m·))L2(−π,π) = an.

The above three equations can be summarized as

bn =
1

π

∫ π

−π

f(x) cos(nx) dx for all n ∈ N ∪ {0},(5.7.3b)

an =
1

π

∫ π

−π

f(x) sin(mx) dx for all m ∈ N.(5.7.3c)

Definition 5.7.2. The series (5.7.3a) with coe�cients given in (5.7.3b) and (5.7.3c) is
called the Fourier series of f on (−π, π).

In order to study its convergence, we again consider the partial sum

SN(x) :=
1

2
b0 +

N∑
n=1

bn cos(nx) +
N∑

m=1

am sin(nx) for all x ∈ (−π, π).

By using Lemma 5.7.1, one sees that

(f, SN)L2(−π,π) = (SN , SN)L2(−π,π) = ∥SN∥2L2(−π,π).

Now the Hölder's inequality for integral (Theorem 4.5.3) implies that

∥SN∥2L2(−π,π) ≤ ∥f∥L2(−π,π)∥SN∥L2(−π,π) ≤
1

2
∥f∥2L2(−π,π) +

1

2
∥SN∥2L2(−π,π),

and hence ∥SN∥L2(−π,π) ≤ ∥f∥L2(−π,π) for all N ∈ N. By using Lemma 5.7.1, one also sees
that

∥SN∥2L2(−π,π) =
b20
2
+

N∑
n=1

|bn|2 +
N∑

n=1

|an|2,

and we now reach

b20
2
+

N∑
n=1

|bn|2 +
N∑

n=1

|an|2 ≤ ∥f∥2L2(−π,π) for all N ∈ N.

Since both {
∑N

n=1 |bn|2}
+∞
N=1 and {

∑N
n=1 |an|2}

+∞
N=1 are nondecreasing sequences, then by

monotone convergence theorem (Theorem 5.1.5), the limits limN→+∞
∑N

n=1 |bn|2 and

limN→+∞
∑N

n=1 |an|2 both exists. Now taking the limit N → +∞, we reach the following
lemma.

Lemma 5.7.3 (Bessel's inequality). Suppose that f : [−π, π] → R is continuous except for
�nitely many points, then

b20
2
+ ∥{bn}+∞

n=1∥2ℓ2 + ∥{an}+∞
n=1∥2ℓ2 ≤ ∥f∥2L2(−π,π),

where an and bn are Fourier coe�cients given in (5.7.3b) and (5.7.3c).
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We now state a su�cient condition to guarantee the pointwise convergence of Fourier
series, see e.g. [Kow22, Theorem 1.4.1] or [Str08, Theorem 5.4.4∞].

Theorem 5.7.4. If f : [−π, π] → R is continuously di�erentiable except for �nitely many
points, then one has

1

2

(
lim

y→x−
f(y) + lim

y→x+
f(y)

)
=

1

2
b0 +

+∞∑
n=1

bn cos(nx) +
+∞∑
m=1

am sin(nx) for all x ∈ (−π, π)

with Fourier coe�cients given in (5.7.3b) and (5.7.3c).

Remark 5.7.5. If f is continuous at x, then

f(x) =
1

2

(
lim

y→x−
f(y) + lim

y→x+
f(y)

)
.

Despite the mathematical theorems looks beautiful, but actually the convergence is not
good. This is quite make sense, since we are attempting to use functions which are oscillating
to �t arbitrary (nonoscillating) functions. In mathematical terms, despite the partial sum SN

converges to f pointwisely to the piecewise C1 function f , the partial sum SN produces large
peaks around the jump of f , which overshoot and undershoot the function's actual values.
This approximation error approaches a limit of about 9%. This phenomenon is called the
Gibbs-Wilbraham phenomenon, see e.g. [Kow22, Theorem 1.4.2] or [HH79, Theorem F]
for a precise statement. This explains why the signal is noisy if we do not do any further
treatment.

Exercise 5.7.6. Compute the Fourier series of f(x) = 1 on (−π, π).

Exercise 5.7.7. Compute the Fourier series of f(x) = x on (−π, π).



CHAPTER 6

Multivariable calculus

6.1. Euclidean space Rn

Definition 6.1.1. Let n ≥ 1 be an integer. We de�ne the n-dimensional Euclidean space
by

Rn := {(x1, · · · , xn) : xi ∈ R for all i = 1, · · · , n} .
The elements in Rn usually denoted by a single bold-face letter, for example x =
(x1, · · · , xn) ∈ Rn as well as y = (y1, · · · , yn) ∈ Rn.

We usually identify the 1-dimensional Euclidean space R1 with R. The 2-dimensional Eu-
clidean space R2 can be understood as a �plane�. We now introduce basic algebraic operators
on n-dimensional points:

Definition 6.1.2. Let x = (x1, · · · , xn) ∈ Rn as well as y = (y1, · · · , yn) ∈ Rn.

(a) We denote x = y when xi = yi for all i = 1, · · · , n.
(b) For each a, b ∈ R, the linear combination ax + by is de�ned as the vector (ax1 +

by1, · · · , axn + byn). We simply denote (−1)x = −x.
(c) We denote 0 = (0, · · · , 0) be the origin or zero vector.
(d) We denote the Euclidean norm

|x| :=

(
n∑

i=1

|xi|2
)1/2

.

Remark 6.1.3. When n = 1, we see that the Euclidean norm is exactly same as the
absolute value function. If we consider the sequence {ai}+∞

i=1 with

ai = xi for all i = 1, · · · , n, ai = xi for all i > n,

then one sees that the Euclidean norm can be expressed as

|x| = ∥{ai}+∞
i=1 ∥ℓ2 .

Therefore the space ℓ2 de�ned in De�nition 5.6.1 can be regarded as �in�nite-dimensional
Euclidean space�.

Definition 6.1.4. Let x = (x1, · · · , xn) ∈ Rn as well as y = (y1, · · · , yn) ∈ Rn.

(a) The inner product or dot product x · y is de�ned as a scalar
∑n

i=1 xiyi. The angle θ
between x and y is de�ned by

(6.1.1) θ := cos−1

(
x

|x|
· y

|y|

)
,

where cos−1 : [−1, 1] → [0, π] is the usual inverse cosine function. Note that x · x =
|x|2.

97
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Figure 6.1.1. Right-hand rule for cross product: Acdx, CC BY-SA 3.0, via
Wikimedia Commons

(b) The outer product or juxtaposition x⊗ y is de�ned as a n× n matrix, with entries
(x⊗ y)ij = xiyj for all i = 1, · · · , n and j = 1, · · · , n.

(c) When n = 3, the cross product x× y is de�ned by the formula

x× y := (|x||y| sin θ)n,

where θ is the angle between x and y given by (6.1.1) and nis a unit vector perpen-
dicular to the plane containing x and y, with direction as indicated in Figure 6.1.1.
In fact, if we denote i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1), the cross product
can be expressed as

x× y = (x2y3 − x3y2)i+ (x3y1 − x1y3)j + (x1y2 − x2y1)k,

or sometimes we abuse the notation by writing (see De�nition 6.5.13 below)

x× y = det

 i j k
x1 x2 x3

y1 y2 y3

 .

Remark 6.1.5. The idea behind the Fourier series (Section 5.7) comes from the Euclidean
space.

6.2. Limits and continuity

Some notions in Section 2.1 and Section 2.3 can be easily extended to higher dimensional
case. Let's us walk through the details here. For later convenience, let's us introduce the
following topological notion.

Definition 6.2.1. A subset Ω ⊂ Rnis said to be open if for each x ∈ Ω there exists ϵ > 0
such that Bϵ(x) ⊂ Ω. Here and after, the open ball BR(x) is de�ned by

BR(x) := {y ∈ Rn : |x− y| < ϵ} .

Definition 6.2.2. Let Ω be an open set in Rn with x0 ∈ Ω and we consider a function
f : Ω \ {x0} → R. We say that the limit limx→x0 f(x) = L ∈ R exists if: Given any ϵ > 0,
there exists δ = δ(ϵ) > 0 such that

0 < |x− x0| < δ implies |f(x)− L| < ϵ.
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We say that the limx→x0 f(x) = +∞ exists if: Given any M > 0, there exists δ = δ(ϵ) > 0
such that

0 < |x− x0| < δ implies f(x) ≥ M.

Similarly, we say that the limx→x0 f(x) = −∞ exists if: Given any M > 0, there exists
δ = δ(ϵ) > 0 such that

0 < |x− x0| < δ implies f(x) ≤ −M.

We also unify the above notions by saying that limx→x0 f(x) exists in [−∞,+∞].

One also has similar properties as in Lemma 2.1.4:

Lemma 6.2.3. Let Ω be an open set in Rn with x0 ∈ Ω and we consider functions g1 :
Ω \ {x0} → R and g2 : Ω \ {x0} → R. If both limits limx→x0 g1(x) and limx→x0 g2(x) exist
in R, then the following holds true:

(a) for each c1 ∈ R and c2 ∈ Rthe limit limx→x0(c1g1(x) + c2g2(x)) exists in R and
satis�es

lim
x→x0

(c1g1(x) + c2g2(x)) = c1 lim
x→x0

g1(x) + c2 lim
x→x0

g2(x) (linearity).

(b) if g1(x) ≤ g2(x) for all x ∈ Bϵ(x0) for some ϵ > 0, then

lim
x→x0

g1(x) ≤ lim
x→x0

g2(x) (monotonicity).

(c) the limit limx→x0(g1(x)g2(x)) exists in R and satis�es

lim
x→x0

(g1(x)g2(x)) =

(
lim
x→x0

g1(x)

)(
lim
x→x0

g2(x)

)
.

(d) if we additionally assume that limx→x0 g2(x) ̸= 0, then the limit limx→x0

g1(x)
g2(x)

exists

in R and satis�es

lim
x→x0

g1(x)

g2(x)
=

limx→x0 g1(x)

limx→x0 g2(x)
.

There is no natural generalization for left/right limits. However, one still have natural
generalization for limit superior and limit inferior.

Definition 6.2.4. Let Ω be an open set in Rn with x0 ∈ Ω and let f : Ω \ {x0} → R be
a function. We de�ne the limit superior/upper limit and the limit inferior/lower limit by

lim sup
x→x0

f(x) := lim
r→0+

(
sup

Br(x0)\{x0}
f

)
, lim inf

x→x0

f(x) := lim
r→0+

(
inf

Br(x0)\{x0}
f

)
.

One can check whether the limit exists or not by using the following theorem.

Theorem 6.2.5. Let Ω be an open set in Rn with x0 ∈ Ω and let f : Ω \ {x0} → R be a
function.

(a) If limx→x0 f(x) exists in [−∞,+∞], then

(6.2.1) lim sup
x→x0

f(x) = lim inf
x→x0

f(x) = lim
x→x0

f(x).

In other words, if lim supx→x0
f(x) ̸= lim infx→x0 f(x), then the limit limx→x0 f(x)

does not exist.
(b) If lim supx→x0

f(x) ̸= lim infx→x0 f(x), then the limit limx→x0 f(x) exists in
[−∞,+∞] and (6.2.1).
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Using the same arguments as in Proposition 2.3.9, one can show the following proposition.

Proposition 6.2.6. Let Ω be an open set in Rn with x0 ∈ Ω and we consider functions
g1 : Ω \ {x0} → R and g2 : Ω \ {x0} → R.

(a) The limit superior satis�es the subadditivity property:

(6.2.2) lim sup
x→x0

(g1(x) + g2(x)) ≤ lim sup
x→x0

g1(x) + lim sup
x→x0

g2(x),

(b) The limit inferior satis�es the superadditivity property:

(6.2.3) lim inf
x→x0

(g1(x) + g2(x)) ≥ lim inf
x→x0

g1(x) + lim inf
x→x0

g2(x),

(c) Both limit superior and limit inferior satisfy the monotonicity property: If there
exists ϵ > 0 such that g1(x) ≤ g2(x) for all x ∈ Bϵ(x0) \ {x0}, then

lim sup
x→x0

g1(x) ≤ lim sup
x→x0

g2(x), lim inf
x→x0

g1(x) ≤ lim inf
x→x0

g2(x).

Remark 6.2.7. Similar to (2.3.4), the inequality

(6.2.4) lim sup
x→x0

(g1(x)g2(x)) ≤
(
lim sup
x→x0

g1(x)

)(
lim sup
x→x0

g2(x)

)
.

only holds true for non-negative functions g1 and g2.

The discussions in Remark 2.3.11 is also valid in higher dimensional setting. Rather than
repeating all the details here, we only exhibit the results and the details are left to readers
for an exercise.

Remark 6.2.8. As we mentioned above, we only have subadditivity/superadditivity prop-
erty rather than the additivity. We now show that the linearity holds under extra assump-
tions. Suppose that all assumptions in Proposition 6.2.6 hold.

(a) If limx→x0 g2(x) exists in R, then

(6.2.5)

lim sup
x→x0

(g1(x) + g2(x)) = lim sup
x→x0

g1(x) + lim
x→x0

g2(x),

lim inf
x→x0

(g1(x) + g2(x)) = lim inf
x→x0

g1(x) + lim
x→x0

g2(x).

(b) If there exists ϵ > 0 such that |g1(x)| ≤ M for all x ∈ Bϵ(x0) and limx→x0 g2(x)
exists in R≥0, then

(6.2.6)


lim sup
x→x0

(g1(x)g2(x)) =

(
lim sup
x→x0

g1(x)

)(
lim
x→x0

g2(x)

)
,

lim inf
x→x0

(g1(x)g2(x)) =

(
lim inf
x→x0

g1(x)

)(
lim
x→x0

g2(x)

)
.

In the particular case when g2(x) = c ≥ 0 for all x ∈ Br(x0), we see that (6.2.6)
reads lim sup

x→x0

(cg1(x)) = c lim sup
x→x0

g1(x),

lim inf
x→x0

(cg1(x)) = c lim inf
x→x0

g1(x).
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One should be aware that, for constant b ≤ 0, one sees that b = −|b| and see that

lim sup
x→x0

(bg1(x)) = lim sup
x→x0

(−|b|g1(x)) = − lim inf
x→x0

(|b|g1(x))

= −|b| lim inf
x→x0

g1(x) = b lim inf
x→x0

g1(x),

and

lim inf
x→x0

(bg1(x)) = lim inf
x→x0

(−|b|g1(x)) = − lim sup
x→x0

(|b|g1(x))

= −|b| lim sup
x→x0

g1(x) = b lim sup
x→x0

g1(x).

This means that in general, the linearity does not hold true for general coe�cients, which
only holds true for positive coe�cients.

Example 6.2.9. One sees that the above de�nition of limit (De�nition 6.2.2) is equivalent
to limx→x0 |f(x)− L| = 0, similar discussions also hold for limit superior and limit inferior.
It is convenient to understood as the right limit:

lim
|x−x0|→0+

|f(x)− L| = 0.

For example, we consider the function f : R2 \ {0} → R by

f(x1, x2) =
x2
1x2

x2
1 + x2

2

for all x = (x1, x2) ̸= (0, 0).

Since |x1| ≤ |x| and |x2| ≤ |x| for all x = (x1, x2) ∈ R2, one sees that

|f(x)| = |x1|2|x2|
|x|2

≤ |x|3

|x|2
= |x| for all x = (x1, x2) ̸= (0, 0).

Thus we have
lim sup
|x|→0

|f(x)| ≤ lim sup
|x|→0

|x| = lim
|x|→0

|x| = 0,

which concludes that limx→0 f(x) = 0.

Example 6.2.10. We now consider the function f : R2 \ {0} → R by

f(x1, x2) =
x1x2

x2
1 + x2

2

for all x = (x1, x2) ̸= (0, 0).

One sees that the trick in Example 6.2.9 does not work for this case. For each α ∈ R, we see
that the limit along the straight line x1 = αx2 is

lim
x→0,x1=αx2

f(x) = lim
x2→0

f(αx2, x2) = lim
x2→0

αx2
2

α2x2
2 + x2

2

=
α

α2 + 1
.

Since (roughly speaking, limit superior/inferior is the superior/inferior of all possible way to
take the limit towards the point of interest)

lim sup
x→0

f(x) ≥ lim
x→0,x1=αx2

f(x) =
α

α2 + 1
≥ lim inf

x→0
f(x) for all α ∈ R,

then

lim sup
x→0

f(x) ≥ α

α2 + 1

∣∣∣∣
α=1

=
1

2
̸= 0 =

α

α2 + 1

∣∣∣∣
α=0

≥ lim inf
x→0

f(x),

which shows that the limit limx→0 f(x) does not exist.
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Example 6.2.11. We now consider the function f : R2 \ {0} → R by

f(x1, x2) =
x1x

2
2

x2
1 + x4

2

for all x = (x1, x2) ̸= (0, 0).

One sees that the trick in Example 6.2.9 does not work for this case as well. For each α ∈ R,
we see that the limit along the straight line x1 = αx2 is

lim
x→0,x1=αx2

f(x) = lim
x2→0

f(αx2, x2) = lim
x2→0

αx3
2

α2x2
2 + x4

2

= lim
x2→0

αx2

α2 + x2
2

= 0

and the limit along the straight line x2 = 0 is

lim
x→0,x2=0

f(x) = lim
x1→0

f(x1, 0) = 0.

This shows that for each straight lint L in R2 pass through the origin, one has

(6.2.7) lim
x→0,x∈L

f(x) = 0.

However, we see that the limit along the parabola x1 = x2
2 is

lim
x→0,x1=x2

2

f(x) = lim
x2→0

f(x2
2, x2) = lim

x2→0

x4
2

x4
2 + x4

2

=
1

2
,

which shows that (roughly speaking, limit superior/inferior is the superior/inferior of all
possible way to take the limit towards the point of interest)

lim sup
x→0

f(x) ≥ lim
x→0,x1=x2

2

f(x) =
1

2
̸= 0 = lim

x→0,x∈L
f(x) ≥ lim inf

x→0
f(x),

which again sees that the limit does not exist. This example demonstrates that, even the
limit exists from all direction (6.2.7), this is still not enough to guarantee the existence of
limit in the sense of De�nition 6.2.2.

Finally, we end this section by introducing the following notion.

Lemma 6.2.12 (Continuous function). Let Ω be an open set in Rn and let f : Ω → R be
a function. If the point x0 ∈ Ω satis�es

lim
x→x0

f(x) = f(x0) ∈ R,

then we say that f is continuous at x0. If the function f : Ω → R is continuous at all points
in Ω, then we say that f : Ω → R is continuous.

6.3. First order derivatives

After extending the notion of limit/limit superior/limit inferior, we now extend the notion
of �di�erentiation� for functions f : Rn → R. Since one cannot divide by a vector, one
cannot directly extend the de�nition of di�erentiation directly from the standard de�nition
of 1-dimensional in De�nition 3.1.1. In view of its equivalent de�nition in De�nition 3.1.3,
now the generalization for higher-dimensional case is much more natural.

Definition 6.3.1. Let Ω be an open set in Rn and let f : Ω → R be a function. We say
that f is di�erentiable at x0 ∈ Ω if there exists L ∈ Rn such that

(6.3.1) lim
h→0

|f(x0 + h)− f(x0)−L · h|
|h|

= 0.
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In this case, the total derivative Df(x0) of f at x0 is de�ned by the vector Df(x0) := L.

Remark 6.3.2. It is not so obvious that whether the number L in De�nition 6.3.1 is
unique or not. Suppose that (3.1.3) holds true for L = L1 and L = L2. We see that

|L1 −L2| =
|(f(x0 + h)− f(x0)−L1 · h)− (f(x0 + h)− f(x0)−L2 · h)|

|h|

≤ |(f(x0 + h)− f(x0)−L1 · h)|
|h|

+
|f(x0 + h)− f(x0)−L2 · h)|

|h|
,

and take limit superior to see that

|L1 −L2| ≤ lim sup
h→0

(
|(f(x0 + h)− f(x0)−L1 · h)|

|h|
+

|f(x0 + h)− f(x0)−L2 · h)|
|h|

)
≤ lim sup

h→0

|(f(x0 + h)− f(x0)−L1 · h)|
|h|

+ lim sup
h→0

|f(x0 + h)− f(x0)−L2 · h)|
|h|

= 0,

which concludes that L1 = L2. We again remind the readers that the limit superior only
subaddivity property rather than the additivity.

The following lemma is an easy consequence of the de�nitions of continuity and di�eren-
tiability of functions.

Lemma 6.3.3. Let Ω be an open set in Rn and let f : Ω → R be a function. If f is
di�erentiable at x0, then f is continuous at x0.

Let ei be the ith column of the identity matrix, i.e. ei = (0, · · · , 0, 1, 0, · · · 0) with 1 at
the ith entry. If f is di�erentiable at x0 ∈ Ω, we restrict the limit (6.3.1) on the straight lint
{hei : h ∈ R} to see that

0 = lim
h→0

|f(x0 + h)− f(x0)−L · h|
|h|

= lim
h→0,h=hei

|f(x0 + h)− f(x0)−L · h|
|h|

= lim
h→0

|f(x0 + hei)− f(x0)− Lih|
|h|

= lim
h→0

∣∣∣∣f(x0 + hei)− f(x0)

h
− Li

∣∣∣∣
We see that Li is just the 1-dimensional derivative of the mapping fi;x1,··· ,xi−1,xi+1,··· ,xn(t) :=
f(x1, · · · , xi−1, t, xi+1, · · · , xn) in the sense of De�nition 3.1.1 and De�nition 3.1.3, i.e. it is
just the di�erentiation on the ith variable of f and simply �x the others. This suggests us to
consider the following notion.

Definition 6.3.4. Let Ω be an open set in Rn and let f : Ω → R be a function. For each
i = 1, · · · , n, the ith partial derivative of f at x0 is de�ned by

∂

∂xi

f(x1, · · · , xi−1, x, xi+1, · · ·xn)

∣∣∣∣
x=xi

≡ ∂if(x0) := lim
h→0

f(x0 + hei)− f(x0)

h

provided the limit exists. The gradient of f at x0 is de�ned as ∇f(x0) :=
(∂1f(x0), · · · , ∂nf(x0)).

We now put the above discussions in the following lemma.

Theorem 6.3.5. Let Ω be an open set in Rn and let f : Ω → R be a function. If f is
di�erentiable at x0 ∈ Ω, then Df(x0) = ∇f(x0).
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Example 6.3.6. We consider the function f : R2 → R by

f(x1, x2) :=

{
x1x2

x2
1+x2

2
for all x = (x1, x2) ̸= (0, 0),

0 when x = (0, 0).

We see that f(x1, 0) = 0 for all x1 ∈ R and f(0, x2) = 0 for all x2 ∈ R, which implies that

∂1f(0) =
∂

∂x1

f(x1, 0)

∣∣∣∣
x1=0

= 0, ∂2f(0) =
∂

∂x2

f(0, x2)

∣∣∣∣
x1=0

= 0,

that is, ∇f(0) = (0, 0). However, we have showed that f : R2 → R in Example 6.2.10 is not
continuous at x = 0, and hence not di�erentiable at x = 0 (Lemma 6.3.3), in other words,
the total derivative Df(0) does not exist.

We now rephrase Theorem 6.3.5 into the following corollary, which is helpful to check
whether the function is di�erentiable or not.

Corollary 6.3.7. Let Ω be an open set in Rn and let f : Ω → R be a function. Then f
is di�erentiable at x0 ∈ Ω if and only if

lim
h→0

|f(x0 + h)− f(x0)−∇f(x0) · h|
|h|

= 0.

In other words, one only need to compute

(6.3.2) lim sup
h→0

|f(x0 + h)− f(x0)−∇f(x0) · h|
|h|

to determine whether the function f is di�erentiable at x0 or not. Finally, we end this section
by giving a useful su�cient condition to check the di�erentiability of functions.

Theorem 6.3.8 ([Apo74, Theorem 12.11]). Let Ω be an open set in Rn and let f : Ω → R
be a function. If the point x0 ∈ Ω satis�es the following two conditions:

• there exists ϵ > 0 such that all partial derivatives ∂1f, · · · , ∂nf exist on Bϵ(x0), and
• all partial derivatives ∂1f, · · · , ∂nf are continuous at x0,

then f is di�erentiable at x0.

The above theorem suggested the following de�nition.

Definition 6.3.9. Let Ω be an open set in Rn. We denote C1(Ω) be the collection of
di�erentiable functions f : Ω → R such that all partial derivatives ∂1f, · · · , ∂nf : Ω → R are
continuous.

In practical, we often use the following consequence of Theorem 6.3.8 since it is much
easy to check (compare with (6.3.2)):

Corollary 6.3.10. Let Ω be an open set in Rn. If f ∈ C1(Ω), then f : Ω → R is
di�erentiable and hence Df(x) = ∇f(x) for all x ∈ Ω.

The above corollary allows us to solve multidimensional case by using technique in 1-
dimensional case.
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6.4. Di�erentiation rules

The main theme of this section is to extend the results in Section 3.3 for higher dimensional
case. Here we only give some special cases which are often used in practical applications. One
can refer the monographs [Apo74, Rud87] for the results which are much more optimal.

The following lemma is an easy consequence of Corollary 6.3.10 and Lemma 3.3.1:

Lemma 6.4.1. Let Ω be an open set in Rn and let f1, f2 : Ω → R.
(a) Linearity. If both f1, f2 ∈ C1(Ω), then for each c1, c2 ∈ R, the function

c1f1 + c2f2 : Ω → R, (c1f1 + c2f2)(x) := c1f1(x) + c2f2(x) for all x ∈ Ω

is also in C1(Ω), and satisfying

∇(c1f1 + c2f2)(x) = c1∇f1(x) + c2∇f2(x) for all x ∈ Ω.

(b) Product rule. If both f1, f2 ∈ C1(Ω), then the function (not to be confused with the
composition of functions in De�nition 1.3.6)

f1f2 : Ω → R, (f1f2)(x) := f1(x)f2(x) for all x ∈ Ω

is also in C1(Ω), and satisfying

∇(f1f2)(x) = ∇f1(x)f2(x) + f1(x)∇f2(x).

Lemma 6.4.2 (Chain rule [Apo74, Theorem 12.7]). Let Ω be an open set in Rn and let
f1, · · · , fm : Ω → R be functions which is di�erentiable at a point x0 ∈ Ω. We denote the
vector-valued function

f : Ω → Rm, f(x) = (f1(x), f2(x), · · · , fm(x)) for all x ∈ Ω,

and its range is de�ned by f(Ω) := {f(x) ∈ Rm : x ∈ Ω}. Let U be an open set in Rm such
that U ⊃ f(Ω) and let g : U → R be a function which is di�erentiable at f(x0). Then the
composition of functions

g ◦ f : Ω → R, g ◦ f(x) := g(f(x)) for all x ∈ Ω

is also di�erentiable at x0 ∈ Ω and its partial derivatives is given by1

∂

∂xi

(g ◦ f)(x) = ∇yg(y)|y=f(x) ·
∂

∂xi

f(x)

=
m∑
j=1

∂

∂yj
g(y)

∣∣∣∣
y=f(x)

∂

∂xi

fj(x) for all x ∈ Ω.(6.4.1)

In practical, we often use the following corollary.

Corollary 6.4.3. Let Ω be an open set in Rn and let f ∈ (C1(Ω))n. Let U be an
open set in Rm such that U ⊃ f(Ω) and let g ∈ C(U). Then the composition of functions
g ◦ f ∈ C1(Ω) and satis�es 6.4.1.

The corollary means that the composition of C1 functions is also in C1, therefore we
often consider this space in practical application, and in this case personally I prefer to use
the notation ∇ rather than D. In addition, these di�erentiation rules basically say that the
computations for C1-functions are actually the same as in the 1-dimensional case.

1See the example in [Apo74, page 354].
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6.5. Some de�nitions and facts on matrix computations

Before we introduce the second order derivatives, we need some preliminaries about matrix
computations, which is related to linear algebra [Axl24, Tre17]. Rather than introduce
linear algebra systematically, we will only some materials just enough for this course. We
usually write the vector v ∈ Rm as a n× 1 array

(6.5.1) v =

v1
...
vm

 .

This is simply a special case of the following de�nition.

Definition 6.5.1. An m×n (real) matrix A is a rectangle array with elements in R with
m rows and n columns, which can be denoted by

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 .

We denote Rm×n be the set of m×n matrix mentioned above. In the case when m = n, then
Rm×m is called the set of square matrices.

We also can de�ne some operators similar as in De�nition 6.1.2 and De�nition 6.1.4 (so
that Rm×n forms a linear space equipped with inner product):

Definition 6.5.2. Let A,B ∈ Rm×n.

(a) We denote A = B when Aii = Bii for all i = 1, · · · ,m and j = 1, · · · , n.
(b) For each a, b ∈ R, the linear combination aA+ bB ∈ Rm×n is de�ned by

(aA+ bB)ij = aAij + bBij for all i = 1, · · · ,m and j = 1, · · · , n.

We simply denote −A := (−1)A.

(c) We denote 0 =

 0 · · · 0
...

. . .
...

0 · · · 0

 be the zero matrix.

(d) We denote the Euclidean norm

|A| :=

(
m∑
i=1

n∑
j=1

|Aij|2
)1/2

.

(e) The inner product or dot product A ·B is de�ned as a scalar
∑m

i=1

∑n
j=1 AijBij. The

�angle� θ between A and B is de�ned by

θ := cos−1

(
A

|A|
· B

|B|

)
,

where cos−1 : [−1, 1] → [0, π] is the usual inverse cosine function. Note that A ·A =
|A|2.
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Definition 6.5.3. A set of matrices (or vectors) {A1, · · · , Ap} ⊂ Rm×n is called linearly
independent if the only solution (µ1, · · · , µp) ∈ Rp of the equation

µ1A1 + · · ·+ µpAp = 0

must be the zero vector (µ1, · · · , µp) = (0, · · · , 0).

If we only consider De�nition 6.5.2, then we do not see any di�erence between Rm×n and
Rmn. We usually distinguish them by the following operators.

Definition 6.5.4 (Matrix multiplication). Let A ∈ Rm×n and B ∈ Rn×p. We de�ne the
matrix multiplication AB ∈ Rm×p by

(AB)ij =
n∑

k=1

AikBkj for all j = 1, · · · ,m and j = 1, · · · , p.

The following notion is also fundamental in linear algebra:

Definition 6.5.5. The transpose of A ∈ Rm×n is denoted by A⊺ ∈ Rn×m, which is de�ned
by

(A⊺)ij = Aji for all i = 1, · · · , n and j = 1, · · · ,m.

(a) A square matrix B ∈ Rm×m is said to be symmetric if B⊺ = B. We denote Rm×m
sym

be the set of symmetric square matrix.
(b) A square matrix B ∈ Rm×m is said to be normal if BB⊺ = B⊺B.
(c) A square matrix B ∈ Rm×m is said to be orthogonal if BB⊺ = B⊺B = Id, where Id

is the identity matrix.

Remark 6.5.6. It is not so often to denote A ⊗ B ∈ Rm×m be the juxtaposition of
A ∈ Rm×n and B ∈ Rm×n, which is de�ned by

A⊗B := AB⊺.

However, it is convenient to write De�nition 6.1.4(b) as

u⊗ v = uv⊺ for all u,v ∈ Rn.

Theorem 6.5.7 ([Tre17, Theorem 2.2]). For each A ∈ Rm×m
sym , there exist an orthogonal

matrix U and a diagonal matrix

D = diag (λ1, · · · , λn) =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn

 ∈ Rn×n

such that A = UDU⊺. Such numbers λ1, · · · , λn are called the eigenvalues (or characteristic
values) of A.

Now it is natural to introduce the following notion.

Definition 6.5.8. A symmetric matrix A ∈ Rm×m
sym is said to be nonnegative de�nite

(resp. positive de�nite), denoted as A ⪰ 0 (resp. A ≻ 0) if all its eigenvalues λ1, · · · , λn

are nonnegative (resp. positive). A symmetric matrix A ∈ Rm×m
sym is said to be nonpositive

de�nite (resp. negative de�nite), denoted as A ⪯ 0 (resp. A ≺ 0) if −A ⪰ 0 (resp. −A ≻ 0).
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Remark 6.5.9. If we identify the elements in R with those elements in R1×1, we see that
De�nition 6.5.8 is consistent with the notions �nonnegative�, �positive�, �nonpositive� and
�negative� of real numbers.

In fact, we also have the following equivalent de�nition for nonnegative de�nite/positive
de�nite of symmetric matrix.

Corollary 6.5.10. A symmetric A ∈ Rm×m
sym is nonnegative de�nite (resp. positive

de�nite) if and only if v⊺Av is nonnegative (resp. positive) for all v ∈ Rm \ {0}.

Lemma 6.5.11. Let A ∈ Rm×n and B ∈ Rn×p. Then (AB)⊺ = B⊺A⊺ ∈ Rp×m.

Proof. One sees that

((AB)⊺)ij = (AB)ji =
n∑

k=1

AjkBki =
n∑

k=1

BkiAjk =
n∑

k=1

(B⊺)ik(A
⊺)kj = (B⊺A⊺)ij

for all i = 1, · · · , p and j = 1, · · · ,m. □

Example 6.5.12. Given any matrix A ∈ Rm×n, one sees that

(A⊺A)⊺ = A⊺(A⊺)⊺ = A⊺A,

which shows that A⊺A ∈ Rn×n is symmetric, and it is also easy to check that it is nonnegative
de�nite as well.

It is possible to de�ne the determinant det(A) for any A ∈ Rn×n, see [Axl24, For-
mula 9.46] for its precise formula. Here we only exhibit the de�nition when n = 2 and
n = 3.

Definition 6.5.13. The determinant of A ∈ R2×2 is de�ned by

det(A) := A11A22 − A21A12.

The determinant of A ∈ R3×3 de�ned by

detA = A11A22A33 − A21A12A33 − A31A22A13

− A11A32A23 + A31A12A23 + A21A32A13.

Lemma 6.5.14. For each A ∈ Rn×n, one has det(A) = det(A⊺).

Definition 6.5.15. A square matrix A ∈ Rn×n is said to be invertible if there exists a
unique matrix A−1 ∈ Rn×n such that

AA−1 = A−1A = Id.

It is important to mention the following result.

Theorem 6.5.16. [Axl24, Result 9.50] A square matrix A ∈ Rn×n is invertible if and
only if det(A) ̸= 0. In this case,

det(A−1) =
1

det(A)
.
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6.6. Second order derivatives and matrix computations

Let Ω be an open set in Rn. The �rst order derivative of f : Ω → R at each x ∈ Ω is
given by the vector

(6.6.1) ∇f(x) = (∂1f(x), · · · , ∂nf(x)) ∈ Rn.

We now further assume that ∂if : Ω → R is di�erentiable for all i = 1, · · · , n, then the �rst
order derivative of each ∂if at each point x ∈ Ω is given by the vector

(6.6.2) ∇∂if(x) = (∂1∂if(x), · · · , ∂n∂if(x)) ∈ Rn.

This suggests that the second order derivative of f : Ω → R at each x ∈ Ω should be the
Hessian matrix as follows:

(6.6.3)


∂1∂1f(x) ∂1∂2f(x) · · · ∂1∂nf(x)
∂2∂1f(x) ∂2∂2f(x) · · · ∂2∂nf(x)

...
...

. . .
...

∂n∂1f(x) ∂n∂2f(x) · · · ∂n∂nf(x)

 .

In view of the juxtaposition notation in Remark 6.5.6, it is convenient to denote the Hessian
matrix as

∇⊗∇f(x) for each x ∈ Ω,

or we further abuse the notation by writing ∇2f(x). However, it is possible that the Hessian
matrix is not symmetric, which we will demonstrated in the following example.

Example 6.6.1 ([Apo74, Section 12.13]). We de�ne f : R2 → R by

f(x) :=

{
x1x2

(x2
1−x2

2)(x
2
1+x2

2)
if x ̸= 0,

0 if x ̸= 0.

Since f(x1, 0) = 0 for all x1 ∈ R, then it is easy to see that ∂1f(0, 0) = limh→0
f(h,0)−f(0,0)

h
= 0.

By using di�erentiation rules for 1-dimensional derivatives, one can easily compute that

∂1f(x) =
x2(x

4
1 + 4x2

1x
2
2 − x4

2)

(x2
1 + x2

2)
2

for all x ̸= 0.

Combining this with ∂1f(0, 0) = 0, we now see that

∂1f(0, x2) = −x2 for all x2 ∈ R,
thus ∂2∂1f(0, x2) = ∂2(−x2) = −1 for all x2 ∈ R, which gives

(6.6.4) ∂2∂1f(0, 0) = −1.

On the other hand, since f(0, x2) = 0 for all x2 ∈ R, then it is easy to see that ∂2f(0, 0) =

limh→0
f(0,h)−f(0,0)

h
= 0. By using di�erentiation rules for 1-dimensional derivatives, one can

easily compute that

∂2f(x) =
x1(x

4
1 − 4x2

1x
2
2 − x4

2)

(x2
1 + x2

2)
2

for all x ̸= 0.

Combining this with ∂2f(0, 0) = 0, we now see that

∂2f(x1, 0) = x1 for all x1 ∈ R,
then ∂1∂2f(x1, 0) = ∂1(x1) = 1 for all x1 ∈ R, which gives

(6.6.5) ∂1∂2f(0, 0) = 1.
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Combining (6.6.4) and (6.6.5), we now conclude that

∂1∂2f(0, 0) = 1 ̸= −1 = ∂2∂1f(0, 0).

In practical, it is not convenient to work with nonsymmetric Hessian matrix. Luckily this
is not the usual case:

Theorem 6.6.2 ([Apo74, Theorem 12.13]). Let Ω be an open set in Rn and let f : Ω → R
be a di�erentiable function. If there exists x0 ∈ Ω and i, j ∈ {1, · · · , n} such that both
∂i∂jf : Ω → R and ∂j∂if : Ω → R exist and continuous at x0, then

∂i∂jf(x0) = ∂j∂if(x0).

This theorem suggested us to consider the following space:

Definition 6.6.3. Let Ω be an open set in Rn. We denote C2(Ω) be the collection of
functions f : Ω → R such that all partial derivatives

∂if : Ω → R, ∂i∂jf : Ω → R for all i, j = 1, · · · , n
exist and continuous.

In practical, we often use the following corollary of Theorem 6.6.2.

Corollary 6.6.4. Let Ω be an open set in Rn. If f ∈ C2(Ω), then ∇⊗∇f(x) ∈ Rn×n
sym

for all x ∈ Ω.

Finally, we end this section by giving a remark that the higher order derivatives are exactly
the higher order tensors (Note: vectors are 1-tensors, while the matrices are 2-tensors).

6.7. Extreme values

We now extend the results in Section 3.5 for higher dimensional case. We �rst introduce
similar terminologies.

Definition 6.7.1. Let Ω be an open set in Rn and let f : Ω → R be a di�erentiable
function. If ∇f(x0) is a zero vector for some x0 ∈ Ω, then we refer such point x0 as a critical
point or stationary point.

Similar to Lemma 3.4.5, we also have the following lemma.

Lemma 6.7.2. Let Ω be an open set in Rn and let f : Ω → R be a di�erentiable function.
If f has a local maximum or local minimum at x0 ∈ Ω, then x0 is a critical point.

Proof. Suppose that x0 ∈ Ω is a local maximum of f . Then for each i = 1, · · · , n, there
exists ϵi > 0 such that

f(x0) ≥ f(x0 + hei) for all h with |h| < ϵi.

In other words, if we write x0 = (x1, · · · , xn), the function fi;x1,··· ,xi−1,xi+1,··· ,xn(x) :=
f(x1, · · · , xi−1, x, xi+1, · · · , xn) has a local maximum at x = xi. From Lemma 3.4.5 we
see that

∂if(x0) =
d

dx
fi;x1,··· ,xi−1,xi+1,··· ,xn(x)

∣∣∣∣
x=xi

= 0 for all i = 1, · · · , n,

which concludes our lemma. The case when x0 ∈ Ω is a local minimum of f can be done
similarly. □
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As we mentioned before, even in 1-dimensional case, there may exists critical point which
is neither local maximum nor local minimum. However, the situation in higher dimensional
case can be even more complicated, as demonstrated in the following example.

Example 6.7.3. Let f : R2 → R be the function de�ned by

f(x) := x2
1 − x2

2 for all x = (x1, x2) ∈ R2.

We see that

f(x1, 0) = x2
1 for all x1 ∈ R and f(0, x2) = −x2

2 for all x2 ∈ R,

and we see that the function x1 7→ f(x1, 0) has a global minimum at x1 = 0, while x2 7→
f(0, x2) has a global maximum at x2 = 0. In other words, the restriction of f on the straight
line {(x1, 0) : x1 ∈ R} has a global minimum at the origin, but the restriction of f on the
straight line {(0, x2) : x2 ∈ R} has a global maximum at the origin.

It is remarkable that the second derivative test (Theorem 3.5.8) can be extend for higher
dimensional case as well:

Theorem 6.7.4. Let Ω be an open set in Rn and let f ∈ C2(Ω).

(a) If ∇f(x0) = 0 and the strict inequality ∇⊗∇f(x0) ≻ 0 hold for some x0 ∈ Ω, then
x0 is a local minimum of f : Ω → R.

(b) If ∇f(x0) = 0 and the strict inequality ∇⊗∇f(x0) ≺ 0 hold for some x0 ∈ Ω, then
x0 is a local maximum of f : Ω → R.

Therefore, we can do the same things as in Algorithm 3.5.11:

Algorithm 6.7.5. Let E be a set in Rn and let f : E → R be a function. Suppose that
f : E0 → R is di�erentiable for some E0 ⊂ E. All candidates must be either one of the
followings:

(a) critical points in E0. If f is C2 near a critical point, says x0, then we can use
Theorem 6.7.4 to check whether it is a local maximum/minimum or not.

(b) those points in E \ E0, that is, those points which are not di�erentiable. (Note: the
boundary points which are in E are element in E \ E0)

6.8. Extreme values with side conditions: Lagrange multiplier

The main theme of this section is to discuss the following problem.

Problem 6.8.1. Find the local extremum of a function f(x) when the variable x ∈ Ω ⊂
Rn are restricted by a certain number of side conditions:

g1(x) = 0, gm(x) = 0

for some m ∈ N.

We are not interested in the case when n = 1. For example, if the side condition g1 is
a polynomial, then the fundamental theorem of algebra (Corollary 4.3.2) implies that there
exists at most �nitely many points x1, · · · , xp such that g1(xi) = 0. In this case, the above
problem immediately solves by a direct comparison of the values f(x1), · · · , f(xp). In fact,
the following theorem gives a partial result on Problem 6.8.1.
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Theorem 6.8.2. [Apo74, Section 13.12] Let Ω be an open set in Rn, let m ∈ N with
m ≤ n and let f, g1, · · · , gm ∈ C1(Ω). We de�ne the constraint set

S := {x ∈ Ω : g1(x) = 0, · · · , gm(x) = 0}.

If x0 ∈ S is a local maximum or local minimum of the restricted function f |S : S → R and
such that

(6.8.1) {∇g1(x0), · · · ,∇gm(x0)} is a linearly independent set (De�nition 6.5.3),

then there exist λ1, · · · , λm ∈ R such that

(6.8.2) ∇f(x0) + λ1∇g1(x0) + · · ·+ λm∇gm(x0) = 0.

Such numbers λ1, · · · , λm ∈ R are called the Lagrange multipliers, and the condition (6.8.1)
is called the constraint quali�cation.

We now give an example to demonstrate that the condition (6.8.1) is necessary.

Example 6.8.3. Let f(x) = x1+ · · ·+xn and g(x) = |x|2 for all x ∈ Rn. Note that both
f, g ∈ C1(Rn). We now see that the constraint set S is simply a 1-point set

S = {0},

therefore we see that x0 = 0 is a global maximum and global minimum of the restriction
function f |S, with value f(0) = 0. However, one sees that

∇f(x0) = (1, · · · , 1) and ∇g(x0) = 0,

which is not possible to �nd Lagrange multiplier λ ∈ R satisfying (6.8.2). Therefore, one
always need to check the constraint quali�cation (6.8.1).

However, similar to Algorithm 6.7.5, one should aware that Theorem 6.8.2 only provide
a necessary condition (6.8.2). In other words, the condition (6.8.2) only produces some
candidate. We now give some intuition of Theorem 6.8.2: If ∇f(x0) = 0, then the theorem
immediately follows with λ1 = · · · = λm = 0. We consider the case when ∇f(x0) ̸= 0.
Suppose that we can choose a su�ciently small ϵ > 0 such that

(6.8.3) S ∩Bϵ(x0) = {x = ϕ(t) : t ∈ Ω′
ϵ}

for some open set Ω′
ϵ ⊂ Rn−m and we write t0 such that ϕ(t0) = x0. Then the restricted

function f |S∩Bϵ(x0) can be parameterized as

f ◦ ϕ : Ω′
ϵ → R.

If x0 ∈ S is a local maximum or local minimum of the restricted function f |S : S → R, then
we see that t0 is a critical point of f ◦ ϕ, and then the chain rule (Lemma 6.4.2) implies

0 =
∂

∂ti
(f ◦ ϕ(t))

∣∣∣∣
t=t0

= ∇f(ϕ(t0)) ·
∂

∂ti
ϕ(t)

∣∣∣∣
t=t0

= ∇f(x0) ·
∂

∂ti
ϕ(t)

∣∣∣∣
t=t0

for all i = 1, · · · ,m− n,

which shows that

(6.8.4) ∇f(x0) is perpendicular to the tangent space of S at x0.
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On the other hand, since gj(ϕ(t)) = 0 for all t ∈ Ω′
ϵ and j = 1, · · · ,m, then

0 =
∂

∂ti
(gj ◦ ϕ(t))

∣∣∣∣
t=t0

= ∇gj(ϕ(t0)) ·
∂

∂ti
ϕ(t)

∣∣∣∣
t=t0

= ∇gj(x0) ·
∂

∂ti
ϕ(t)

∣∣∣∣
t=t0

for all i = 1, · · · ,m− n and j = 1, · · · ,m,

which shows that

(6.8.5) ∇gj(x0) is perpendicular to the tangent space of S at x0 for all j = 1, · · · ,m.

Therefore, from (6.8.4) and (6.8.5) we know that there are m + 1 nonzero vectors
∇f(x0),∇g1(x0), · · · ,∇gm(x0) are all contained in the normal space (more precisely, the
cotangent space). We expect that it only has dimension m. If this is the case, we conclude
(6.8.2). However, the above discussions is not rigorous since in general it is not easy to
guarantee the parameterization (6.8.3), which requires an advance tool called the implicit
function theorem [Apo74, Section 13.4].

We �nally end this section by the following example.

Example 6.8.4. We now consider the ellipse described by the equation

x2
1

a2
+

x2
2

b2
= 1

for some 0 < a < b. It is easy to see that the length of its major (resp. minor) semi-axis is
b (resp. a). Let's verify this using Lagrange multiplier method so that we can demonstrate
the standard procedure of using Lagrange multiplier.

Note that its semi-axes is exactly the extreme values of

(6.8.6) f̃(x) = |x| subject to g(x) = 0

with the choice

g(x) :=
x2
1

a2
+

x2
2

b2
− 1.

We see that ∇g(x) = (2a−2x1, 2b
−2x2) for all x ∈ Rn and 0 /∈ S := {x ∈ Rn : g(x) = 0},

thus we see that the constraint quali�cation

∇g(x) ̸= 0 for all x ∈ S

holds. Moreover, we see that f̃ ∈ C1(Rn\{0}), therefore we can apply the Lagrange multiplier
method in Theorem 6.8.2.

Alternatively, we consider the extreme values of

(6.8.7) f(x) = |x|2 subject to g(x) = 0,

which produces the same result as in (6.8.6) since the mapping ϕ : [0,+∞) → [0,+∞)
given by ϕ(t) = t2 is strictly increasing. Now by using the Lagrange multiplier theorem
(Theorem 6.8.2), if y = (y1, y2) ∈ S is an extreme point of the restricted function f |S, then
there exists λ ∈ R such that

y =
1

2
∇f(y) =

1

2
λ∇g(y) = λ(a−2y1, b

−2y2).
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This equation has exactly four sets of solutions:{
(y1, y2) = (±a, 0) corresponds to λ = a2,

(y1, y2) = (0,±b) corresponds to λ = b2.

We now verify that

f̃(±a, 0) = |(±a, 0)| = a is the length of minor semi-axis,

f̃(0,±b) = |(0,±b)| = b is the length of major semi-axis.



CHAPTER 7

Lebesgue integral

Unlike the standard calculus course, we will brie�y introduce the Lebesgue integral rather
than Riemann integral, which is widely used in modern applications including probabilities
and statistics. In fact, the computations for Lebesgue integral is much easier than Riemann
integral. We will follow the approach in [WZ15].

7.1. Some preparations

We now quickly go through some technical assumptions required to de�ne the Lebesgue
measure (i.e. the generalized volume) as well as the Lebesgue integral. We �rst introduce an
elementary object in Rn.

Definition 7.1.1. We say that I ⊂ Rn is a rectangle if there exists a1, · · · , an, b1 · · · , bn ∈
R such that I = [a1, b1]× · · · × [an, bn]. Its volume is de�ned by

vol (I) :=
n∏

i=1

(bi − ai) ≡ (b1 − a1) · · · (bn − an).

When n = 1, the rectangle is simply the bounded closed interval in R.

Given any set E ⊂ Rn, we �rst approximate its �volume�. If there exists rectangles
I1, · · · , Im (may intersect to each other) such that E ⊂

⋃m
i=1 Ii, then we expect the �volume�

of E should be bounded from above by

m∑
I=1

vol (Ii).

In view of the monotone convergence theorem for sequence (Lemma 5.1.5), if there exists
countably many I1, I2, · · · (may intersect to each other) such that E ⊂

⋃+∞
i=1 Ii, then we

expect the �volume� of E should be bounded from above by

+∞∑
I=1

vol (Ii).

Remark 7.1.2. However, this idea does not work for uncountable collection. For example,
we can write

Rn =
⋃

x∈Rn

{x}.

Each one point set {x} has zero volume, but obviously the volume of Rn is +∞.

This suggests the following de�nition.

115



7.2. DEFINITION OF LEBESGUE INTEGRALS 116

Definition 7.1.3. For any set E ⊂ Rn, its outer measure is de�ned by

m∗(E) := inf

{
+∞∑
I=1

vol (Ii) : {Ii}+∞
i=1 is a sequence of rectangles with E ⊂

+∞⋃
i=1

Ii

}
.

In order to make the above idea works, we need the following technical assumption.

Definition 7.1.4. A subset E ⊂ Rn is said to be Lebesgue measurable (or simply mea-
surable) if given any ϵ > 0 there is an open set Ωϵ ⊂ Rn such that m∗(Ωϵ \ E) < ϵ. The
Lebesgue measure (or simply measure) of measurable set E is de�ned by

|E| ≡ m(E) := m∗(E).

The (Lebesgue) measure can be understood as the �generalized volume�.

Example 7.1.5. It is easy to see that all open sets in Rn (including ∅ and Rn) are
measurable. Each rectangle I is measurable, with |I| = vol(I). Each open set is also
measurable.

From now on, we allow the function takes the values [−∞,+∞] := R∪{±∞}. We �nally
end this section by stating a technical assumption on functions in order to make Lebesgue
integral well-de�ned.

Definition 7.1.6. Let E be a measurable set in Rn. We say that a function f : E →
[−∞,+∞] is Lebesgue measurable (or simply measurable) if the set

{x ∈ E : f(x) > a} is measurable for all a ∈ R.

Throughout this course, we will only consider the sets and functions which are measurable.

7.2. De�nition of Lebesgue integrals

Let E be a measurable set in Rn. We begin our discussions with a nonnegative function
f de�ned on E, that is, f : E → [0,+∞]. In fact, we can de�ne the Lebesgue integral is
simply de�ned as follows:

Definition 7.2.1. Let E be a measurable set in Rn and let f : E → [0,+∞] be a
measurable function. The Lebesgue integral

∫
E
f(x) dx is de�ned as∫

E

f(x) dx := |R(f, E)|,

where R(f, E) is the region under f over E, more precisely,

R(f, E) :=

{
(x, y) ∈ E × R :

0 ≤ y ≤ f(x) if f(x) < +∞
0 ≤ y < +∞ if f(x) = +∞

}
.

Here and after we slightly abuse the notation by writing 0 · ∞ = ∞ · 0 = 0.

Remark 7.2.2. Here |R(f, E)| is the Lebesgue measure of R(f, E) ⊂ Rn × R = Rn+1.
The well-de�nedness of De�nition 7.2.1 is guaranteed by [WZ15, Theorem 5.1]. We will not
go through these technical details.
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For general measurable function f : E → [0,+∞], we de�ne f+ := max{f, 0} and f− :=
−min{f, 0}. By the comments following [WZ15, Theorem 4.11], both f+ : E → [0,+∞]
and f− : E → [0,+∞] are measurable. It is easy to see that

f(x) = f+(x)− f−(x) for all x ∈ E,

|f(x)| = f+(x) + f−(x) for all x ∈ E.

We now able to de�ne the Lebesgue integral.

Definition 7.2.3. Let E be a measurable set in Rn and let f : E → [0,+∞] be a
measurable function. If either

∫
E
f+(x) dx < +∞ or

∫
E
f−(x) dx < +∞, then the Lebesgue

integral
∫
E
f(x) dx is de�ned as∫

E

f(x) dx :=

∫
E

f+(x) dx−
∫
E

f−(x) dx.

We see that the motivation of Lebesgue integral is exactly same to the Riemann integral
(see Figure 4.1.1 for the case when n = 1), especially when we compare the de�nition of
Lebesgue measure and the upper sum for Riemann integral. In fact, they are consistent:

Theorem 7.2.4 ([WZ15, Theorem 5.52]). Let n = 1 and let a, b ∈ R with a < b. If
f : [a, b] → R is Riemann integrable and there exists M ≥ 0 such that |f(x)| ≤ M for all
x ∈ [a, b], then

(R)

∫ b

a

f(x) dx =

∫ b

a

f(x) dx,

where (R)
∫ b

a
f(x) dx is the Riemann integral (De�nition 4.1.2).

Definition 7.2.5. Let n = 1 and we consider the function

f(x) =

{
1 , x ∈ Q,

0 , x ∈ R \Q.

The Lebesgue integral of f is given by∫
R
f(x) dx = 1 · |Q|+ 0 · |R \Q| = |Q|.

Since Q is countable, i.e. it is possible to write Q = {q1, q2, · · · }, then for each ϵ > 0, we see
that

Q ⊂
⋃
i∈N

[qi − 2−iϵ, qi + 2−iϵ],

thus

|Q| ≤
+∞∑
i=1

|[qi − 2−iϵ, qi + 2−iϵ]| = 2ϵ
+∞∑
i=1

2−i = 2ϵ.

By arbitrariness of ϵ > 0, we conclude that |Q| = 0, which means that∫
R
f(x) dx = 0.

However, this function f is not Riemann integrable (Example 4.1.10).

As an immediate consequence of monotone convergence theorem [WZ15, Theorem 5.6],
we have the following lemma as well, which shows that the Lebesgue integral is also consistent
with improper integral (Section 4.4).
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Lemma 7.2.6. Suppose that E, {Et}t∈(0,1) be measurable sets in Rn such that E =⋃
t∈(0,1)Et and Et ⊂ Es for all s > t. For each nonnegative measurable function f : E →

[0,+∞], one has ∫
E

f(x) dx = lim
t→1−

∫
Et

f(x) dx.

Remark 7.2.7. One of the main point in Lemma 7.2.6 is that the integral
∫
E
f(x) dx is

independent of the choice of {Et}t∈(0,1), and this is a generalization of Lemma 4.4.8. This is
very convenient for us in practical computations. For example when n = 1 and E = R, we
can simply choose Ej = [−j, j] so that∫

R
f(x) dx = lim

j→+∞

∫ j

−j

f(x) dx

for non-negative function f . This idea can be easily extend to higher dimensional case:∫
Rn

f(x) dx = lim
R→+∞

∫
BR(x0)

f(x) dx

for any non-negative function f : Rn → [0,+∞]. This fact is extreme useful, especially in
probability.

Example 7.2.8. Let n = 1 and we consider the function f : [0, 1] → R given by

f(x) =

{
x−1/2 , x ∈ (0, 1],

0 , x = 0.

One sees that the Lebesgue integral
∫ 1

0
f(x) dx is well-de�ned, and by using Lemma 7.2.6,

we see that ∫ 1

0

f(x) dx = lim
ϵ→0+

∫ 1

ϵ

x−1/2 dx = lim
ϵ→0+

2x1/2

∣∣∣∣x=1

x=ϵ

= 2,

which is basically the improper integral. However, the f [0, 1] → R is not Riemann integrable

(Example 4.1.9). Since the Lebesgue integral
∫ 1

0
f(x) dx is well-de�ned, we simply write the

above computations as ∫ 1

0

f(x) dx = 2x1/2

∣∣∣∣x=1

x→0+

= 2.

7.3. Computations of integrals via repeated integration: Fubini's theorem

Now lets move on computations of integrals. For each measurable set E in Rn, we consider
the set

L1(E) :=

{
f is a measurable function on E :

∫
E

|f(x)| dx < +∞
}
.

Theorem 7.3.1 (Fubini). Let E = E1 × E2 where E1 is a measurable set in Rn and E2

is a measurable set in Rm. Let f : E → [−∞,+∞] be a measurable function. If either f is
non-negative or f ∈ L1(E), then∫

E

f(x,y) d(x,y) =

∫
E1

(∫
E2

f(x,y) dy

)
dx =

∫
E2

(∫
E1

f(x,y) dx

)
dy.
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Remark 7.3.2. If all assumptions in Theorem 7.3.1 hold, it is quite often to denote∫
E

f(x,y) d(x,y) =

∫
E

f(x,y) dx dy =

∫
E

f(x,y) dy dx.

Remark 7.3.3. Recall that f ∈ L1(E) means
∫
E
|f(x,y)| d(x,y) < +∞. Note that

|f(x,y)| is non-negative, and thus Fubini's theorem for nonnegative functions can be used.
Thus, we always compute

∫
E
|f(x,y)| d(x,y) before compute

∫
E
f(x,y) d(x,y).

Example 7.3.4 (Double integral). Let I1 and I2 be intervals in R (not necessary
bounded). Let f : I1 × I2 → [−∞,+∞] be measurable function. If either f is non-negative
or f ∈ L1(I1 × I2), then choosing E1 = I1 and E2 = I2 to see that∫

I1×I2

f(x, y) d(x, y) =

∫
I1

(∫
I2

f(x, y) dy

)
dx =

∫
I2

(∫
I1

f(x, y) dx

)
dy.

We now give some concrete examples.

Example 7.3.5. We want to compute∫
[0,2]×[1,2]

f(x, y) d(x, y) with f(x, y) = x− 3y2.

We �rst check that (see Remark 7.3.3)∫
[0,2]×[1,2]

|f(x, y)| d(x, y) ≤
∫
[0,2]×[1,2]

|x| d(x, y) + 3

∫
[0,2]×[1,2]

|y|2 d(x, y)

≤
∫
[0,2]×[1,2]

2 d(x, y) + 3

∫
[0,2]×[1,2]

4 d(x, y) = 14

∫
[0,2]×[1,2]

1 d(x, y)

= 14 |[0, 2]× [1, 2]| = 28 < +∞,

hence f ∈ L1([0, 2]× [1, 2]) so we can apply Fubini's theorem. Thus, we can compute this by
either ∫

[0,2]×[1,2]

(x− 3y2) d(x, y) =

∫ 2

1

(∫ 2

0

(x− 3y2) dx

)
dy

=

∫ 2

1

(
1

2
x2 − 3xy2

) ∣∣∣∣x=2

x=0

dy =

∫ 2

1

(
2− 6y2

)
dy

= 2y − 2y3
∣∣∣∣y=2

y=1

= −12

or ∫
[0,2]×[1,2]

(x− 3y2) d(x, y) =

∫ 2

0

(∫ 2

1

(x− 3y2) dy

)
dx

=

∫ 2

0

(
xy − y3

) ∣∣∣∣y=2

y=1

dx =

∫ 2

0

(x− 7) dx

=
x2

2
− 7x

∣∣∣∣x=2

x=0

= −12.
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Exercise 7.3.6. We want to compute∫
[1,2]×[0,π]

y sin(xy) d(x, y) with f(x, y) = y sin(xy).

We �rst check that (see Remark 7.3.3)∫
[1,2]×[0,π]

|f(x, y)| d(x, y) ≤
∫
[1,2]×[0,π]

|y| d(x, y)

≤
∫
[1,2]×[0,π]

π d(x, y) = π |[1, 2]× [0, π]| = π2 < +∞,

which means that f ∈ L1([1, 2]× [0, π]), and so Fubini's theorem applies, thus∫
[1,2]×[0,π]

y sin(xy) d(x, y) =

∫ π

0

(∫ 2

1

y sinxy dx

)
dy

=

∫ π

0

(− cosxy)

∣∣∣∣x=2

x=1

dy =

∫ π

0

(− cos 2y + cos y) dy

= −1

2
sin 2y + sin y

∣∣∣∣y=π

y=0

= 0.

Example 7.3.7. Let E1 ⊂ Rn and E2 ⊂ Rm be measurable sets. Let f1 : E1 → R and
f2 : E2 → R be measurable functions. In fact, the function f : E1 × E2 → R de�ned by

f(x,y) := f1(x)f2(y) for all (x,y) ∈ E1 × E2

is measurable. If both f1 and f2 are nonnegative, then f is also nonnegative. From Fubini's
theorem we now see that∫

E1×E2

f(x,y) d(x,y) =

∫
E1

(∫
E2

f(x,y) dy

)
dx

=

∫
E1

(∫
E2

f1(x)f2(y) dy

)
dx =

∫
E1

f1(x)

independent of x︷ ︸︸ ︷(∫
E2

f2(y) dy

)
dx

=

(∫
E1

f1(x) dx

)(∫
E2

f2(y) dy

)
.(7.3.1)

If both f1 ∈ L1(E1) and f2 ∈ L1(E2), we now check that (see Remark 7.3.3)∫
E1×E2

|f(x,y)| d(x,y) =
∫
E1

(∫
E2

|f(x,y)| dy
)

dx

=

Fubini's theorem for nonnegativve functions︷ ︸︸ ︷∫
E1

(∫
E2

|f1(x)||f2(y)| dy
)

dx =

∫
E1

|f1(x)|

independent of x︷ ︸︸ ︷(∫
E2

|f2(y)| dy
)

dx

=

(∫
E1

|f1(x)| dx
)(∫

E2

|f2(y)| dy
)

< +∞,

which means that f ∈ L1(E1 ×E2). Now we can use Fubini's theorem for f to conclude the
identity (7.3.1).
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Example 7.3.8 (Triple integral). Let I1, I2 and I3 be intervals in R (not necessary
bounded). Let f : I1×I2×I3 → [−∞,+∞] be measurable function. If either f is non-negative
or f ∈ L1(I1 × I2 × I3), then we choose E1 = I1 and E2 = I2 × I3 to see that∫

I1×I2×I3

f(x, y, z) d(x, y, z) =

∫
I1

(∫
I2×I3

f(x, y, z) d(y, z)

)
dx.

In fact, if f ∈ L1(I1× I2× I3), then f(x, ·) ∈ L1(I2× I3) for a.e. x ∈ I1, more precisely, there
exists a measure zero set Z such that f(x, ·) ∈ L1(I2 × I3) for all x ∈ I1 \ Z. We now choose
E1 = I2 and E2 = I3 to see that∫

I2×I3

f(x, y, z) d(y, z) =

∫
I2

(∫
I3

f(x, y, z) dz

)
dy for a.e. x ∈ I1.

Combining the above two equation and we see that∫
I1×I2×I3

f(x, y, z) d(x, y, z) =

∫
I1

(∫
I2

(∫
I3

f(x, y, z) dz

)
dy

)
dx,

and the order of integral can be changed.

In fact, the Fubini's theorem (Theorem 7.3.1) can be extended for non-rectangle domains
as well.

Theorem 7.3.9 (Fubini [WZ15, Theorem 6.8]). Let E be a measurable subset in Rn×m

and we de�ne the measurable set

Ex := {y ∈ Rm : (x,y) ∈ E} for a.e. x ∈ Rn,

Ey := {x ∈ Rn : (x,y) ∈ E} for a.e. y ∈ Rm,

If f is non-negative or f ∈ L1(E), then∫
E

f(x,y) d(x,y) =

∫
Rn

(∫
Ex

f(x,y) dy

)
dx =

∫
Rm

(∫
Ey

f(x,y) dx

)
dy.

Remark 7.3.10. The principle in Remark 7.3.3 also works for this case.

Example 7.3.11. Let a, b ∈ R with a < b. Suppose that E is a region described by

E =
{
(x, y) ∈ R2 : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

}
for some continuous functions g1 : [a, b] → R and g2 : [a, b] → R. One sees that

Ex = {y ∈ R : g1(x) ≤ y ≤ g2(x)} for each x ∈ [a, b],

Ex = ∅ for each x ∈ R \ [a, b].

If f is non-negative or f ∈ L1(E), then Fubini's theorem (Theorem 7.3.9) implies∫
E

f(x, y) d(x, y) =

∫
R

(∫
Ex

f(x, y) dy

)
dx =

∫ b

a

(∫ g2(x)

g1(x)

f(x, y) dy

)
dx.

Example 7.3.12. Let a, b ∈ R with a < b. Suppose that E is a region described by

E =
{
(x, y) ∈ R2 : h1(y) ≤ x ≤ h2(y), a ≤ y ≤ b

}
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for some continuous functions h1 : [a, b] → R and h2 : [a, b] → R. Similarly, if f is non-
negative or f ∈ L1(E), then Fubini's theorem (Theorem 7.3.9) implies∫

E

f(x, y) d(x, y) =

∫
R

(∫
Ey

f(x, y) dx

)
dy =

∫ b

a

(∫ h2(y)

h1(y)

f(x, y) dx

)
dy.

Example 7.3.13. We now demonstrate how to evaluate
∫
E
f(x, y) d(x, y) where f(x, y) =

x + 2y and E is the region bounded by the parabolas y = 2x2 and y = 1 + x2. It is easy to
see that the parabolas intersect at x = ±1, thus one sees that

E =
{
(x, y) ∈ R : −1 ≤ x ≤ 1, 2x2 ≤ y ≤ 1 + x2

}
.

We �rst check that (see Remark 7.3.3)∫
E

|f(x, y)| d(x, y) ≤
∫
E

|x| d(x, y) + 2

∫
E

|y| d(x, y)

≤
∫
E

1 d(x, y) + 2

∫
E

2 d(x, y) = 5|E| < +∞,

thus f ∈ L1(E). Thus, one can use Fubini's theorem (Theorem 7.3.9) to see that∫
E

f(x, y) d(x, y) =

∫ 1

−1

(∫ 1+x2

2x2

(x+ 2y) dy

)
dx

=

∫ 1

−1

(
xy + y2

) ∣∣∣∣y=1+x2

y=2x2

dx

=

∫ 1

−1

(
−3x4 − x3 + 2x2 + x+ 1

)
dx

= −3

5
x5 − x4

4
+

2

3
x3 +

1

2
x2 + x

∣∣∣∣x=1

x=−1

=
32

15
.

Example 7.3.14. We now demonstrate how to evaluate the integral

(7.3.2)

∫ 1

0

(∫ 1

x

sin(y2) dy

)
dx.

One sees that it is not easy to evaluate the integral following the order. One possible way to
simplify the problem is to changing the order of integral, but it is not easy to do so since∫ 1

x

(∫ 1

0

sin(y2) dx

)
dy is not well-de�ned.

Unfortunately, there is no easy and direct method to solve this integral. The proper way to
do this is we �rst consider the region

E =
{
(x, y) ∈ R2 : 0 ≤ x ≤ 1, x ≤ y ≤ 1

}
,

and write f(x, y) = sin(y2) for all (x, y) ∈ E. We �rst check that (see Remark 7.3.3)∫
E

|f(x, y)| d(x, y) ≤
∫
E

1 d(x, y) = |E| = 1

2
< +∞,
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which means that f ∈ L1(E). Thus, one can use Fubini's theorem (Theorem 7.3.9) to see
that the iterated integral (7.3.2) is identical to

∫
E
f(x, y) d(x, y), and we further compute

that ∫ 1

0

(∫ 1

x

sin(y2) dy

)
dx =

∫
E

f(x, y) d(x, y)

=

∫ 1

0

(∫ y

0

sin(y2) dx

)
dy =

∫ 1

0

y sin(y2) dy

= −1

2
cos(y2)

∣∣∣∣y=1

y=0

=
1

2
(1− cos(1)).

Example 7.3.15. We �nally give a simple counterexample to demonstrate that Fubini's
theorem may not holds for general function. We de�ne f : R2 → R by

f(x, y) =


1 (x, y) ∈

⋃
i∈N(i− 1, i)× (i− 1, i),

−1 (x, y) ∈
⋃

i∈N(i, i+ 1)× (i− 1, i),

0 otherwise.

We see that ∫
R

(∫
R
f(x, y) dx

)
dy =

∑
i∈N

∫ i

i−1

(∫
R
f(x, y) dx

)
dy

=
∑
i∈N

∫ i

i−1

(∫ i

i−1

f(x, y) dx+

∫ i+1

i

f(x, y) dx

)
dy

=
∑
i∈N

∫ i

i−1

(∫ i

i−1

1 dx+

∫ i+1

i

(−1) dx

)
dy =

∑
i∈N

∫ i

i−1

0 dy = 0

and ∫
R

(∫
R
f(x, y) dy

)
dx =

∫ 1

0

(∫
R
f(x, y) dy

)
dx+

∑
i∈N

∫ i+1

i

(∫
R
f(x, y) dy

)
dx

=

∫ 1

0

(∫ 1

0

f(x, y) dy

)
dx+

∑
i∈N

∫ i+1

i

(∫ i

i−1

f(x, y) dy +

∫ i+1

i

f(x, y) dy

)
dx

=

∫ 1

0

(∫ 1

0

1 dy

)
dx+

∑
i∈N

∫ i+1

i

(∫ i

i−1

(−1) dy +

∫ i+1

i

1 dy

)
dx

=

∫ 1

0

1 dx+
∑
i∈N

∫ i+1

i

0 dx = 1.

We see that ∫
R

(∫
R
f(x, y) dx

)
dy = 0 ̸= 1 =

∫
R

(∫
R
f(x, y) dy

)
dx.
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This does not violate with the Fubini's theorem, since f is sign-changing, and using the
Fubini's theorem for nonnegative function one sees that∫

R

(∫
R
|f(x, y)| dx

)
dy =

∑
i∈N

∫ i

i−1

(∫
R
|f(x, y)| dx

)
dy

=
∑
i∈N

∫ i

i−1

(∫ i

i−1

|f(x, y)| dx+

∫ i+1

i

|f(x, y)| dx
)

dy

=
∑
i∈N

∫ i

i−1

(∫ i

i−1

1 dx+

∫ i+1

i

1 dx

)
dy =

∑
i∈N

∫ i

i−1

2 dy = +∞,

which means that f /∈ L1(R2).

7.4. Divergence theorem: a generalization of fundamental theorem of calculus

The main theme of this section and Section 7.5 below is to introduce some basic integration
rules, which are parallel to Section 4.2.

Let Ω be a bounded domain in Rn with piecewise C1-boundary ∂Ω (roughly speaking,
for each but �nitely many x ∈ ∂Ω there exists ϵ = ϵ(x) > 0 such that ∂Ω ∩ Bϵ(x) can be
represented as a C1 function).

Example 7.4.1. The rectangles in Rn are bounded domain with piecewise C1-boundary
∂Ω.

In fact, for each x ∈ ∂Ω, there exists a unique unit outward normal vector ν(x) =
(ν1(x), · · · , νn(x)). Here the term �unit� means |ν(x)| = 1. We write Ω := Ω ∪ ∂Ω and we
say that f ∈ C1(Ω) if there exists an open set U in Rn such that f ∈ C1(U).

Theorem 7.4.2 (Divergence theorem, see e.g. [Str08, Appendix A.3]). Let Ω be
a bounded domain in Rn with piecewise C1-boundary ∂Ω with the unit outward normal
ν = (ν1, · · · , νn), then for each i = 1, · · · , n one has∫

Ω

∂if(x) dx =

∫
∂Ω

νi(x)f(x) dSx for all f ∈ C1(Ω),

where dSx is the surface element on ∂Ω, which is in fact the Hausdor� measure.

Given any interval [a, b] ⊂ R with a, b ∈ R such that a < b, we see that the boundary of
[a, b] only consists of two points {a, b}. We see that the unit outward normal vector at x = b
is ν(b) = 1, while the unit outward normal vector at x = a is ν(a) = −1. In view of the
divergence theorem, one should have∫ n

a

f ′(x) dx =

∫
∂[a,b]

ν(x)f(x) dSx = ν(a)f(a) + ν(b)f(b) = f(b)− f(a) = f(x)

∣∣∣∣x=b

x=a

,

which is con�rmed by the fundamental Theorem of calculus (Theorem 4.1.15). Therefore,
one can refer the divergence theorem (Theorem 7.4.2) as the higher dimension version of the
fundamental theorem of calculus.

By using the product rule, we have

∂i(f(x)g(x)) = ∂if(x)g(x) + f(x)∂ig(x),
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then by using divergence theorem, we see that∫
Ω

∂if(x)g(x) dx+

∫
Ω

f(x)∂ig(x) dx

=

∫
Ω

∂i(f(x)g(x)) dx =

∫
∂Ω

νi(x)f(x)g(x) dS(x),

and we reach the following:

Theorem 7.4.3 (Integration by parts). Let Ω be a bounded domain in Rn with piecewise
C1-boundary ∂Ω with the unit outward normal ν = (ν1, · · · , νn), then for each i = 1, · · · , n
one has ∫

Ω

∂if(x)g(x) dx =

∫
∂Ω

νi(x)f(x)g(x) dS(x)−
∫
Ω

f(x)∂ig(x) dx

for all f, g ∈ C1(Ω), where dSx is the surface element on ∂Ω, which is in fact the Hausdor�
measure.

This is nothing but just the integration by parts formula, which is a generalization of
Theorem 4.2.1. This is an essential component in practical applications, such as partial
di�erential equations, see e.g. my lecture note [Kow24] for more details.

7.5. Substitution rule

We begin with some notions.

Definition 7.5.1. Let D and Ω are both bounded domains in Rn with piecewise C1-
boundaries. We say that φ = (φ1, · · · , φn) : D → Ω is a C1-di�eomorphism if φ : D → Ω
is bijective, φ ∈ (C1(D))n and φ−1 ∈ (C1(Ω))n. The function | det(∇ ⊗ φ)| is called the
Jacobian, where ∇⊗φ : D → Rn×n is the matrix-value function given by

(∇⊗φ(x))ij := ∂iφj(x) for all x ∈ D and for all i, j = 1, · · · , n.
Remark 7.5.2. By using Lemma 6.5.14, one has det(∇⊗φ) = det((∇⊗φ)⊺).

We now ready to state the main tool in this section.

Theorem 7.5.3 ([Cha06, (III.3.1)]). Let D and Ω are both bounded domains in Rn with
piecewise C1-boundaries, and let φ : D → Ω is a C1-di�eomorphism. Then one has

(7.5.1)

∫
Ω

f(y) dy =

∫
D

f(φ(x))| det(∇⊗φ)(x)| dx for all f ∈ L1(Ω).

One may ask why there is an absolute value in the Jacobian. We now consider n = 1 and
consider the C1-di�eomorphism φ : D = (c, d) → Ω = (a, b). In this case, either φ is strictly
increasing or φ is strictly decreasing.

• If φ is strictly increasing, then φ−1(a) = c, φ−1(b) = d and the Jacobian is |φ′(x)| =
φ′(x), and Theorem 6.4.2 suggests that∫ b

a

f(y) dy =

∫ d

c

f(φ(x))φ′(x) dx =

∫ φ−1(b)

φ−1(a)

f(φ(x))φ′(x) dx.

• If φ is strictly decreasing, then φ−1(a) = d, φ−1(b) = c and the Jacobian is |φ′(x)| =
−φ′(x), and Theorem 6.4.2 suggests that∫ b

a

f(y) dy = −
∫ d

c

f(φ(x))φ′(x) dx =

∫ φ−1(b)

φ−1(a)

f(φ(x))φ′(x) dx.
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Combining the above two cases, we reach∫ b

a

f(y) dy =

∫ φ−1(b)

φ−1(a)

f(φ(x))φ′(x) dx,

which is exactly the 1-dimensional change of variable formula given in Theorem 4.2.5. These
computations suggests that the sign of det(∇⊗φ)(x) is already included in the �orientation�
of φ, and here we remind the readers that remember to put absolute value in the de�nition
of the Jacobian.

Remark 7.5.4. It is convenient to abuse the notation by writing φ(x) = y(x) and

| det(∇⊗φ)(x)| = ∂y

∂x
=

∂(y1, · · · , yn)
∂(x1, · · · , xn)

,

and it is OK to write (7.5.1) as∫
Ω

f(y) dy =

∫
D

f(y(x))
∂y

∂x
dx for all f ∈ L1(Ω).

Remember to check the change of variable is C1-di�eomorphism.

Example 7.5.5 (Polar coordinate). We now consider the C1-di�eomorphism (x, y) :
(0, R)× (0, 2π) → BR(0) \ (R≥0 × {0}) given by

x = r cos θ and y = r sin θ for all 0 < r < R and 0 < θ < 2π.

We compute the Jacobian

∂(x, y)

∂(r, θ)
=

∣∣∣∣det( ∂rx ∂θx
∂ry ∂θy

)∣∣∣∣ = ∣∣∣∣det( cos θ −r sin θ
sin θ r cos θ

)∣∣∣∣ = |r(cos θ)2 + r(sin θ)2| = r.

By using the change of variable formula withD = (0, R)×(0, 2π) and Ω = BR(0)\(R≥0×{0}),
we see that ∫

BR(0)\(R≥0×{0})
f(x, y) d(x, y) =

∫
(0,R)×(0,2π)

f(r cos θ, r sin θ)r d(r, θ)

for all f ∈ L1(BR(0) \ (R≥0 × {0})). Since R≥0 × {0} has measure zero in R2, thus

L1(BR(0)) = L1(BR(0) \ (R≥0 × {0}))

and ∫
BR(0)\(R≥0×{0})

f(x, y) d(x, y) =

∫
BR(0)

f(x, y) d(x, y).

Since f ∈ L1(BR(0)), by using the Fubini's theorem (Theorem 7.3.1) we see that∫
(0,R)×(0,2π)

f(r cos θ, r sin θ)r d(r, θ) =

∫ 2π

0

(∫ R

0

f(r cos θ, r sin θ)r dr

)
dθ

=

∫ R

0

(∫ 2π

0

f(r cos θ, r sin θ) dθ

)
r dr.
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We summarize the above as:∫
BR(0)

f(x, y) d(x, y) =

∫ 2π

0

(∫ R

0

f(r cos θ, r sin θ)r dr

)
dθ

=

∫ R

0

(∫ 2π

0

f(r cos θ, r sin θ) dθ

)
r dr for all f ∈ L1(BR(0)).

Exercise 7.5.6. Let E = {(r cos θ, r sin θ) ∈ R : α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)} for some
0 < α < β < 2π and C1 functions h1, h2 : [a, β] → R>0. Show that∫

E

f(x, y) d(x, y) =

∫ β

α

(∫ h2(θ)

h1(θ)

f(r cos θ, r sin θ)r dr

)
dθ

for all f ∈ L1(E).

Example 7.5.7 (Polar coordinate in the whole Euclidean space). Unlike Riemann inte-
gral, one can directly operate unbounded domains for Lebesgue integral. By consider the
C1-di�eomorphism (x, y) : (0,+∞)× (0, 2π) → R2 \ (R≥0 × {0}), the above procedure gives∫

R2

f(x, y) d(x, y) =

∫ 2π

0

(∫ +∞

0

f(r cos θ, r sin θ)r dr

)
dθ

=

∫ +∞

0

(∫ 2π

0

f(r cos θ, r sin θ) dθ

)
r dr for all f ∈ L1(R2).

We further remark that if f is continuous in R2 \ {0}, the integral
∫ +∞
0

is identical to the
improper integral in Section 4.4.

Example 7.5.8 (Normal distribution). Given constants µ > 0 and σ > 0, and we de�ne
the continuous function

pµ,σ : R → R>0, pµ,σ(t) :=
1

σ
√
2π

e−
(t−µ)2

2σ2 for all x ∈ R,

which is the density of the normal distribution mentioned in Example 4.4.12. By using
Fubini's theorem for non-negative functions (Theorem 7.3.1) and consequently using the
polar coordinate, one sees that(∫

R
pµ,σ(t) dt

)2

=
1

2πσ2

(∫
R
e−

x2

2σ2 dx

)2

=
1

2πσ2

(∫
R
e−

x2

2σ2 dx

)(∫
R
e−

y2

2σ2 dy

)
=

1

2πσ2

∫
R2

e−
x2+y2

2σ2 d(x, y) =
1

2πσ2

∫ +∞

0

(∫ 2π

0

e−
r2

2σ2 dθ

)
r dr

=
1

σ2

∫ +∞

0

e−
r2

2σ2 r dr =
1

σ2

(
−σ2e−

r2

2σ2

) ∣∣∣∣r→+∞

r=0

= 1,

which concludes that ∫
R
pµ,σ(t) dt = 1,

that is, the density pµ,σ induces a probability distribution. In addition, the statement in
Exercise 4.4.13 also can be formulated in terms of Lebesgue integrals.
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