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Preface

This lecture note is prepared for the course Calculus for undergraduate level during Fall
2024 (113-1, 000713011) and Spring 2025 (113-2, 000713012). The main purpose of this
lecture note is to highlight some fundamental facts rather than all full details. In order to
avoid too much technical details, the proof of some results in this lecture will be omit, one
can see e.g. the monograph [Apo74, Rud87]| for rigorous proofs of all results. The notations
and terminologies in this lecture note, which will be used throughout the course, may differ
to other monographs, including other textbooks [HB10, SCW21|. This lecture note may
updated during the course.

Title. Calculus (Fall 2024, 3 credits)

Lectures (113-1, 000713011). Thursday (13:10-14:00, 14:10-15:00 15:10-16:00). Begins
at September 9, 2024 and ends at January 10, 2025.

Language. Chinese and English. Materials will be prepared in English.
Instructor. Pu-Zhao Kow (Email: pzkow@g.nccu.edu.tw)

Office hour. Thursday (16:10-17:00)

Teaching Assistant. TBA

Acknowledgments. I would like to give special thanks to students who pointed out my
mistakes in this note.

Some difficult materials are included in this lecture note for those interested in mathematics.
I understand that it is not possible to remember all details, and T will not going to teach
proofs in this course, however, one should at least remember basic definitions and some basic
lemmas /propositions/theorems, and know how to utilize them first. In order to do so, I
choose some examples and exercises to highlight what you should remember, therefore the
quizzes and exams will be prepared based on Examples and Exercises in this lecture note,
not necessarily identical, may slightly change to make the questions interested if necessarily.
One should remember the principal rather than the exact formula. You may use methods
which T have not taught, but always state the name of the theorem you used and check
sufficient conditions carefully.
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Part 1

Fall 2024 (113-1, 000713011)



CHAPTER 1

Set and functions

1.1. A quick and informal introduction of mathematical logic

In logic, a logical connective (also called a logical operator) is used to connect logical
formulas. Some commonly used logical connectives are:

negation (not), denoted as —

congunction (and), denoted as A

disjunction (or), denoted as V

implication (if --- then), denoted as =
equivalence (if and only if), denoted as <= .

It is also common to consider the always true formula and the always false formula to be
logical connectives as well:

e always true formula, denoted as T
e always false formula, denoted as F

Now the above logical connectives can be summarized in the following table:

| P|Q|-P|[PAQ[PVQ|P = Q|P <= Q]

T[T| F| T T T T
T|F| F| F T F F
FIT T | F T T F
FIF| T | F F T T

TABLE 1. Truth table

It is important to see that (which very frequently used in mathematics)
P Q@ = (P = QANQ = P),
as well as
(1.1.1) (P = Q) = -Q = -P
We now give a simple example to demonstrate the meaning of the truth table in Table 1.
ExXAMPLE 1.1.1. We denote P the event “it is raining” and denote () the event “the floor
is wet”.

e The negation =P becomes the event “it is not raining” and the negation —() becomes
the event “the floor is not wet”.

e The conjunction P A @ is the event “it is raining and the floor is wet”.

e The disjunction P V @ is the event “it is raining or the floor is wet”.

e The implication P = (@) is the event “If it is raining, then the floor is wet”.

e The equivalence P = () is the event “It is raining, if and only if the floor is wet”.

2
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Lets give more explanation on the implication P = (). Each row can be summarized in
the following sentence:

e If it is raining (i.e. P = T), then the floor is wet (i.e. @ = T). This implication is
true (ie. (P = Q)=T).
e If it is raining (i.e. P = T), then the floor is not wet (i.e. @) =F). This implication
is false (i.e. (P = Q) =F).
e If it is not raining (i.e. P = F), then the floor is wet (i.e. @ = T). This implication
is true (ie. (P = Q) =T).
e If it is not raining (i.e. P = F), then the floor is not wet (i.e. @ = F). This
implication is true (i.e. (P = Q) =T).
We see that if it is not raining (i.e. P = F), no matter the floor is wet or not, the implication
is always true. This means that, if the assumption is not true, then whatever you say is
always true, but the sentence is basically a nonsense. This is exactly reflected in the truth
table (Table 1). Therefore, always check the assumptions before using theorems.

DEFINITION 1.1.2. If the implication P = (@) is true, then we say that P is a sufficient
condition of @ (or P guarantees ) and in view of the contrapositive statement (1.1.1), we
also say that @ is a necessary condition of P.

ExXAMPLE 1.1.3. We denote P the event “you study hard” and denote () the event “you
pass the course”. I believe that the implication () = P is true, which means that “for
those students who pass the course, they are studied hard”. In view of the contrapositive
statement (1.1.1), this implication reads =P = —(), which means that “for those students
who do not study hard will fail the course”. The implication P = () means “if you study
hard, then you will pass the exam”, which I believe to be false. In fact, “there is no any
guarantee that you can pass this course even you study hard”. In terms of Definition 1.1.2,
P is a necessary condition of Q:

if you want to pass this course, you at least have to study hard.
However, P is not a sufficient condition of Q:
even you study hard, there is no any guarantee to pass this course.

In mathematical logic, it is important to mention the following quantifiers:

e universal quantification V: which is interpreted as “given any”, “for all”, or “for any”.
e existential quantifier 3: which is interpreted as “there exists”, “there is at least one”,
or “for some”.

The negation of “the event P(z) holds true for all 2” is “there exists x such that the event
P(z) does not hold”. The negation of “the event P(z) holds true for some z” is “the event
P(z) does not hold for all z”. Finally, we remind the readers that, one has to be careful
about the order of the mathematical argument, analogously, you cannot swap the order of
computer program.

1.2. An intuitive introduction of set theory

Set theory, more specifically Zermelo—Fraenkel set theory, has been the standard way
to provide rigorous foundations for all branches of mathematics since the first half of the
20th century. Rather than explaining details in a rigorous way, here we will only intuitively
introduce the set theory (https://en.wikipedia.org/wiki/Set_(mathematics)), since we
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will only use the set theory as a mathematical language. One can take a look on a lecture
note [Winl0| for more details on this topic.

DEFINITION 1.2.1. A set is a collection of different mathematical objects (e.g. numbers,
symbols, points in space, lines, other geometrical shapes, variables, or even other sets); these
objects are called elements or members of the set.

We first explain now to express a set. Roster or enumeration notation defines a set by
listing its elements between curly brackets, separated by commas, for example:

A ={1,3,4,a,black}.

For sets with many elements, especially those following an implicit pattern, the list of mem-
bers can be abbreviated using an ellipsis “- - -7, for example:

{1,2,3,---,100}, {a,b,c,--- ,k}.

To describe an infinite set in roster notation, an ellipsis is placed at the end of the list, or at
both ends, to indicated that the list continuous forever. For example:

N:={1,2,3,---}, Z:={--,-3,-2,—-1,0,1,2,3,--- }.
Another way to define a set is to use a rule to determine what the elements are, for example:
Let Zs2 be the set whose members are integers > —2.

Such a definition is called a semantic description. One also can specify a set as a selection
from a larger set, determined by condition(s) on the the elements. For example,

Zs>_o={n:neZn>-2}={neZ:n>-2}
We usually, unless stated, assuming the following axiom:

AxioM 1.2.2 (Extensionality). Two sets that have precisely the same elements are equal.
In other words, sets are uniquely characterized by their elements (without repeat counting the
same element and without considering the order of elements). For example, {1,2,4,2} =

(1,2,4} = {4,2,1}.

This axiom is just to unify the writing format of the sets, so that we can communicate
using the same language. The above extensionality axiom implies the following lemma.

LEMMA 1.2.3. There exists a unique emply set ().

REMARK 1.2.4. The empty set () also can be expressed in Roster notation as {}. However,
one should be careful that () and {()} are different, since {(} is a set consists of one element,
which is called ), therefore {0} is not an empty set.

ExXAMPLE 1.2.5. We now introduce some special sets of numbers in mathematics.
e N is the set of all natural numbers, that is, N:= {1,2/3,.--}.

e 7 is the set of all integers, that is, Z :={--- ,—-3,-2,-1,0,1,2,3,--- }.
e For each a € R and b € R, it also convenient to define the set aZ + b := {am + b :
m € ZL}.

e Q is the set of all rational numbers, that is, Q = {§ : a € Z,b € Z,b # 0}.
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e R is the set of all real numbers, which is the completion of Q with respect to the
Euclidean norm | - |, where

if a >
|a|::\/¥:{a ifa>0,

—a ifa<O.

Sometime, we also call | - | the absolute value of real numbers. We will give a precise
definition in Part 2.
e For each a,b € R, we denote the intervals by

(1.2.1) (a,b) :={r €R:a <z <b} (open interval),
la,b] ;={x € R:a <z <b} (closed interval),
la,b) :={r €R:a <z <b},
(a,b) :={r €R:a <z <b}.
It is also convenient to write
(1.2.2) (—00,b) :={zeR:z<b}, (a,+0):={x€eR:x>a}, (—o00,00):=R,
as well as
(—o0,b]:={zeR:2<b}, [a,+0):={reR:x>a}.

e Despite 00 ¢ R, we still often abuse the notation by saying that “I = (a,b) for
some —00 < a < b < 400”, which means that I can be either (1.2.1) or (1.2.2). One
can interpret the notions “I = (a,b) for some —oo < a < b < +00” and “I = (a,b)
for some —o0o < a < b < 400" using a similar manner.

DEFINITION 1.2.6. Let A be a set. If a is a member in A, then we denote a € A. If b is
not a member in A, then we denote b ¢ A.

DEFINITION 1.2.7 (Basic operations). Given any two sets A and B:

e we say that A is a subset of B, denoted as A C B, if all elements of A also belongs
to B.

e their union AU B is the set of all elements that are members of A or B or both.

e their intersection AN B is the set of all things that are members of both A and B.
If AN B =), then A and B are said to be disjoint.

e the set difference A\ B is the set of all things that belong to A but not B.

e their symmetric difference AAB is the set of all things that belong to A or B but
not both, that is, AAB = (A\ B)U (B \ A).

e their Cartesian product A x B is the set of all ordered pairs (a,b) such that a € A
and b € B.

REMARK 1.2.8. If A C B and B C A, then by Axiom 1.2.2 we see that A and B are
equal, and we denote A = B.

The simple concept of set has proved enormously useful in mathematics, but paradoxes
arise if no restriction are placed on how sets can be constructed, for example, the Russell’s
parador shows that the “set of all sets that do not contain themselves”, i.e.

(1.2.3) {X : X is aset and X ¢ X} cannot exist.

Rather than go through all details how the Zermelo—Fraenkel set theory excludes this situ-
ation, we will explain this philosophy using some simple examples. In practical, we usually
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refer the set consists of other sets as a collection. For example, let P be the collection of all

subsets in {a, b} means that
P = {(Z)v {a}, {0}, {a,b}}.

We intuitively view (), {a}, {b}, {a, b} as “level-1" objects, and view P as “level-2” object. The
elements in sets also can be viewed as “level-0” objects. We usually refer the set consists of
collections (i.e. “level-2” objects) as a superset, which is natural to be labeled as “level-3”
object. We distinguish between “€” and “C” as follows:

e We write x € X for “level-0” object = (point) and for “level-1” object X (set); we
write X € P for “level-1” object X (set) and for “level-2” object P (collection), and
SO on.

e We write X C Y for two “level-1” objects X and Y (sets); we write P C Q for two
“level-2” objects P and Q (collections).

We now see that (1.2.3) is invalid if we consider the above concept of “levels” (more pre-
cisely, the Zermelo—Fraenkel set theory). The union, intersection, difference and symmetric
difference also can be operated for collections (“level-2” objects) as well as supersets (“level-3”
objects). The Cartesian product can be operate for different “levels” of objects.

Finally, we also can explain Remark 1.2.4 in terms of “levels”: The empty set () is a “level-
1”7 object, while {0} is a “level-2” object, which is a collection consists of only one element ().
Sometimes we also abuse the notation by denoting the empty collection (“level-2” object) as
0, for example the superset (“level-3” object) {{0},0}.

1.3. Functions

DEFINITION 1.3.1. Let X and Y be sets. A function f from a set X to a set'Y, denoted
as f: X — Y, is an assignment of one unique element of Y to each element of X. In this
case, the set X is called the domain, while Y is called the range. If the element y € Y is
assigned to x € X by the function, one says that f maps = to y, and this is commonly write
f(z) = y. Sometimes we also write

f:xw—y, ormoreprecisely, f:xe X—yeY.

One may imagine a function works like a virtual machine, or simply a computer program.
We highlight two main points in the above definition:

e When we input an element x € X into a function, or a “machine” f, we have to
make sure that f can accept this element and the output is also valid. For example:
— invalid input. the “machine” g(x) = y/z cannot process the input =z < 0. In
this case, g cannot be defined as a function on R.
— invalid output. the “machine” h(z) = x is not well-defined from R to R,
since the range R is too small with respect to the domain R.
e After we input an element x € X into a “machine” f, we must specify a unique
output (otherwise your computer only suggests you a “fatal error”).
— For example, you input a number 1 and ask the “machine” to solve 22 = 1, then
the “machine” will confused it should output x = 1 or x = —1 if there is no
restriction.

Therefore it is important to mention the domain and range while writing a function (but
unfortunately many textbooks fail to do so). Here is also a reminder for beginners: Always
carefully mention “for all/for each” and “for some/there exists”, and the order of sentences
is also tmportant (just like your computer program, you cannot mess up the order).
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EXAMPLE 1.3.2. Let f: R\ {1} — R given by f(z) = ”“";:1"” for all z € R\ {1}, and let
g: R — R given by g(x) = x for all x € R. One sees that

f(z) =g(x) forallx e R\ {1},

which means that the functions f: R\ {1} - R and ¢g: R\ {1} — R are identical, but the
functions f: R\ {1} — R and g : R — R are different, since f(1) is not well-defined.

We now consider the function f : R — R given by f(z) = 22 for all x € R. We see
that f(x) > 0 for all x € R, which suggests that the range f : R — R is redundant, that is,
f R — Ry is also a well-defined function. This suggests us the following definition:

DEFINITION 1.3.3. A function f : X — Y is said to be onto or surjective, if for each
y € Y, there exists a x € X such that f(z) =y.

Here the choice x € X is not necessarily unique, for example the function f: R — R is
surjective since for each y € R>( one sees that

fWy) =y and  f(=Vy) =y.

Let f: X — Ybe a function, we define its image

(1.3.1) f(X):={f(z) 2z e X}.
One see that f: X — f(X) is surjective.

On the other hand, if f : X — Y is a function, then so is f : Xy — Y for any Xy C X.
This strongly suggests the following notion:

DEFINITION 1.3.4. A function f : X — Y is said to be one-to-one or injective, if f(z,) =
f(xo) implies x; = 5.

REMARK. We recall a logic facts: “P implies ()7 equivalent to “negative-Q)” implies
“negative-P”.  Therefore, the above definition is also equivalent to: x; # o implies

f(x1) # f(x2).

DEFINITION 1.3.5. If f : X — Y is both injective and surjective, then we say that
f: X =Y is bijective.

DEFINITION 1.3.6. Let f : X — Y; and ¢g : Y5 — Z be functions. If Y] C Y5, then we
denote the function go f : X — Z by

(9o f)(x) =g(f(z)) forallzeX,
which is called the composition of f and g.

DEFINITION 1.3.7. We say that a function f : X — Y is invertible if there exists a
function f~!:Y — X such that (f~'o f)(z) =z for all z € X and (f o f~1)(y) = y for all
yeyY.

THEOREM 1.3.8 ([Win10, Lemma 3.9]). Let f : X — Y be a function. Then it is bijective
of and only if it 1s invertible.

ExXAMPLE 1.3.9. This example also explains the importance of stating the domain and
range of functions.

e The function f : R — R given by f(z) = 2? for all z € R is neither injective nor
surjective.
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e The function f : R — Rsq given by f(x) = 22 for all x € R is surjective but not
injective.

e The function f : Rsq — R given by f(z) = z? for all x € Ry is injective but not
surjective.

e The function f : Rsg — Rsq given by f(z) = 2? for all z € Ry is bijective, with
inverse function f~!: R — Rxg given by f~!(y) = \/y for all y € Rx,.

REMARK 1.3.10. Let f : X — Y be a bijective function. If f(x) = y, then f~!(y) = .
Hence it is recommend to use different variable for f and f~!. For example, it is recommend
to write the inverse function f~: Rsg — Rsg of f : Rsq — Rsg given by f(z) = 2? for all
r € Rsgas f~'(y) = /y for all y € Ry (rather than f~'(z) = /z for all z € R, even
though this is true).

DEFINITION 1.3.11. Let I be an interval in R.

(a) A function f : I — R is called non-decreasing if f(x1) < f(x2) for all 1,29 € I with
1 < Ia.

(b) A function f : I — R is called strictly increasing if f(x1) < f(xq) for all x1, 29 € [
with 1 < x5.

(c) A function f : I — R is called non-increasing if f(x1) > f(xo) for all x1, 25 € I with
1 < Ta.

(d) A function f : I — R is called strictly decreasing if f(x1) > f(xq) for all xy, 25 € 1
with 1 < Tag.

LEMMA 1.3.12. If f : I — R s either strictly increasing or strictly decreasing, then
f I — f(I) is bijective, with inverse f~1: f(I) — I.

It is easy to construct a bijective function which is neither non-decreasing nor non-
increasing:

EXAMPLE 1.3.13. One sees that f:[-1,1) — [—1,1) by

{—x—1if—1§xgm

Jx) = —r+1 if0<z<l,

is bijective, but neither non-decreasing nor non-increasing.

EXAMPLE 1.3.14. Here we exhibit some basic functions.
(1) A function P : R — R is called a polynomial if

P(x) = Z a;v) = apx" + ap_ 12"+ -+ @z +ay forallz € R.
§=0
The numbers ag, aq, - - - , a, are called the coefficients. If the leading coefficient a,, #
0, then the degree of the polynomial P is n, and we simply denote deg(P) = n.
(2) Suggested by the polynomial, we are now interested in the power function of the
form f,(x) = aP for p € R, where the domain to be specify later.
(a) For each n € N, one sees that f,, : Rsg — Rs¢ is simply the polynomial. Since
fn t Rsg = Ry is strict increasing and bijective. In view of the exponential
rule, we define

filz)=an = f7N(x) for all z € Ry,

n
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Accordingly, we define f, : R>o — R for all p € Qs by

m
n

fm(z)=aw = (fLo fn)(x) forall z € Ry
Finally, the function f, : R>g — R can be defined for all p € R, via the
completion (will not rigorously explain this at this point).

(b) For p < 0, we simply define f, : Ryy — R by

1
fo() == Fi (@)

for all x € R+.

In view of the exponential rule, we use the convention fy(z) = 1 for all z € Rx,.

(3) A function f is called a algebraic function if it can be constructed using algebraic op-

erations (such as addition, subtraction, multiplication, division, and composite with

the power function above). The functions that are not algebraic are called tran-

scendental; these include the trigonometric, exponential and logarithmic functions
mentioned below.

EXAMPLE 1.3.15 (Trigonometric functions). Let B be the unit ball in R?* with radius 1
centered at 0, and let OB be its boundary, i.e. the unit circle. Let 7 be the area of B. It is
well-known that 7 = 3.14159 - - -, and the length of OB (also known as circumference or the
perimeter of the unit circle). Let L; and Ly are two straight line both passing through the
origin, and let P, := LyN0B and P, := L,N OB, and we see that the circle 0B is partitioned
into two parts, says ['; and I's, by the points P, and P,. Intuitively, it is natural to define the
angle between L; and Ly by the length of I'; or 'y, but however this may cause some trouble
in mathematics, since this is not a function, since both choices I'; and I'y correspond to the
same geometry. In order to make the definition rigorous, we define angle with orientation.
Starting from the point P, which corresponds to line Li, we rotate counter-clockwise and
stop at P5 (not necessarily stop at the first meeting), which corresponds to line Ly. Let T" be
the portion of OB during the rotation. Then we say that':

the angle 6 (in radian) from L; to Ly is defined by the length of T.

Now the angle is oriented, one sees that the angle from Ly to Ly is —6. In addition, 6 can be
any value in R. In some occasion, we sometimes refer the |6| the (phaseless) angle between
Ly and Lo, even it is not so rigorous.

With the oriented angle at hand, we now can define the trigonometric functions, as in
Figure 1.3.1 below:

ISince = is transcendental, it is not so convenient in some application (e.g. aviation). We usually normalize
the angle as follows:

~ ~ 360
the angle 6 (in degree) is defined by 0 := 2—9, where 6 is angle in radian.
T

The reason we choose 360 is it is dividable by many integers, including 2, 3,4,5,6,8,9, 10, ---.
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\

sin(6)

cos(6)

FIGURE 1.3.1. Definition of sine function and cosine function: Stephan Kulla
(User:Stephan Kulla), CC0, via Wikimedia Commons

Since the angle is oriented, thus the trigonometric also has sign, for example, sinf < 0
when 7 <6 < %ﬂ'. According to the above definition, we also see that

sin: R — [—1,1] and cos:R — [—1,1]

are both surjective functions, but not injective. The definition of sine and cosine function
immediately gives

(cos0)® + (sinf)* =1 for all @ € R.

Some special values are showed in Figure 1.3.2 below:

FIGURE 1.3.2. Some special values of (cosf,sinf): Gustavb (talk - contribs),
Public domain, via Wikimedia Commons
It is remarkable to mention that

sin(—f) = —sin@ for all € R,
cos(—0) = cosf for all § € R,
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FIGURE 1.3.3. Six trigonometric functions: Onmaditque, CC BY-SA 4.0, via
Wikimedia Commons

that is, the sine function is odd while the cosine function is even. The other trigonometric
functions are defined as follows (see Figure 1.3.3):

in
tand = 227 forallg e R\ (wz+3>,
coS 2
sec = ! forall&éR\(Z—i—Z)
"~ cosf i 2/’
0
cot0:= 27 forall € R \ 7Z,
sin
1
cosect = cscl == — for all 0 € R\ 7Z.
sin 0

One see that

cotd =

ol for all@GR\(ﬂZU<7rZ+g)> :R\gﬂ',

which means that the identity only holds true in restricted domain.

EXERCISE 1.3.16. We say that f : R — R is an odd function if f(—z) = —f(z) for all
z € R, and we say that f : R — R is an even function if f(—x) = f(z) for all x € R. Given
any function g : R — R, show that there exists an odd function g,qq : R — R and an even

function geyen : R — R such that
g(:c) = godd(x) + geven(x) for all z € R.

In addition, if ¢ £ 0 and there exists an odd function h,qq : R — R and an even function
heven : R — R such that

godd(x) + geven(x) - hodd(x) + heven(x) for all z € Ra

show that goqq(z) = hodad(x) and Geven () = heyen(z) for all x € R.
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EXAMPLE 1.3.17 (Inverse trigonometric functions). In order to define inverse functions,
we usually (unless stated) consider

sin: [-7/2,7/2] — [—1,1]
cos : [0, 7] — [—1,1],
tan : (—m/2 7r/2) — R,

7]\ {W/Q} — Re1 UR>y,
—7T/2,7T/2] \ {0} — RS—I URZI;

secC

(—
cot : (0,m) —
[0
[

COSeC = CSC .

which are bijective, and hence the corresponding inverse functions, called the inverse trigono-
metric functions, are defined as :

arcsin = sin~ ' : [~1,1] = [-7/2,7/2],
arccos = cos ' : [—1,1] — [0, 7],
arctan = tan™! (—m/2,m/2),

cot™' R — (0,7),

sec! 1 Rej URsy — [0, 7]\ {7/2},

csc ! i Re URsy — [—-7/2,7/2] \ {0}.
Since all other trigonometric functions can be generated by sine and cosine function, through-
out this course, we will only focus on sine and cosine functions.

1

EXERCISE 1.3.18. Sketch the function sin"'osin: R — R and cos 'ocos: R — R.

EXAMPLE 1.3.19 (Euler formula and trigonometric functions). Here we also explain a
simple way to derive trigonometric identities. We formally write the imaginary number
i :=+/—1, one can see e.g. my other lecture note [Kow23|, which is much more advance, for
a precise definition. The Euler formula reads:

e :=cosf +isin@ for all § € R.
Performing some formal computations lead (more precisely, the de Moivre theorem)
cos(fy + 65) + isin(fy + 6,) = el@1+6)
= %6l = (cos @) + isinf;)(cosfy + isinby)

= cos 0 cos By + i% sin 6 sin Oy + i(cos 6, sin Oy + sin O cos Oy)

= (cos 0 cos Oy — sin 0 sin 05) + i(cos 61 sin Oy + sin 0, cos bs).
Comparing the real and imaginary parts lead us to the sum-to-product formula:

cos(fy + 02) = cos 0 cos Oy — sin 6, sin 6,

sin(6; + 63) = cos 6y sin 6, + sin 6 cos 6,.

Choosing 6, = 6, = 6 leads to the multiple angle formula. 1t is easy to obtain further
generalization by consider ell®102+0s) — 10161026105 and 50 on. From this, it is easy to derive
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the product-to-sum formula, for example,
cos(0; + 02) + cos(6; — 02)
= cos 0 cos Oy — sin 0 sin Oy + cos 01 cos(—0) — sin Oy sin(—6,)
= cos by cos By — sinbsimfy + cos 01 cos Oy + sinB=im by
= 2cos by cos bs.
The other three product-to-sum formula can be easily obtained by considering
cos(fy + 6y) — cos(0y — 6y), sin(fy + 63) +sin(6; — 63), sin(6; + O2) — sin(6; — 02),

here we left the details for readers as an exercise.
Here we also exhibit some interesting functions, which will serves as counterexample in
the future.
(a) f:R\{0} = R, f(z) =sin(l/x) for all x € R\ {0}.
(b) Given a parameter p > 0, we consider the function f: R\ {0} — R is given by

f(z) = |z[Psin(1/z) for all z € R\ {0}.

1 ,ifz eQ,
0 ,ifreR\Q.

‘ . % ,if$:§€Q,q>O7ng(p7Q):1’
(d) f:R=R, f(z) = {0 Jif z € (R\ Q) U{0}.

(c) f:R—HR,f(x):{

The above examples demonstrate that the functions may oscillating intensely. In some
case, it is even not possible to sketch, see Example 1.3.19(c)(d) above.

EXERCISE 1.3.20. Sketch Example 1.3.19(a)(b).

ExXAMPLE 1.3.21 (Exponential function and logarithmic function). Given any a > 0 with
a # 1 (this case is trivial), we already showed in Example 1.3.14 that

(1.3.2) f:R—=Ryy, f(z):=ad"

is a well-defined function. One sees that the function is strictly increasing when a > 1, and
strictly decreasing when 0 < a < 1, and in fact (1.3.2) is bijective. One sees that

f(0)=1 forall a >0 with a # 1.

We now consider the tangent line of the graph of (1.3.2). One sees that the tangent line has
slope about 0.693147 - -- when a = 2, and about 1.0986 - -- when a = 3. In fact, there exists
a unique number e, which is called the natural exponent, with value about 2.71828 - - -, such
that the tangent line has slope exactly 1. In this case, we usually denote the function
exp: R — Ryg, exp(z):=e",

which is bijective, with inverse function
(1.3.3) In: R, — R.
called the natural logarithmic function. For each p € R and g € R, since

exp(In(zPy?)) = 2Py? = (exp(Inz))?(exp(Iny))? = exp(plnz + ¢qlny) for all z,y > 0,
then we reach the following fundamental identity for logarithmic function:

(1.3.4) In(zPy?) = plnz+ glny forallz >0,y >0,p e R,q € R.
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For each a > 0, one also may define the logarithmic function with base a as

1
(1.3.5) log, : Rog = R, log,(z) := ln_x for all a > 0,
na

which is clearly a bijective function. It is easy to extend the fundamental identity (1.3.4) for
(1.3.5). In addition, one sees that

na yl
(1.3.6) log, (a¥) = —2 = Y19

= = =y forally eR,
Ina Ina

together with the bijection (1.3.5), we conclude that (1.3.5) is exactly the inverse function of
(1.3.2). In view of (1.3.5), it is not interesting to consider arbitrary base a, throughout this

course, we will only focus on the natural logarithmic function (i.e. the logarithmic function
with base e).



CHAPTER 2

Limits and continuity

2.1. Limit and limit superior in R

In Example 1.3.2, we have explained that the functions f : R\ {1} — R given by
flz) = x;__f for all z € R\ {1} and ¢ : R — R given by g(z) = z for all z € R are different
in the sense of functions, despite they looks similar intuitively. Despite it is not possible to
define f at 1, but it is possible to discuss the behavior of f near 1. This situation suggests

us the following definition:

DEFINITION 2.1.1. Let a,z0,b € R with a < o < b and let f : (a,b) \ {zo} — R be a
function. We say that the limit lim,_,,, f(z) = L € R exists if: Given any € > 0, there exists
9 = d(e) > 0 such that

(2.1.1) 0 < |z — x| < 0 implies |f(z) — L] < e.

The implication (2.1.1) roughly means that, if z # x is “sufficiently close” to z, then f(x)
is also “close” to the number L € R. Here is the main point: what is the precise meaning
of “sufficient close”™ The idea is: Lets find a third-party judge, which is absolutely fair, give
a tolerance level € > 0 (e is the Greek letter corresponding to English character “e”, which
represents the error), we then decide a reasonable distance § > 0 depends on the tolerance
level € so that (2.1.1) works. Since ¢ depends on € (and in fact also depends on zy), it is
recommend to write 6 = J(¢) in order to emphasize (and remind yourself) the dependence
on €. According to the above definition, it is not difficult to see that

lirq f(z) =1 despite f(1) is not well-defined.
z—

This example also reminds the reader that the definition of limit does not involve the value
of f(xo), so the function f in Definition 2.1.1 may not well-defined at x3. One sees that the

absolute value function | - | is simply the Euclidean norm, therefore it is natural to write the
ball B,(z) := {x € R : |z| < r}. We can rewrite (2.1.1) as:
(2.1.2) x € Bs(xg) \ {zo} implies f(x) € B.(L),

or in terms of image (1.3.1), we even can write

f (Bs(o) \ {0}) C Be(L).
Now we consider the Heaviside function H : R\ {0} — R defined by

1 >0
2.1.3 H(x) = ’ ’
( ) (z) {O , o < 0.

Intuitively, we may expect the limit lim, .o H(x) does not exist. However, this suggests the
following definition.

15
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DEFINITION 2.1.2. Let a,z9,b € R with a < 2y < b and let f : (x0,b) — R and
g : (a,x9) — R be functions. We say that the right limit lim, .+ f(x) = L € R exists if:
Given any € > 0, there exists § = §(e) > 0 such that

(2.1.4) 0 < |z — x| < d and x > x together imply |f(z) — L| <.

Similarly, we say that the left limit lim,_,,,_ g(z) = L € R exists if: Given any € > 0, there
exists § = 0(€) > 0 such that

(2.1.5) 0 < |z — x| < d and x < xy together imply |g(z) — L| < e.
It is easy to see that (2.1.4) is equivalent to
0 <z —ux9 <0 implies |f(z) — L| <,
and similarly (2.1.5) is equivalent to
—0 <x —x9 <0 implies |f(z) — L| <.
From the definition it is not difficult to see that:

LEMMA 2.1.3. Let a,z9,b € R witha < zo < b and let f: (a,b)\ {zo} = R be a function.
o Iflim, ,,, f(x) € R exists, then both lim,_,,,+ f(x) € R and lim,_,,,— f(x) € R exist
and

(2.1.6) lim f(z) = lim f(z)= lim f(z).

T—T( T—T0+ T—To—

o If both lim, ...y f(z) € R and lim, ., f(x) € R exist and lim, ., f(z) =
lim, ..~ f(z), then lim,_,,, f(z) € R ezxists and satisfy (2.1.6).

In view of the above notions, we now see that the Heaviside function (2.1.3) satisfies

lim H(z) =1 and lim H(x) =0,
z—0+ z—0—

thus according to Lemma 2.1.3 we conclude that lim, o H(z) does not exist since the left
and right limits are not identical. As an immediate consequence, we also see that, if either
left limit or right limit does not exist, then we immediately know that the limit does not
exist.

LEMMA 2.1.4 (Basic properties of limits). Let a,x9,b € R with a < zog < b and let
g1 ¢ (a,0) \ {zo} — R as well as go : (a,b) \ {zxo} — R. If both limits lim, ,,, g1(x) and
lim, ., g2(x) exist in R, then the following holds true:

(a) for each ¢; € R and ¢y € Rthe limit lim, ., (c101(x) + cago(x)) exists in R and
satisfies
lim (c191(x) + c2g2(2)) = 1 h_)m g1(z) + co li_>m go(z)  (linearity).
T—rT0 T—T0

Tr—x0

(b) if g1(x) < go(x) for all x € (a,b) \ {zo}, then

lim g;(x) < lim go(x) (monotonicity).
T—T0 T—TQ

(c) the limit lim, ., (g1(x)g2(x)) exists in R and satisfies

i (1 (2)ae)) = ( Jim an(o)) ( 1m (o) ).
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g1(z)

9(2) erists

(d) if we additionally assume that lim, ., g2(x) # 0, then the limit lim,_,,,
i R and satisfies
lin 9L2) _ e ey g1(2)
ewo go()  limgyp go(2)
Similar result also holds true for left and right limits.

In general, it is not easy to check that whether the limit exists or not using a rigorous
mathematical formula, one simple way is to proof the existence by using the existence of
other functions. The following lemma is an immediate consequence of Definition 2.1.1.

LEMMA 2.1.5 (Squeeze theorem). Let a,z9,b € R with a < z¢ < b and let g1 : (a,b) \
{z0} = Rx0, 92 : (a,0) \ {zo} = Rxg as well as f: (a,b) \ {zo} — Rxo. If

g1(z) < f(z) < go(2) for all @ € (a,b) \ {0},
both lim, ., g1(z) and lim,_,,, g1(z) ezist in R satisfying
Jim 51(a) = Jim 51 (0).
then lim, ., f(x) exists and

Jip, £(2) = Jim 01(=) = Jim (=),

Similar result also holds true for right and left limits.
However, in many cases, for example the function

1 ,xeQ,
0 ,zeR\Q,

consider in Example 1.3.19, it is not easy to check that the left and right limits lim, o f(2)
and lim,_,o_ f(z) does not exist using a rigorous mathematical formulation, despite it is not
easy to guess intuitively. From Definition 2.1.1, one sees that

lim f(x) = L € R exists if and only if lim |f(x) — L| =0,

T—T0 T—rT0

(2.1.7) f:R—=R, f(z)= {

that is, given any € > 0, there exists a 0 = d(¢) > 0 such that
x € Bs(xo) \ {0} implies |f(z) — L| < e.
This observation suggests us the following definition:

DEFINITION 2.1.6. Let a,z9,b € R with a < xy < b and let g : (a,b) \ {zo} — R be a
function. We define the limit superior or upper limit by

(2.1.8) limsup g(z) := lim ( sup g),
By (

=g =0+ \ By (z0)\{wo}

where
sup g=1inf{M : M > g(z) for all x € B,(z9) \ {zo}},
Br(zo)\{zo}
and the infimum is understood in the limit sense. The limit superior from right or upper
limit from right is defined by

=0+ r—0+ (zo,z0+T)

limsup g(z) := lim ( sup g),
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and similarly the limit superior from left or upper limit from left is defined by

limsup g(z) := lim ( sup g).

T—>x0— r—0+ (zo—r,20)
One sees that the function

¢:Rog > Roo ()= swp g
Br(z0)\{zo}
is monotone non-increasing, therefore the limit (2.1.1) always exist in Rs( in the sense of
Definition 2.1.1. We now introduce the following powerful lemma (we will extend this lemma
later in Section 2.3):

LEMMA 2.1.7. Let a,x0,b € R with a < xo < b and let f : (a,b) \ {xo} = R be a function.
(a) If lim, ., f(z) = L € R exists, then limsup,_,, |f(z) — L[ = 0.
(b) If limsup,_,, |f(z) — L| = 0 for some L € R, then lim, ., f(z) ewists and
lim, ., f(x) = L.
(c)If f > 0 for all x € (a,b) \ {xo} and lim,,,, f(x) = L € R exists, then
limsup,_,,, f(z) = L.
Similar results also hold true for right limit/limit superior from right as well as left limit/limit
superior from left.

EXAMPLE 2.1.8. We now consider the function given in (2.1.7). If L < 1, then for each
r > 0, one can choose 2’ € B,(zo) \ {zo} such that f(z’) = 1, and hence

1
swp |f@) — L > f@)—Ll=1-L> 1,
z€Br(20)\{zo0} 2

and thus limsup,_,, |f(z)—L| > L. Otherwise, if L > 1, then for each r > 0, one can choose
" € B.(zo) \ {zo} such that f(z”) =0, and hence

1
sup  |f(x) = L| > |f(z") - L|=L> =,
z€Br(20)\{zo0} 2

and thus limsup,_,, |f(z) — L| > 1. This means that, given any L € R, one always has

limsup| f(z) — L| # 0,

T—T0

which concludes that lim,_,,, f(z) does not exist according to Lemma 2.1.7. We will later
give a simpler proof in Example 2.3.12 below after expanding the definition of limits (Defi-
nition 2.1.1 and Definition 2.1.2).

EXERCISE 2.1.9. Let a,x9,b € R with a < zy < b and let g1 : (a,b) \ {z0} — Rx¢ as well

as go @ (a,b) \ {zo} = Rxo.
(a) Show that

(2.1.9) limsup (¢g1(x) 4+ g2(x)) < limsup g;(x) + limsup go(z) (subadditivity)

T—T0 Tr—x0 T—T0

(b) Show that

(2.1.10) limsup (g1 (x)ga(x)) < (lim sup gl(x)) (lim sup 92(:10)) .

T—T0 Tr—T0 Tr—T0
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(c) If g1(x) < go(x) for all x € (a,b) \ {zo}, show that
(2.1.11) limsup ¢g;(z) < limsup go(x) (monotonicity).

T—rT0 T—rT0

Similar results also hold true for limit suprerior from right and left.

REMARK 2.1.10. In general, unlike the linearity property in Lemma 2.1.4(a), we only have
inequality in (2.1.9), see Remark 2.3.11 below for more details. Other than this, basically
limit superior is a replacement for the usual limit to avoid the difficulty to prove the existence
of limits.

REMARK 2.1.11 (Standard way to use Exercise 2.1.9). By using the subadditivity property
of Euclidean norm (also known as the triangle inequality), we have

[fi(z) = LI = |fi(x) = fol2) + falz) = L| < [fi(z) = fal2)| + [ f2(2) — L],
then the monotonicity property (2.1.11), and then consequently by the subadditivity property
(2.1.9), imply that

limsup | f1(2) — L| < limsup (|fi(2) — fola)| + |fola) = L)

T—T0 Tr—T0
<limsup |fi(z) — fo(x)| + limsup | fo(z) — L.
T—rT0 T—T0

Since the computations only involving inequality, rather than the equality, this gives possi-
bility to simplify some computations.

EXAMPLE 2.1.12. We consider the function f given in (2.1.7), and define g(z) := |z|f(z)
for all x € R. It is not difficult to see that

0<g(z)<|z| forallzeR.

At the moment, since we do not know whether lim,_,o g(x) exists or not, one cannot directly
use the monotonicity of limit in Lemma 2.1.4(b) to reach

< 1i <1i .
0 < lim g(z) < lim ||
The proper argument should goes in the following way:

e Method 1: via squeeze theorem (Lemma 2.1.5). Since lim, ,o|z| = 0 and
lim, ,00 = 0, then by using the squeeze theorem (Lemma 2.1.5) we conclude that
lim, o g(x) exists and lim,_,, g(z) = 0.

e Method 2: via limit superior criteria (Lemma 2.1.7). Since

lg(x) = 0| = g(x) < |z| forall z € R,

then by monotonicity property (2.1.11) and by part (c¢) the limit superior criteria
(Lemma 2.1.7) we see that
limsup |g(z) — 0| < limsup |z| = lim |z| = 0,
z—0 z—0 z—=0

and finally we conclude that lim,_,¢ g(z) exists and lim,_,o g(z) = 0 using part (a) the
limit superior criteria (Lemma 2.1.7). This is just a demonstration of the standard
way how to use the monotonicity property (2.1.11) and the limit superior criteria
(Lemma 2.1.7), we will not going to exhibit all details after this example. We will
give a simpler proof in Example 2.3.13 below after expanding the definition of limits
(Definition 2.1.1 and Definition 2.1.2).
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2.2. Continuous function

We now consider the very first example in Section 2.1: It is not difficult to see that the
functions f: R\ {1} — R given by f(z) = “’;T_f for all z € R\ {1} has the limit

lim f(z) = 1.
z—1
We see that the function g : R — R given by g(z) = x for all z € R can be expressed as

o(&) = {f<x> e R\ {1},

lim, ,; f(z) ,z=1.
This observations suggest the following definition:

DEFINITION 2.2.1. Let a, z9,b € R with a < zy < band let f : (a,b) — R be a function. If
the limit lim, ., f(z) exists in R and lim, ., f(z) = f(x¢), then we say that f is continuous
at xo. If f: I — R, where I = (a,b), I = (a,+00) or [ = (—o0,b) or I = R, and f is
continuous at all points in I, then we say that f is continuous on I.

DEFINITION 2.2.2. Let x¢,b € R with 29 < b and let f : [x¢,0) — R be a function. If the
right limit lim, . 4 f(z) exists in R and lim,_,,,+ f(x) = f(z0), then we say that f is right
continuous at xg.

DEFINITION 2.2.3. Let a,z9 € R with a < zg and let f : (a,z0] — R be a function. If
the left limit lim, ., f(z) exists in R and lim, ,,, f(x) = f(x), then we say that f is left
continuous at xg.

REMARK 2.2.4. Let f : Iy — I, and g : I3 — R be functions, where Iy, I, and I3 are
intervals such that Iy C I3. If g : I3 — R is continuous, and lim,_,,, f(z) exists in R for some
xg € I, then

li = li .
Jim g(f(z)) =9 <a:550 f (x)>
Similar properties also right limits/right continuity as well as left limits/left continuity.

EXAMPLE 2.2.5. Let a,b € R with @ < b and let f : (a,b) — R be a function. If
lim, ., f(x) exists in R, then the continuity of Euclidean norm (absolute value) implies

lim |f(z)| =

Tr—xQ

lim f(z)

T—T0

On the other hand, the continuity of exponential function also implies
lim /@ = exp (lim f(x)) .
T—T0 Tr—x0
The composition of continuous functions is also continuous:

LEMMA 2.2.6. Let I, 15, I3, I, are open intervals in R, which may unbounded in the sense
of Example 1.2.5. If the functions f : Iy — Iy and g : I3 — Iy are continuous functions, with
I, C I3, then the composition go f: I — I, is also continuous.

It is remarkable to mention the following property of continuous functions.
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THEOREM 2.2.7. Let a,b € R with a < b and let f : [a,b] — R be a continuous function.
Then there exists Tmax € [a,b] and Tmim € [a,b] (not necessarily unique) such that

f(Tmax) =sup f and  f(Tmi) = [1nl5 I
[a,b] a,

that is, f(xmin) < f(2) < f(Tmax) for all x € |a,b].

REMARK. The above theorem may not holds true of we remove a point from [a,b]. For
example, if we consider the continuous function

1
(2:21) FAELINO S R, ()=
we see that both z,,.« and z,,;, do not exist.

2.3. Limits at infinity, limit superior and limit inferior

We now consider the function given in (2.2.1), it is not difficult to see that the right limit
lim, o4 f(x) does not exist in R. Intuitively, we observe the trend f(z) — +o0 as x — 0+,
but the problem is +00 ¢ R and —oo ¢ R, therefore we cannot directly use Definition 2.1.1.

DEFINITION 2.3.1. Let a,z0,b € R with a < o < b and let f : (a,b) \ {zo} — R be a
function. We say that lim, ., f(z) = 400 if: Given any M > 0, there exists 6 = d(¢) > 0
such that

0 < |z — x| < d implies f(x) > M.
Similarly, we say that lim, ., f(z) = —oo if: Given any M > 0, there exists 0 = d(¢) > 0
such that
0 < |z — x| < d implies f(z) < —M.
Similar to Definition 2.1.2, we also consider the following definition.

DEFINITION 2.3.2. Let a,z0,b € R with a < 2y < b and let f : (z9,b) — R and
g : (a,xy) — R be functions. We say that the right limit lim, ..+ f(z) = +oo (resp.
lim, .04 f(z) = —o0) if: Given any M > 0, there exists 0 = d(e) > 0 such that

0 < |z — x| < d and x > x together imply f(z) > M (resp. f(z) < —M).

Similarly, we say that the left limit lim, ,,,— g(x) = +oo (resp. lim, ,,,— g(x) = —o0) if:
Given any M > 0, there exists § = d(e) > 0 such that

0 < |z — x| < § and x < xg together imply g(z) > M (resp. g(z) < —M).

In order to unify the notions, we summarize Definition 2.1.1, Definition 2.1.2, Defini-
tion 2.3.1 and Definition 2.3.2 together in the following definition.

DEFINITION 2.3.3. We unify the notion of limits as the followings:

o If either lim,,,, f(z) exists in R or lim,_,,, f(z) = +o0 or lim,_,,, f(z) = —o0, we
simply say that the limit lim,_,,, f(x) exists.

o If either lim, ..+ f(x) exists in R or lim, .+ f(z) = +o0 or lim, .+ f(x) = —o0,
we simply say that the limit lim,_,, . f(z) exists.

e If either lim, ,,,— f(z) exists in R or lim,_,,,— f(z) = +o0 or lim, ., f(z) = —o0,

we simply say that the limit lim,_,,,_ f(z) exists.

We now extend the limit superior and also introduce the limit inferior in the following
definition, which are always erist in the sense of Definition 2.3.3 above.
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DEFINITION 2.3.4. Let a,z0,b € R with a < o < b and let g : (a,b) \ {zo} — R be any
function. We define the limit superior/upper limit and the limit inferior/lower limit by

z—T0 r—04+ Br(xo)\{l‘o} T—To r—04+ Br(xo)\{xo}

The limit superior from right/upper limit from right and limit inferior from right/lower limit
from right are defined by

limsup g(z) := lim ( sup g), liminf g(z) := lim ( inf g).

limsup g(z) := lim ( sup g), liminf g(x) := lim ( inf )g)

r—x0+ r—0+ (z0,0+T7) T—x0+ r—=0+ \ (zo,zo+7r

and similarly the limit superior from left or upper limit from left and limit inferior from
left/lower limit from left are defined by

limsup g(z) := lim ( sup g), liminf g(z) := lim ( inf g).
—0+ (

T—To— r xo—T,20) T—x0— r—0+ \ (zo—7,20)

REMARK 2.3.5. By definition, it is easy to see that

liminf g(z) < limsup g(z)

T—wot T—x0t

for arbitrary functions g : (a,b) \ {zo} — R. Therefore,

liminf g(z) = 400 implies limsup g(z) = o0,

Tt r—xot
limsup g(z) = —oo implies liminf g(z) = —oo0.
Tzt T—rot

We now can state the following theorem, which is extreme powerful to check whether the
limit exists or not.

THEOREM 2.3.6. Let a,x9,b € R with a < xo < b and let f : (a,b) \ {zo} — R be a
function.

(a) If im,_,,, f(x) exists, then
(2.3.1) limsup f(z) = lirginff(x) = lim f(x).

T—T0 T—T0

In other words, if limsup,_,, f(x) # liminf, .., f(x), then the limit lim,_,, f(x)
does not exist.

(b) If limsup,_,, f(z) =liminf, ., f(z), then lim,_,, f(x) exists and (2.3.1) holds.
Similar results also hold true for one-side limits/limit superior/limit inferior.

As an immediate consequence, one also can check the continuity of function easily:

COROLLARY 2.3.7. Let a,xo,b € R with a < o < b and let f: (a,b) — R be a function.
(a) If f is continuous at o, then

limsup f(z) = lirginff(x) = lim f(x) = f(=xo).

T—T0 T—xo

In other words, if either one of the following holds:
e limsup,_,, f(r) # liminf, .., f(z) or
o limsup, ... f(x) # f(xo) or
e liminf, ,,, f(x)# f(xo),
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then f is not continuous at xg.
(b) If limsup,_,,, f(z) =liminf, ., f(x) = f(z0), then f is continuous at x,.

Similar results also hold true for one-side limits/limit superior/limit inferior.

REMARK 2.3.8. The limit superior criteria (Lemma 2.1.7) and the squeeze theorem
(Lemma 2.1.5) are special cases of Theorem 2.3.6.

Using the same arguments as in Exercise 2.1.9, one can show the following proposition.
PROPOSITION 2.3.9. Let a,z9,b € R with a < xo < b and let g1 : (a,b) \ {zo} — R as

well as go = (a,b) \ {0} — R.
(a) The limit superior satisfies the subadditivity property:

(2.3.2) limsup (g1 () + g2(x)) < limsup g1 (x) + lim sup go(z),

T—T0 T—xQ T—T0
(b) The limit inferior satisfies the superadditivity property:
(2.3.3) liminf (g1(z) 4+ g2(z)) > liminf g, (z) 4+ liminf go(x),
T—T0 Tr—x0 Tr—xTQ

(¢) Both limit superior and limit inferior satisfy the monotonicity property: If gi(z) <
g2(z) for all x € (a,b) \ {xo}, then

limsup ¢g;(z) < limsup go(x), liminf g;(x) < liminf go(x).
T—T0

T—T0 T—T0 =1%o

Similar results also hold true for one-side limits/limit superior/limit inferior.

REMARK 2.3.10. Here we remark that the property (2.1.10), that is,

(2:3.4) i sup (51 (¢)gs(+)) < (1msupn (o)) (mmsupa(s))

T—T0 T—x0 T—xTQ

only holds true for non-negative functions ¢g; and gs.

REMARK 2.3.11. As we mentioned above, we only have subadditivity /superadditivity
property rather than the additivity. We now show that the linearity holds under extra
assumptions. Suppose that all assumptions in Proposition 2.3.9 hold.

(a) If we additionally assume that lim, ., go(z) exists in R, then applying the subaddi-
tivity /superadditivity property on the function g;(z) = (g1(z) + g2(x)) — g2(x), one

has
limsup g1 () < limsup (g1(z) + g2(2)) — lim gs(x),
T—x0 T—T0 T—T0
liminf g, () = lim inf (g1 () + g2(2)) — lim go(x),
T—T0 T—rT0 T—T0

which implies

limsup g1 (z) + zlggo g2(w) < limsup (g1(x) + g2(2)),

T—T0 T—T0
liminf g, (z) + lim go(x) > liminf (g1(x) + g2(x)) .
T—T0 T—T0 T—T0
Now combine this with Proposition 2.3.9(a)(b) to conclude the additivity:
limsup (g1 (2) + ga(2)) = limsup g1 (z) + lim g5(z),
T—x0

(2.3.5) o R )
liminf (¢;(x) 4+ go(z)) = liminf g (z) + lim go(x).
T—T0 T—T0 T—T0
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(b) If we additionally assume that |g1(x)| < M for all x € B,.(xo) for somer > 0 and
lim, ., g2(x) exists in R-o, by writing

(@)ge(o) = 1(2) (i 0a0)) + 0n(0) (o) ~ Jim o))

t—xo t—xo

from (2.3.5) we see that

(2.3.6) liinjjp (g1(2)g2(2)) = (hg:sxljpgl(x)) (tlggo gg(t)> ,

lim inf (g1 (2)g2(z)) = <liminf gl(:l:)> (tli% 92@)) .

T—x0 T—TQ

In the particular case when go(x) = ¢ > 0 for all € B,(z), we see that (2.3.6)
reads

limsup (cg;(z)) = climsup g1 (),

T—T0 T—T0

liminf (cg(z)) = climinf g; (z).
T—T0 T—rT0

One should be aware that, for constant b < 0, one sees that b = —|b| and see that
limsup (bgy(z)) = limsup (—|b|g1(x)) = — liminf (|b|g1(2))
T—x0 T—To T—T0

= —|b| liminf g;(z) = bliminf g, (z),
T—x0 T—T0

and

liminf (bgy (z)) = ligg)lf (—|blg1(x)) = —limsup (|b|g1(x))

T—T0 T—x0

= —|b| limsup g1 (z) = blimsup ¢; ().

T—T0 T—T0

This means that in general, the linearity does not hold true for general coefficients, which only
holds true for positive coefficients. Similar result also holds true for one-side limit superior
and limit inferior.

EXAMPLE 2.3.12 (Revisit of Example 2.1.8). We now consider the function given in
(2.1.7), that is,
1 ,xeQ,
0 ,zeR\Q,

consider in Example 1.3.19. For each xy € R, it is easy to see that

liminf f(z) = 0 # 1 = limsup f(z),

T—rT0

(2.3.7) fRoR, f(x)= {

which concludes that lim,_,,, f(x) does not exist.

EXAMPLE 2.3.13 (Revisit of Example 2.1.12). We now consider the function g(x) :=
|z| f(z), where f is the function given in (2.3.7). It is easy to see that

0<g(z) <|z| forallzeR.
We now see that

0 < liminf g(z) < limsup g(z) < limsup |z| = lir% lz| =0,
T—

z—=0 z—0 z—0
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which concludes that

lim g(z) = lim iélfg(:c) = limsup g(x) = 0.
z—

=0 z—0

This example demonstrates another alternative way to use squeeze theorem.

EXAMPLE 2.3.14. We now consider a difficult example, exhibited in Example 1.3.19(d):
We consider the function

¢ ifz=2€(0,1)NQ,q>0,gcd(p,q) =1,

(2.3.8) f%QD—+Rf@>:{o if v €(0,1)\ Q.

In view of Corollary 2.3.7, it is easy to show that f is not continuous at all z; € (0,1) N Q,
since

liminf f(z) =0 < f(z1).

Tr—T1

We now show that f is continuous at all 5 € (0,1)\ Q. Since f(z) > 0 for all z € (0,1) and
f(xg) = 0, it is suffice to show limsup,_,,, f(z) = 0. For each integer ¢ € N, we define the
set of rational number with denominator at most ¢, that is,

1 1 1
=7ZU=ZU=ZU---U-Z.
2 2 3 q
One sees that (0,1) N Q, is a finite set, i.e. there are only finitely many points in that set.
Since x¢ € (0,1) \ Q, then

dist(zo, (0,1) NQ,) = E(Iglli)%@ |z — x| > 0.
e, q

This means that, if we define
1
Ty = idist(xg, (0,1)NQ,),

we see that the set B, (z0)\ {2} only consists of rational number with denominator > ¢+1,

therefore
f<—
sup < —
By, (z0)\{zo} q+1

Hence, we see that
. . 1
limsup f(z) = lim sup f| < sup f<—— forallgeN.
=0 =0+ Br(z0)\{z0} Brg(zo)\{z0} q+1

Since the left hand side is independent of ¢, by arbitrariness of ¢ € N, we now conclude that
limsup, ,, f(7) =0, and hence f is continuous at z € (0,1) \ Q.

Conclusion. The function f given in (2.3.8) is continuous at each irrational point, but
discontinuous at each rational point.

It is also possible to define the limit for x — =+o0:

DEFINITION 2.3.15. Let a € R and let f : (a,+00) — R be a function. We say that
lim, , . f(x) = L € R exists if: Given any € > 0, there exists N = N(€) > 0 such that

x > M implies |f(z) — L| < e.
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We say that lim, . f(z) = 400 if: Given any M > 0, there exists N = N(M) > 0 such
that
x > M implies f(z) > N,

and the limit lim, , . f(x) = —oo can be defined in an analogous way. If either
lim, y1 o f(z) = L € R exists or lim, ,, f(z) = 400 or lim, ,, f(z) = —o0, then we
say that lim, ., f(x) exists, or we slightly abuse the notation by saying that lim,_,, o f(z)
exists in [—o00, +00]. The notions lim,_, ., g(z) for functions g : (—oo,a) — R can be defined
using similar manner, here we omit the details.

We also can define the limit superior and limit inferior in a similar manner.

DEFINITION 2.3.16. Let a € R and let f : (a,+00) — R be a function. We define
li = i lim inf = i inf .
oy S0) = i (s @) and it o) o= i (100 )
Similarly, for functions ¢ : (—00,a) — R, we define
lim sup g(x) == lim (SEE g(x)) and  liminf f(z) := lim (xlg]fvg(m)) -

We also have the following theorem.

THEOREM 2.3.17. Let a € R and let f: (a,+00) — R be a function.
(a) If im, o f(z) exists, then

(2.3.9) lim f(z)=limsup f(x) = lir_r)linff(x).

T—+00 z—+00

In other words, if limsup,_,, . f(z) # liminf, ., f(x), then lim, , . f(z) does
not exisl.
(b) Iflimsup,_,, . f(z) =liminf, ., f(z), thenlim,_, ;o f(x) exists and (2.3.9) holds.

Similar result also holds for the limit as x — —o0.
Using the same arguments as in Exercise 2.1.9, one can show the following proposition.

PROPOSITION 2.3.18. Let a € R and let ¢; : (a,+00) = R and g9 : (a,400) — R be
functions.

(a) The limit superior satisfies the subadditivity property:
(2.3.10) limsup (g1 () + go(x)) < limsup g;(x) + lim sup go(x),

T—+00 T—+00 T—>+00
(b) The limit inferior satisfies the superadditivity property:
(2.3.11) lim inf (g (2) + g2(2)) 2 lim inf g, (2) + lim inf g,(x),
(b) Both limit superior and limit inferior satisfy the monotonicity property: If gi1(z) <
g2(z) for all x € (a,b) \ {xo}, then

limsup ¢;(z) < limsup g2(x), liminf ¢g;(x) < liminf go(x).
z—

x—++00 z—-+00 +oo T—+00

Similar result also holds for the limit as x — —o0.

REMARK 2.3.19. Similar results in Remark 2.3.11 also holds true for the limit superior
and limit inferior at infinity. Here we omit the details.
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EXERCISE 2.3.20. Using Theorem 2.2.7 to show the followings:

(a) If f : [a,+00) — R is continuous and lim, . f(x) exists in R, then there exists a
constant C' > 0 such that |f(z)| < C for all z > a.

(b) If f: (—o00,a] — R is continuous and lim,_, ., f(z) exists in R, then there exists a
constant C' > 0 such that |f(z)| < C for all z < a.

(c) If f: R — R is continuous and both lim, ., f(z) and lim, , ., f(z) exist in R,
then there exists a constant C' > 0 such that |f(z)| < C for all z € R.

REMARK 2.3.21. Unlike Theorem 2.2.7, the maximum and minima may not attained, for

example the inverse tangent
tan”!' i R — (—7/2,7/2)
satisfies
. -1 ™ . -1 ™
lim tan”" "z =—, lim tan™ oz = ——.
Tr—400 2 T——00 2

ExXAMPLE 2.3.22. Finally, by using the unified notations above, we also can do “change
of variables” for limits, which simplify some computations. For example,

e /e e ¥
. : : —y
lim = lim — = lim ye ™,
=0+ X y—400 1/y y—+o00

here we considered the change of variable y = 1/x, and see that x — 0+ if and only if
y — 400. The above limit is not easy to compute using only the above definitions, since

lim y=40c and lim e ¥ =0.
Yy—r—+00 Yy——+00

We will resolve this difficulty in Example 3.2.6 of Section 3.2 below.



CHAPTER 3

Differentiation

3.1. Definition of Differentiation

We now use the notion of limit above to study the infinitesimal rate of change of functions,
simply speaking, the slope of the tangent line at each point. Let f : (a,b) — R be a function.
We now pick any two points xg # 1 € (a,b). The rate of change is given by

flx) = f (Io)
1 — X .
It is more convenient to denote 1 = xy + h for some h # 0, and write
f(xo +h) — f(x0)
Y )
Now it is natural to consider the following definition.

(3.1.1)

DEFINITION 3.1.1. Let a,b € R with a < b and let f : (a,b) — R be a function, and let
zo € (a,b). We say that f is differentiable at xq if

(3.1.2) li £ o+ 1) = F(xo)

h—0 h

exists in R.

In this case, the number (3.1.2) is called the derivative of f at x(, which we usually denoted
as

f'(xo) or f'(z)|,—,, (Lagrange notation),
which is more convenient in differentiation, or

d
Lyor Ll or Li)

which is more convenient in Riemann/Lebesgue integration (see Chapter 7).

REMARK 3.1.2. The notations f'(z)| and %f(x)‘x:xo both emphasize that “first

T=xQ d
differentiate and then evaluate the point z = x,”.We see that the quotient (3.1.1) is not
well-defined at h = 0. According to the definition of limit (Definition 2.1.1), we remind the
readers that the limit (3.1.2) does not require the pointwise evaluation at h = 0.

(Leibniz notation),

T=x0 T=x0

One sees that (3.1.2) is equivalent to

lim sup |f(zo +h) — f(xo) — f'(z0)h|

=0.
h—0 ‘h‘

We also can rephrase Definition 3.1.1 in the followings implicit way:

DEFINITION 3.1.3. Let a,b € R with f : (a,b) — R be a function, and let zy € (a,b). We
say that f is differentiable at xq if there exists L € R such that
. |f(zo + h) = f(zo) — LA _

(3.1.3) lim 7

0.

28
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In this case, the derivative f’(z¢) of f at xq is defined by f’(x) := L.

REMARK 3.1.4. Unlike Definition 3.1.1, it is not so obvious that whether the number L
in Definition 3.1.3 is unique or not. Suppose that (3.1.3) holds true for L = L; and L = Ls.
We see that
|(f (@0 + h) — fxo) — L1h) = (f(zo + h) — f(zo) — L2h)|

Id
< |(F(zo + 1) = flwo) = Luh)] n |f(zo + h) — flzo) — Lah)]|
B ] Id ’
and take limit superior to see that

(’(f(fCOJrh) — f(wo) — L1h)| N |f(xo + h) — f(w0) —Lzh)|>

Id Id
< lim sup |(f(xo + h) — f(z0) — L1h)] + lim sup |f(zo + 1) — f(x0) — Loh)| _ 0,

h—0 ‘h| h—0 ‘h‘

|L1 — Ls| =

|L1 — Ly| < limsup
h—0

which concludes that L; = L,. We again remind the readers that the limit superior only
subaddivity property rather than the additivity.

The following lemma is an easy consequence of the definitions of continuity and differen-
tiability of functions.

LEMMA 3.1.5. Let a,z9,b € R with a < o < b and let f: (a,b) — R be a function. If f
18 differentiable at xq, then [ is continuous at xg.

DEFINITION 3.1.6. Let a,b € R with a < b, and let f : (a,0) — R be a differentiable
function. We say that f is twice-differentiable at zo € (a,b) if the function f’: (a,b) — R is
differentiable at xy. In this case,

Pay= ()| = AR =E

h—0 h

In terms of Lagrange notation, we call f'(xq) the first-order derivative of f at xy and call
f"(xo) the second-order derivative of f at x.

DEFINITION 3.1.7. Let a,z9,b € R with a < xy < b. A function f : (a,b) — R is said to
be twice-differentiable if it is differentiable and f’ : (a,b) — R is also differentiable. In this
case, the function f(© := f is called the zeroth-order derivative of f, fV := f’ is called the
first-order derivative of f, and say that f® := f” the second-order derivative of f. In this
case, we also say that the function f : (a,b) — R is differentiable 2-times. Inductively, for
each n € N, we say that a function f : (a,b) — R is differentiable n-times if the derivatives
f9) : (a,b) — R are differentiable for all j = 0,--- ,n — 1, and we define £ := (f™=D). In
terms of Leibniz notation, we write

i = (&) ) =

or emphasizing the evaluation of points:

= ((5) /@)

= f(n)(xo)a

T=x0
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REMARK 3.1.8. Suppose that f : (a,b) — R is differentiable n times, according to
Lemma 3.1.5, the derivatives fU) : (a,b) — R are continuous for all j = 0,--- ,n — 1.
However, in general, the highest order derivative f™ : (a,b) — R may not continuous. One
should be careful that the set C"(I), for any interval I, means that

C"(I) := {f: I — R is differentiable n-times : f® T 5 Ris continuous} .

EXERCISE 3.1.9. Let a,b € R with a < b and let f : (a,b) — R be a function, and let
zo € (a,b). Show that if f is differentiable at xy with derivative f’(zg), then
lim flzo+h) — f(zo— h)
h—0 2h

REMARK. The converse of Exercise 3.1.9 may not true. For example, we consider the
function f: R — R defined by f(z) = |z|, and we consider zy = 0. One sees that

fO+h) = fO—=h) _ [h]—1h]
2h 2h

L JOR) — (0 1)
h—0 2h

exists in R and it is equal to f'(zo).

=0 forall h #0,

and hence

= 0.
However, one sees that

. f(O+h) = f(O) h —h _ . f(0+h)— [(0)
hlg(r)lJr h _hlggﬁrﬁ_l#_l_ 11%1—7_}11251— h ’
f(0+h})Lff(0

hence the limit limy,_,q does not exist, and thus f is not differentiable at zo = 0.

EXAMPLE 3.1.10. The definition of the natural exponential e, which is approximated by
2.71828 - - -, means that

d
—e” =1
dz =0

From this, one sees that

a:—l—h T x  h T h
—e efe —e e — 1 d
—e'=lim—— =lim ——— =¢€" lim “lim —e” =e¢e* forall x € R.
dx h—0 h h—0 h h—0 h h=0 dr | _,

ExXAMPLE 3.1.11. Let n € N, and we consider the power function f : R — R given by
f(z) = ™. By using the binomial theorem, one sees that

(ZL‘ + h)n _ Z (7) :L‘n_jhj,
=0

where (?) is the number of ways to choose j elements from a set with n elements. For each

h # 0, one sees that

e — "R = 2" T =na" T + 2" TIRT
i 2\ 2\
Jj=1 7j=2
By the linearity of the hmlt (Lemma 2.1.4), one sees that
B — g n . )
f'(z) = lim % =naz"' + Z (?) 2" lim A7 = na™ ! for all ¥ € R.

h—0 h—0
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EXAMPLE 3.1.12. We now consider the function f : R — R given by

(@) = {xi’ ,x <0,

¢ ,x>0.

By using Example 3.1.11, one has f/(z) = 3z% for all x < 0 and f’(z) = 2z for all z > 0. We
are now asking whether f is differentiable at x = 0 or not. We only can check this directly
from the definition:

_ 2 _
JO+R=FO) 7 o allh >0, which gives lim 20t =10 _
h h h—0+ h
_ 3 _
fO+h) = f(0) = h— = h? for all b < 0, which gives lim fO+h) = f(0) =0.

h h h—0— h

Since the left and right limits exist and coincide, we conclude that the limit limj,_,
exists and equal to 0, and in fact it means that f/(0) = 0.

f(0+h)—f(0)
h

We will give more interesting examples after exhibit some differentiation rules in Sec-
tion 3.3 below.

3.2. L’ Hoépital’s rule

Before continue, let us exhibit some important facts which further motivate the study of
differentiation. We see that the limits (3.1.2) and (3.1.3) are both special case of the limit
lim @) with lim f(z) =0 and lim g(z) =0,
z—0 g([[) x—0 r—0
which is not so easy to compute. Despite some authors say that this it is the intermediate
form 8, however personally [ strongly suggested not to use this terminology, since it is not
rigorous and may cause ambiguity. Let f, g : (a,b) — R be functions which are differentiable
on (a,b) and their derivatives f’: (a,b) — R and ¢’ : (a,b) — R are continuous. In this case.
If there is a point zy € (a,b) such that
lim f(x) =0= f(xo) and lim g(z) =0 = g(zg) as well as ¢'(xq) # 0,
T—rT0

T—rT0
one sees that

i T@) o S@) =0 () = f(w)

m ——= = lim =
T—x0 g(x) z—x g(gj) —0 x—x0 g(gy) — g(gjo)
o R M SO @) P
25w 9(@)—g(@o) lim g(z)—g(zo) g'(zo) 2w g’(x)’
T—1x0 T—Z0 T—x0

this proves the simplest version of L’ Hépital’s rule. Although the rule is often attributed to
de L’ Hopital, the theorem was first introduced to him in 1694 by the Swiss mathematician
Johann Bernuolli. We first exhibit a version of L’ Hopital’s rule in terms of limit superior
and limit inferior.

THEOREM 3.2.1 (|Tay52]|). Suppose that f : (a,b) — R and g : (a,b) — R are differ-
entiable functions for some —o0 < a < b < 400 in the sense of Example 1.2.5. Suppose
that g(x) # 0 and ¢'(x) # 0 for all x € (a,b). If either one of the following holds for some
zo € (a,b):

(a) lim, ., f(z) =0 and lim,_,,, g(z) = 0;
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(b) lim,_,,, f(x) = 00 and lim,_,,, g(x) = +o0;
then
f (=) f (=)

/ !
lim inf f,(:c) < liminf ——= < limsup —= < lim sup f/ (x)
woao g'(x) T oeeo g(T) T amae (%) T emae 9()

Combining this with Theorem 2.3.6, we immediately reach the following version L’ Hopi-
tal’s rule:

COROLLARY 3.2.2. Suppose that all assumptions in Theorem 3.2.1 hold. If we further

assume that
/
the limit lim f'(z)

=0 g (z)

€exists,

then

lim @) = lim J'{w)

s glz) v g(z)

Here we also exhibit another version in terms of left and right limits. Despite its proof
involving the Cauchy mean value theorem (Theorem 3.4.6) below, here we still present here
in order to motivate the study, and we will not going to give the proof in this lecture note.

THEOREM 3.2.3 (|Rud87, Theorem 5.13]). Suppose that f : (a,b) — R and g : (a,b) - R
are differentiable functions for some —oo < a < b < 400 in the sense of Fxample 1.2.5.
Suppose that

!/

the right limit lim

o () exiSts,

where we interpret lim, .. as lim,_, . if a = —oo. If either one of the following holds:
(a) lim, a0t f(2z) =0 and lim, 44 g(z) = 0;
(b) lim, ¢ f(x) = 00 and lim, 1 g(x) = +o0;
then
lim /(@) = lim (@)

r—a+ g(w) T—a+ g/(gj‘) '

Similar results also hold true for the left limit lim,_,_, which is interpreted as lim,_, ., when
b= +4oc.

REMARK 3.2.4. The limits in both Corollary 3.2.2 and Theorem 3.2.3 may take values
400, more precisely, they are understood in the sense of Definition 2.3.3 and Definition 2.3.15.

REMARK 3.2.5. In this calculus course, we only involving functions are quite smooth,
therefore most of the assumptions in the L’ Hopital’s rule (Corollary 3.2.2 and Theorem 3.2.3)
can be satisfies easily. However, one always need to emphasize the sufficient condition (a) or
(b) in the L’ Hopital’s rule (Corollary 3.2.2 and Theorem 3.2.3) before using the theorem,
otherwise your marks will be deducted significantly.

EXAMPLE 3.2.6. Now we can compute the limit in Example 2.3.22. We see that

e/ . oy
lim = lim — = lim =+.
=0+ y——+00 1/’y y——+oo eY
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Since lim, oy = 400 and lim, ,, . eV = +0o0 (as mentioned above, I strongly recommend
not to say that this is an intermediate form %)’ then by L’ Hopital’s rule, one has

o
) 1
lim 2 = lim 90 — Jim — =0,
y——+oo €Y y——+o00 d—y(ey) y——+oo Y

e—1/x

=0.

which concludes that lim, o “—

3.3. Differentiation rules

The main theme of this section is to introduce the product rule, chain rule, implicit
differentiation and how to take limit implicitly. We first exhibit the main properties of
differentiations.

LEMMA 3.3.1 ([Rud87, Theorem 5.3]). Let a,b € R with a < b and let f; : (a,b0) - R
and fs: (a,b) — R be functions.
(a) Linearity. If both fi and fo are differentiable at xq € (a,b), then for each c¢1,c5 € R,
the function

afitcfa:(a,b) =R, (c1fi 4+ cafo)(x) :=c1fi(x) + cafo(z) for all € (a,b)

15 also differentiable at such point xq, and satisfying

(crfi + cafo) (o) = c1fi(wo) + cafo(wo).

(b) Product rule. If both f1 and fo are differentiable at xo € (a,b), then the function
(not to be confused with the composition of functions in Definition 1.3.6)

fifa:(a,0) = R, (fufo)(@) = fi(z)fa(x) for all x € (a,b)

18 also differentiable at xq, and satisfying

(f1.f2) (20) = fi(wo) f2(0) + f1(z0) fo(o).

LEMMA 3.3.2 (Chain rule [Rud87, Theorem 5.5|). Let a,b € R with a < b and let
f : (a,b) — I be a continuous function for some open interval I (may unbounded as in
FEzxample 1.2.5). Suppose that f is differentiable at x € (a,b) and suppose that g : I — R
is differentiable at f(x), then the composition go f : (a,b) — R (as in Definition 1.3.6) is
differentiable at x and satisfying

(3.3.1) (g0 f) (@)= Wl—fw (@)
REMARK 3.3.3. In terms of composition (Definition 1.3.6), one also sees that
9 Wy = (9" 0 f)(x) = g'(f(2))

One should be careful about the notations: The term (g o f)'(x) means that we first
composite the functions, and then differentiate the resulting function, while the term
9'(f(®)) = ¢'(y)|,— ) means that we we first differentiate g, and then evaluate y = f(x)
after that. In general, (go f)'(z) and ¢'(y)|,_;(,) are different. Roughly speaking, chain rule
says that if one interchanging the order of “differentiation” and “evaluation”, then the “price”
of doing so is multiplying f'(x). Personally, I would suggest the notation ¢'(y)|,_, rather

T
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than ¢'(f(x)) (of course this is not mandatory, it is up to you to take the risk or not). The
proper way to write (3.3.1) in terms of Leibniz notation should be

d dg daf
3.2 — = — .
(332 Foeh=3 G
Some authors abuse the notation by ignoring the evaluation y = f(x) to write
dg _dg df
3.3.3 A A
( ) dr df dz’

to formally canceled out the notation df.

REMARK 3.3.4. Suppose that both f: (a,b) — [ and g : I — R are both twice differen-
tiable. By using the Lagrange notations, one sees that

(9o f)"(x) = ((g"0 f)(2)f'(x))" (chain rule)
= (g0 f) (@) f'(x) + (¢" o f)(x)f"(x) (product rule)
= 9" W) (F'@)* + 9 W)l =y [ (x)  (chain rule).

In terms of Leibniz notation, the above equality reads

d2 d2g df\> dg
) Ty
y=f(z) z Yy

(3.3.4) Lgon =29
If we abuse the notation by ignoring the evaluation y = f(z) (like (3.3.3)) to write

da? dy?
dg _ g (df\® dgd?f
dz?  df?2 \dz df da?’

which looks strange. Due to this reason, I strongly not recommend to abuse the notation like

(3.3.3).

d2f
y=f(z) da?

REMARK 3.3.5 (Suggested notation). I would suggest a combination of Lagrange notation
and Leibniz notation, with a lot of parentheses/brackets. For example, T like to write the
chain rule in Lemma 3.3.2 as

(9(f(2))) = diygw) f(a),

y=f(z)

and the second order chain rule (3.3.4) as

<g<f<x>>>"=jiyi er+ g

y=f(z)

y=f(x)
to remind myself the “evaluation of points”.

The term “implicit differentiation” is not really a theorem, which is more like an idea. We
introduce this idea using the below example.

EXAMPLE 3.3.6 (Quotient rule). Let a,b € R with a < b and let f : (a,b) — R and
g : (a,b) — R be functions, such that both f and g are differentiable at zo with g(x) # 0 for
all x € (a,b). By using product rule and chain rule, one sees that

/ : (a,b) = R, i(m) = J@) = f(x)(g(z))"* for all z € (a,b)

g g g()
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is differentiable at xy, and an explicit formula can be computed accordingly. Here we exhibit
another simple way to compute it. Write h = §= and we see that

(3.3.5) F(w) = hiz)g(z).
Differentiate both sides of (3.3.5) at © = o, one sees that

f(wo) = (M(x)g(2)) | =gy = 1 (w0)g(wo) + h(wo)g'(wo),
that is,

f'(x0) — h(l’o)gl(l‘o).

(3.3.6) W (zo) = )

We now combine (3.3.5) and (3.3.6) to reach

(i)/ (x ) _ f’(-TO) - %g/(ffo) _ fl(xo)g<l'0) . f(fo)g/(xo)
0 9(@o) (9(a0))? =

which is exactly the well-known quotient rule.

Main ideas of implicit differentiation. We first simplify the equation, then differentiate
both sides, and in many case, one can compute it using product rule (Lemma 3.3.1) and
chain rule (Lemma 3.3.2) above.

EXAMPLE 3.3.7 (Differentiation of logarithmic and exponential functions). By the defi-
nition of natural logarithm, one has

r=e"" forall z > 0.

Differentiate the above equation, and using chain rule, we see that

d d d d
1= P @(elnx) = d—yey (Inz) = e’], 1, dr nz = z(lnz),

y=Ilnx
which concludes that
1
(Inz) == forall z € R.
T

From (1.3.5) and the linearity of differentiation, it is easy to see that

Inx)’ 11
(logax)':m:—— for all z > 0.
Ina Inax

By using (1.3.6), we already know that log, : R.y — R is the inverse function of the function
f:R — Ry given by f(z) = a” for all z € R. We now differentiate on both sides of

log,(a®) =z forallz eR

to see that
d d d 11 1
1= —1r=—(1 x = —1] T\ N T T TN
%= g (10ga(a) i Ogayy:am(a) lnaxy:am() ot (@),

which conclude

(3.3.7) (a®) =a"lna for all z > 0.
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We also give another proof of (3.3.7), which is more direct: Since a® = ™) = e¥In¢ then
using chain rule one sees that

d d
(a”) dye dx(mlna) e’|

y=zlna N0 = ™ g = a®Ina.

y=xIna

EXAMPLE 3.3.8 (Power function). Now one can easily extend Example 3.1.11 using im-
plicit differentiation. Let p € R and we consider the function f : R.y — R.( given by
f(x) = 2P. According to the spirit of implicit differentiation, we first simplify the equation
as

In(f(z)) = In(z?) = plne.
Now differentiate the above equation, and using product rule and chain rule to see that

1 d d d : f'(z)
—=—(plhz)=—>Un(f(z))) = —1In fz) ="7—=,

r dx x Y
which implies
f'(x) =pf(x)x™' = pa?~" forall z > 0.
EXAMPLE 3.3.9. We define the function f : R.g — Ry by f(z) = z* for all x > 0,

which is differentiable. According to the spirit of implicit differentiation, we first simplify the
equation as

(3.3.8) In(f(z)) =In(z") =zrlnx.
Now differentiate the above equation, and using product rule and chain rule to see that
d d d 1 f(z)
Inz+1=—(zlnz)=—(n(f(z)) = -—Iny flx) = - fi(z) = ,
dz dz S P Yly=t) f(z)

which implies
(3.3.9) f'(z)=f(z)(Inz+1) forall x > 0.

One also can write (3.3.9) as f/(z) = 2®(lnx + 1) for all z > 0. It is much convenient to
compute second derivative from (3.3.9):

(3.3.10) /() = (f(@)(Ina+1)) = f(@)(Ina+1) + f@)(na) = f(@)(Inz+1) + f@)a

for all > 0, which also can be further simplify as

1
f(z) = fle)(Ine + (ne +1) + f(z)~
=f@)((nz+ 1)+ =2"((Inz+1)* +271).
Again, it is more convenient to compute third derivative from (3.3.10), and the procedure
can be done for arbitrary order of derivative.

EXERCISE 3.3.10. We define the function g : Ryg — Ry by g(z) = 2% for all > 0.
Compute its derivative ¢’ : Ryg — R.

Similar ideas also works for taking limit. which is also an efficient way to proof the
existence of limits:
Taking limit implicitly. We first simplify the equation using continuous function, and
then taking limit (L’ Hopital’s rule is helpful). Finally solve the resulting equation.
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EXAMPLE 3.3.11. Let f be the function given in Example 3.3.9. We want to show that
lim, o, f(z) exists and compute its value by writing (3.3.8). Since lim, o, Inz = —c0 and
lim, o, 7! = 400, by using L’ Hopital’s rule, we take limit on (3.3.8) to see that

Inz (Inz) .ox!

lim 1 = li Inz= lim — = li = =—1i = 0.
DU = fp elne = B o = I Gy S A e T AR

Note that we cannot directly use the continuity of In : Ry — R to obtain In(lim, o f(z))
since we do not know whether lim, .o, f(z) exists or not at the moment. The proper way to
argue this is to use the continuity of exp : R — R to see that

1 = exp(0) = exp (mlim ln(f(x))) = lim exp (In(f(z))) = lim f(x),

—0+ z—0+ z—0+

which conclude our result.

EXERCISE 3.3.12. Show that
lim(1 + )" = e.

z—0

We now consider the derivative of trigonometric functions. We begin the our discussion
from the following lemma.

LEMMA 3.3.13. One has

d . . sinh d . cosh—1
dé oo h0 R =1 and @COSQQZO_}LIE%T_O'

PROOF. Regarding the first result, since
sinh _ sin(—h)
h  —h
it is suffice to show the right limit

for all h # 0,

sin h

(3.3.11) lim =1.

h—0+ h
By using the definition of angle (in radian), one observes that
sin h

Ccos

sinh < h < tanh — fora110<h<g,

see Figure 1.3.3, which implies that
in h
coshg—SI?L <1 fora110<h<g,

hence - -
1= lim cosh = liminf cos h < lim inf s < lim sup SR 1,
h—0+ h—0+ h—0+ h—0+
which conclude (3.3.11) by Theorem 2.3.6.
We now prove the second result from the first result. One sees that
cosh—1 (Cosh—lcosh+1)_ . (cosh)?—1

0 ~ RS0 h cosh+1) hoo h(cosh + 1)

h—0 h h—0
. —(sinh)? . sinh , sin h
— lim — () lim — )
ho h(cosh +1) ho0 R ho0 cosh + 1 0

which conclude our result. O
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We now ready to compute the derivatives of trigonometric functions.

LEMMA 3.3.14. One has
(sinf) = cosf and (cosf) =siné.
PROOF. We recall the sum-to-product rule (can be easily proved using de Moivre theo-
rem):
cos(by + 02) = cos 0 cos Oy — sin 6, sin 6,
sin(0; + 03) = cos 6 sin 05 + sin 6, cos 65,
which holds true for all 8,0, € R. By using the linearity of limits, one computes that
sin(f + h) — sin 6 cos @ sinh + sin @ cos h — sin 6

. /1 1
R h

= lim <sin9 (COSh—_l) + cos 0 (Smh)>
h—0 h h

= sin f lim (mShT_1> + cos § lim (812h>

h—0 h—0
= cosf
and
h) — 0 cos h — si inh —
(cos) = lim cos( + h) — cos _ 1y O8O CO8 sin @ sin h — cos 0
h—0 h h=0 h
. cosh —1 _ sinh
:}gyg(cosQ(T)—smﬁ( h ))
= cos 6 lim (COSh—_l) —sind lim (Smh>
h—0 h h—0 h
= —sinf,
which concludes the lemma. .

The derivative of the trigonometric functions tanf, cot 8, secf and cscf can be easily
proved using product rule, chain rule as well as implicit differentiation, here we omit the
details. Now lets summarize the ideas before using the following examples.

EXAMPLE 3.3.15. We define the function f: R — R by
2?sin(1/x) ,x #0,
o= {5
We compute
f'(x) = 2zsin(1/x) + 2*(sin(1/z))"  (product rule)
= 2xsin(1/x) + z? cos(1/z)(—z~%) (chain rule)
= 2xsin(1/z) — cos(1/x) for all z € R\ {0}.
By using the additivity property (Remark 2.3.11), one sees that
limsup f'(z) =1# -1 = lianjglf f'(x),

z—0
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which shows that lim, o f'(z) does not exist. We now show that f is differentiable at x = 0.
We also compute that

h?sin(1/h) —
lim sup sin(1/h) 0' = limsup |hsin(1/h)| < limsup [h| = 0,
h—0 h h—0 h—0
which conclude that
. f(h) = f(0) _ . h*sin(1/h) -0
!/ _ — —
FO=m ™~ "

Thus f': R — R is a well-defined function, which is not continuous at x = 0.
The ideas in Example 3.3.7 can be further generalized:

EXAMPLE 3.3.16. Let f : I1 — I3 be a bijective function, which is differentiable. Suppose
that its inverse function f=!: I, — I, is also differentiable. The definition of inverse function
gives

r=f(f!(x)) forallze L.
Differentiate the above equation, and using chain rule, we see that

d d o df

== @(f(f‘l(x))) = Yl (fY(2)),
that is,
1
(3.3.12) (fH(x) = TIR—
Wly=r-1

Indeed, Example 3.3.7 is nothing but just a special case f = exp : R — Ry with f~! =1In:

R>0 —> R:

1 1
(lnz) = —— = for all = > 0.

ymtn@y T

REMARK. Some authors may abuse the notation by writing (3.3.12) as

dz 1
dy_j—z’

especially while performing the change of variables in Riemann/Lebesgue integral. I suggest
not to abuse the notation like this.

EXAMPLE 3.3.17 (Differentiation of inverse trigonometric functions). Here we only exhibit
the differentiation of sin™' : (=1,1) — (—7/2,7/2) based on the principal in Example 3.3.16.
Differentiate the equation

x =sin(sin ' z) forall z € (—1,1),

one sees that q q

1= o= a(sin(sin’1 7)) = cos(sin™' ) (sin~
Since —m/2 < sin"'z < 7/2 for all z € (—1,1), then cos(sin™*z) > 0 for all z € (—1,1),
therefore dividing the above equation by cos(sin™' z) implies (one has to make sure not to

divide by 0)

1 /

1
(3.3.13) (sin'x) = ————— forallz € (—1,1).
cos(sin™ x)
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In fact, one can further simplify (not necessary) the formula: By choosing § = sin™' z in the
formula (cos#)? + (sin#)? = 1, one sees that

(cos(sin'z))2 =1—2* forallz e (—1,1).
Since both 1 — 22 > 0 and cos(sin™' z) > 0 for all z € (—1,1), then

(3.3.14) cos(sin'x) = V1 —22 forallz € (—1,1).
Combining (3.3.13) and (3.3.14) we reach
1
(sin"'2) = ——= forall x € (—1,1).
1 —a?

EXERCISE 3.3.18. Compute the derivative of cos™ : (=1,1) — (0, 7).

3.4. Mean value theorem

DEFINITION 3.4.1 (Local extrema in interior). Let a,b € R with a < b. We say that

zo € (a,b) is a local mazimum (resp. local minimum) of f : (a,b) — R if there exists 6 > 0
such that f(zg) > f(x) (resp. f(xo) < f(z)) for all x € Bs(xy).

In order to unify the notations, here we also introduce the following definition.

DEFINITION 3.4.2 (Local extrema at boundary). Let a,b € R with a < b. We say that
xo = a is a local mazimum (resp. local minimum) of f : [a,b] — R if there exists § > 0 such
that f(xg) > f(x) (resp. f(z¢) < f(x)) for all a < x < a+ 4. Similarly, we say that o = b
is a local mazimum (resp. local minimum) of f : [a,b] — R if there exists § > 0 such that
f(zo) > f(x) (resp. f(zo) < f(x)) forallb—0 <z <b.

In particular, the above definitions are just special case of the following general notion.

DEFINITION 3.4.3. Let E be any set in R. We say that zy € E is a local mazimum
(resp. local minimum) of f : E — R if there exists § > 0 such that f(xzo) > f(x) (resp.
f(zo) < f(x)) for all x € Bs(xo) N E. In contrast, we say that f has a global mazimum (resp.
local minimum) at zo € E if f(zo) > f(x) (resp. f(xo) < f(z)) for all x € E.

REMARK. Obviously, if zg is a global maximum/minimum, then it is also a local maxi-
mum/minimum.

EXAMPLE 3.4.4. We define the function f :[—1,1] — R by

r+1 —-1<zx<0,
f(x)_{a:—l O<z<l1.

One sees that © = 0 is a global maximum of f : [—1,1] — R with value f(0) = 1. According
to the above unify notations, we see that x = 1 is a local maximum of f : [-1,1] — R
with value f(1) = 0. However, z = 1 is not a local maximum of f : [-1,1) — R because
1 ¢ [—1,1), this reminds the readers that one always need to write down the domain of
functions carefully. One also sees that x = —1 is a local minimum of f : [-1,1] — R, but it
is not global since

lim f(z)=-2<0= f(-1).

z—0—

The following lemma suggests that one can find some candidate of local maxi-

mum /minimum using differentiation.
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LEMMA 3.4.5. Let a,b € R with a < b and let f: (a,b) — R. If f has a local mazimum
or local minimum at xo € (a,b) and if f is differentiable at xo, then f'(x¢) = 0.

PROOF. Suppose that f has a local maximum at z¢ € (a,b). By definition, there exists
9 > 0 such that f(xzg) > f(z) for all x € Bs(xy). We now see that

MSOforallxo<x<x0+5,
T — X9
MZOforallxo—5<x<mo.
r — X9
Since f'(zg) = limg 4, f(a’g:—iéxo) exists, then our lemma immediately follows. O

THEOREM 3.4.6 (Cauchy mean value theorem). Let a,b € R with a < b. Suppose that
fi:]a,b] = R and f5 : [a,b] — R are continuous functions, where the continuity at boundary
points are understood as fj(a) = lim,_,.¢ f;(x) and f;(b) = lim,_,_ f;(x) for each j = 1,2,
such that it is differentiable on (a,b). Then there exists a point xo € (a,b) such that

(f1(0) = fila)) fa(wo) = (f2(b) = fa(a)) fi(xo)-
PROOF. We define the function h : [a,b] — R by
h(t) == (f1(b) = fi(a)) fa(t) = (f2(b) = fa(a)) f2(t) for all ¢ € [a, b]

which is also differentiable on (a,b), and one can check that h(a) = h(b). It is remains to
show that h'(z) = 0.

Case 1: Suppose that there exists ¢ € (a,b) such that h(t) > h(a). By using
Theorem 2.2.7, there exists x¢ € [a, b] such that

h(zo) > h(z) for all xz € [a,b)].

In this case, one has zg # a and xy # b, therefore Lemma 3.4.5 gives h'(xq) = 0.
Case 2: Suppose that there exists ¢t € (a,b) such that h(t) < h(a). By using Theo-
rem 2.2.7, there exists zg € [a, b] such that

h(zo) < h(z) for all x € [a,b)].

In this case, one has zy # a and xy # b, therefore Lemma 3.4.5 gives h'(xq) = 0.
Case 3: Suppose that both Case 1 and Case 2 do not hold. By definition of
differentiation, one has h(t) = h(a) for all ¢ € [a, b], thus h'(z) = 0 for all = € (a,b). O

The following corollary corresponding to the special case fi(z) = f(z) and fo(x) = x in
Theorem 3.4.6.

COROLLARY 3.4.7. Let a,b € R with a < b. Suppose that f : [a,b] — R is a continuous
functions such that it is differentiable on (a,b). Then there ezists a point xo € (a,b) such
that

f(b) = fla) = (b—a)f'(xo).

The following corollary corresponding to the special case fi(z) = f(z) and fo(x) = x in
Theorem 3.4.6 with f(a) = f(b).

COROLLARY 3.4.8 (Rolle’s theorem). Let a,b € R with a < b. Suppose that f : [a,b] — R
is a continuous functions such that f(a) = f(b) and it is differentiable on (a,b). Then there
exists a point xy € (a,b) such that f'(zo).
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By using Corollary 3.4.7, one immediately sees that:

COROLLARY 3.4.9. Let a,b € R with a < b and let f : (a,b) — R be a differentiable
function.

(a) If f'(x) > 0 for allx € (a,b), then f is nondecreasing. If one has the strict inequality
f(z) >0 for all x € (a,b), then f is strictly increasing.

(b) If f'(x) <0 for all x € (a,b), then f is nonincreasing. If one has the strict inequality
f(z) <0 for all x € (a,b), then [ is strictly decreasing.

(c) If f'(x) =0 for all x € (a,b), then f is a constant function.

PROOF. In order to proof (a), we want to show f(t;) < f(t2) for all a < t; <ty < b. By
using the mean value theorem (Corollary 3.4.7) on [¢y,ts], there exists t3 € (¢1,%2) such that

f(t2) = f(t) = (t2 —t1) f'(t3) > O,
which conclude the first result in (a). One sees that the second result in (a) can be easily
proof as well. The proof of (b) can be done similarly. Combining (a) and (b) we obtain
(c). O

3.5. Extreme values

We now consider the problem of finding maximums as well as minimums. We will see
that this problem is actually extremely difficult for general function. Rather than solving
the problem directly, we first find some “candidates”. You can think about the election
of president: We first nominate candidates first, and then vote for present among these
candidates. Suggested by Lemma 3.4.5, we restricted ourselves for differentiable functions in
this course.

DEFINITION 3.5.1. Let a,b € R with a < b and let f : (a,b) — R. If f is differentiable at
zo and f'(xg) = 0, then zq is called a critical point of f.

EXAMPLE 3.5.2. Let f(z) = (z — x0)? for all x € R, which satisfies f'(zy) = 0. Since
f : R — R is non-decreasing, therefore xq is neither local maximum nor minimum of f.

DEFINITION 3.5.3. Let E be a set in R. We define the (topological) boundary OF of E
by
OF :={zx€R:B,(zx)NE #0 and B.(z) N (R\ E) # 0 for all » > 0}.

EXAMPLE 3.5.4. Let a,b € R with a < b. We see that a is a boundary point of (a,b). We
see that a is also a boundary point of [a,b]. This notion also works for unbounded set, for
example, a is a boundary point of (a, +00), as well as a boundary point of [a, +00).

ALGORITHM 3.5.5 (See also Algorithm 3.5.11 below for a refinement). Let E be a set in
R and let f : E — R be a function. Suppose that f : Ey — R is differentiable for some
Ey C E. All candidates must be either one of the followings:

(a) eritical points in Eq (i.e. among all points which are differentiable), which is based
on Lemma 3.4.5.

(b) those points in E \ Ey, that is, those points which are not differentiable. (Note: the
boundary points which are in E are element in E '\ Ey)

The boundary points which is not in E are not candidates, but its left limit /right limit/limit
superior/limit inferior is helpful to decide whether the local mazimum/minimum is global or
not.
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We now explain how to use Algorithm 3.5.5 in the following example.

EXAMPLE 3.5.6. We define the function f :[—1,2) — R given by
r—1/2)2 0<x<2,
fla) = {( 2

%x—i—l ,—1<z<0.

We now find all candidates as in Algorithm 3.5.5:

(1) Critical point. We first observe that f is differentiable on (—1,0)U(0, 1), and note
that

o f2w-1/2) 0<z<2,
f(x)_{l/Z 1<z <0.

We see that the only critical described in Algorithm 3.5.5 is z¢ = %, and one sees
that

1
2= 3 is a local minimum of f: [-1,1) = R with f(zy) = 0.

(2) Nondifferentiable points. We see that f is not differentiable at ;1 = —1 (bound-
ary point) and x3 = 0. One sees that

1
x1 = —11is a local minimum of f : [—1,1) —» R with f(z;) = 5
On the other hand, since

f(zs) = lim f(z) = 1, lim f(x) =1,
T—T3+ 2 T—T3—

and this is helpful to see that x3 = 0 is neither local maximum nor local minimum.

Note that the boundary point xo = 2 ¢ [—1,2), therefore it is not a candidate, but

it is helpful to decide whether other candidate is local maximum/minimum or not.

We will use the following fact later: lim, ., f(z) = 9/4.

Other than the above three types of points are all not candidate, and they are not possible to
be local maximum /minimum at all. We now conclude that all local extrema of f : [-1,1) - R
is:

(i) Local minimum: zo = 35 and 2 = —1.
(ii) Local maximum: none.

In order to decide whether the local extrema are global, we list all values of candidates as
well as interesting points:

1 : 9 : 1 .
f(*TO) =0, f(xl) = 57 Igg_f(x) = 17 f(i[fg) :mgggl_i_f(x) = 57 zgg;_f(x> =1L
We see that f(zo) = 0 takes the smallest value, and thus we know that zy = % is indeed a
9

global minimum. But however, we see that lim,_,,_ f(z) = ] takes the largest value, and
since xo ¢ [—1,2), thus we conclude that there is no global mazimum (another way to see
this is there is no local maximum). In terms of election, the candidates are

1

1’025, .’13‘1:—1, .1'5:0
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After the “voting”, xq = % becomes local minimum, x; = —1 becomes global minimum, and
xg is failed to be chosen (due to x5, which is not a candidate). Even though x5 is not a
“candidate”, but it can affect the result of the “election”.

As promised at the beginning, we now exhibit an example to explain the difficulties of
the problem consider in this section.

EXAMPLE 3.5.7. Let a,b € R with a < b and let f: (a,b) — R. If 2y € (a,b) satisfies
(3.5.1) f'(z) <0forall z € (xg—0,20] and f'(x) >0 for all x € [zoxo + 9)

for some § > 0, then it is easy to see that z is a local minimum of f : (a,b) — R. However,
the converse may false. For example, we consider the function

22(2 +sin(1/z)) ,z € R\ {0},

fR—=R, f(x):{o N

since 2 + sin(1/z) > 1for all z € R\ {0}, then f(z) > z? for all x € R\ {0}, which implies
that

f(x) >0= f(x) forallz e R\ {0},

which implies that o = 0 is the unique global minimum of f. By using product rule and
chain rule, one can compute

f'(x) = 4o+ 2zsin(1/x)) — cos(1/x) for all x € R\ {0}.

As mentioned in Example 3.3.15 before, one can prove that f is differentiable at x = 0 with
f(0) = 0, which is not possible to prove using product rule and chain rule. We now see that
the derivative reads

) = {3x+2xsin(1/x)) — cos(1/x) 2 iﬁ\m}

which is not continuous since limsup,_,, f'(z) = 1 # 0 = f’(0) and it does not satisfy (3.5.1).

Despite Example (3.5.7) says that it is not possible to determine all local minimum by
using only the intuitively criteria (3.5.1), but however the condition (3.5.1) is already good
enough in many practical case. One way to guarantee (3.5.1) is that f": (xg—d,20+0) = R
is non-decreasing and f'(x¢) = 0. If f: (xo—0,29+J) — R is twice differentiable, this means
that f”(z) > 0 for all © € (zg — 0,29 + J). In fact, one have the following theorem (see also
Lemma 4.5.1 below).

THEOREM 3.5.8 (Second derivative test). Let a,b € R with a < b. Suppose that f €
C?*((a, b)), which means that f : (a,b) — R is twice differentiable and " : (a,b) — R is
continuous, then the following holds:

(a) If f'(xo) = 0 and the strict inequality f"(xo) > 0 hold for some xy € (a,b), then x,
is a local minimum of f : (a,b) — R.

(b) If f'(xo) = 0 and the strict inequality f"(x¢) < 0 hold for some zo € (a,b), then xg
is a local mazimum of f : (a,b) — R.

EXAMPLE 3.5.9. The strict inequality in Theorem 3.5.8 is necessary. For example, if we
consider the function f: R — R given by f(z) = 23 for all x € R, we see that f’(0) = 0 and
f"(0) = 0, but = 0 is neither local maximum nor local minimum.
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DEFINITION 3.5.10. Let a,xg,b € Rwith a < g < b and let f : (a,b) — R be a function.
We say that f is C? near x if there exists § > 0 such that Bs(zy) C (a,b) and f € C?(Bs(xo)).

In view of Theorem 3.5.8, we may slightly enhance Algorithm 3.5.5 for C?-functions (we
highlight the refinements in blue text).

ALGORITHM 3.5.11. Let E be a set in R and let f: E — R be a function. Suppose that

f  Ey — R s differentiable for some FEy C E. All candidates must be either one of the
followings:

(a) critical points in Ey (i.e. among all points which are differentiable). If f is C* near

a critical point, says xo, then we can use Theorem 3.5.8 to check whether it is a local
mazximum/minimum or not .

(b) those points in E \ Ey, that is, those points which are not differentiable. (Note: the
boundary points which are in E are element in E '\ Ey)

EXERCISE 3.5.12. Let f : R — R defined by
—2? Lz <0,
flw) = {x3 ,x > 0.

Show that f/(0) exists, but f”(0) does not exist. [Note: One cannot assume the continuity
of fin a valid argument]|



CHAPTER 4

Riemann integrals

4.1. Definition of Riemann integrals and fundamental theorems of calculus
Let a,b € R with a < b and let f : [a,b] — R be a function. Suppose that
(4.1.1) f :[a,b] = R is continuous and f(z) > 0 for all z € [a, b],

we want to compute the area of the region under the graph f and above the interval [a, b],
more precisely, the area of the set

S={(r.y) eR*:a<w<b0<y< f(z)},
see also Figure 4.1.1 below:

TN

a b x

FIGURE 4.1.1. Motivation of Riemann integral: 4C, CC BY-SA 3.0, via Wiki-
media Commons

Before giving a rigorous definition, we first approximate the area S intuitively.

DEFINITION 4.1.1. Let [a, b] be a given interval. By a partition I" of [a, b] we mean a finite
set of points xg, x1, -+, x,, where
Aa=Tg<T1 < < Tp1 <xy=>0.
In order to shorten the notations, we abuse the notation (throughout this course) by denoting
the partition as I' = {a = 29 < 21 < -+ < 2,1 < x, = b}. We also define the partition

norm as
Il == max (2; —x;-1),
=1, ,n

which is the length of the largest (closed) interval [z;_1, x;].
46
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For each i € {1,--- ,n}, we randomly choose a point x} € [z;, z;_1], and we approximate
the area S by the Riemann sum

(4.1.2) R(f, T {yitizi) = Zf(xf)(ivi —Ti1)

= P (@1 — 30) + F@3)(wr — 21) + -+ P (@n — Tam),

where we observe that see f(z})(x; — x;_1) is exactly the area of the rectangle with base
[;_1, x;] and height f(z7), see Figure 4.1.2 below for i = 3:

/()
e —

&9 I3

1
I
T3

FIGURE 4.1.2. The area of the rectangle with base [xq, x3] and height f(z3):
Juliusross~ commonswiki, CC BY 2.5, via Wikimedia Commons

Under assumptions (4.1.1),

R(f, T, {y;}i,) will give a "fairly good" approximate
(4.1.3) for the area of S when |I'| is "small",

see Figure 4.1.3 below:

f() f(z)

FIGURE 4.1.3. Approximate the area using Riemann sum:  Julius-
ross” commonswiki, CC BY 2.5, via Wikimedia Commons



4.1. DEFINITION OF RIEMANN INTEGRALS AND FUNDAMENTAL THEOREMS OF CALCULUS 48

We now see that the figures in Figure 4.1.1, Figure 4.1.2 and Figure 4.1.3 are all drawn for
the case when f satisfies (4.1.1). However, we see that the Riemann sum (4.1.2) is actually
well-defined without assumption “f(x) > 0 for all x € [a, b]”, which means that we actually
can define the “signed area” by using Riemann sum (4.1.2). For example, if we consider
f(z) = sinx for all x € [—7/2,7/2], the Riemann sum will suggests that the area between f
and the interval [—m /2.7 /2] will be 0.

In order to give a precise statement, the terms “fairly good” and “small” in the idea (4.1.3)
need to be clarify. This can be done by using similar ideas for define limits (without assuming
the redundant assumptions in (4.1.1)).

DEFINITION 4.1.2 (Riemann integral via Riemann sum). Let a,b € R with a < b. We
say that f : [a,b] — R is Riemann integrable on [a,b] if there exists a number L € R such
that the following holds: Given any € > 0, there exists 6 = d(¢) > 0 such that

|R<f7ru {x;k ?:1) - L’ <€
for all partition I' = {a =2y < 21 < -+ <z, = b} with |I'| < ¢ and for all z} € [x;_1,2;]. In
this case, we denote L = fab f(z)dz. Here the variable “z” can be replaced by other variables,
for example, fab f(z)dz = fabf(t) dt.

REMARK 4.1.3. In order to unify our notations, we use the convention
a b
| f@dei== [ s
b a

so that [ f(z)dz =01if a = b.

In fact, one can simplify Definition 4.1.2 which looks rather complicated. Rather than
consider arbitrary Riemann sum, we now always overestimate/underestimate the area: For
any partition I' = {a = zg < 21 < -+ < x,, = b}, we define

U(f,T):= Z ( sup f(y)) (x; — x;—1) (upper sum),

i=1 yE[Ti—1,24]

n

L) =3 (it 7)) (=) (lower sum).

=7 \y€lzi-1xi]
It is clear that
L(f,T) < R(f,T,{z;},) < U(f,T) for any partition I' of [a, b].

In fact, by using [Rud87, Theorem 6.6], Definition 4.1.2 is equivalent to the following
definition.

DEFINITION 4.1.4 (An equivalent definition of Riemann integral: Darboux definition).
Let a,b € R with a < b. We say that f : [a,b] — R is (Riemann) integrable on [a,b] if: Given
any € > 0, there exists a partition I'.) of [a, b] such that

U(f,Te) = L(f,Te) <e.

REMARK. The partition norm |I';| of the partition I'c in Definition 4.1.4 need not to be
small. Therefore it is much more convenient to use the equivalent formulation in Defini-
tion 4.1.4 in mathematical proof.
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EXAMPLE 4.1.5 (Areas between Curves). Let a,b € R with a < b. Let f : [a,b] — R and
g : [a,b] — R are integrable functions such that

f(z) <g(z) forall x € [a,b].
Then the area between curves f and g, more precisely, the area of the set
{(z,y) € la,b] xR fz) <y < g(2)},
is simply given by
b
[ o)~ s e
EXAMPLE 4.1.6 (Volume via slicing method). Let 2 be a bounded domain in R?® with
smooth boundary'. For each z € R, we define the slice (or cross-section) by
Q. = {(y,2) €R?: (z,y,2) € Q},

which forms a bounded smooth domain in R?, so that its area can be computed. Since  is
bounded, then there exists a,b € R with a < b such that

We define A : [a,b] — R by
A(x) := area(§2,) for all z € [a,b].
Then the volume of €2 is given by

b
Volume(Q):/ A(z) dz.

In practical, we need multivariable calculus (and even more advance calculus as well as Rie-
mannian geometry) to compute the volume in R?, or Lebesgue measure for higher dimensional
case as well as in Riemannian manifold. This is a special case of coarea formula, see e.g. the
advance monograph [Cha06].

Even though the continuity of function is not necessary to ensure the integrability of
functions, but it serves as a simple sufficient condition.
THEOREM 4.1.7. Let a,b € R with a < b and let f : [a,b] — R be a function. If

(a) there exists a number M > 0 such that |f(x)| < M for all x € [a,b], and
(b) f is continuous except on at most finitely many points on |a, b],

then f : |a,b] — R is Riemann integrable.
By using Theorem 2.2.7, we immediately obtain the following corollary.

COROLLARY 4.1.8. Let a,b € R with a <b. If f: [a,b] — R is continuous, then it is also
Riemann integrable.

ts rigorous definition requires quite advance calculus, here roughly understood that the domain is “regular”.
Think about the space-filling curve (or known as Peano curve).
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EXAMPLE 4.1.9. It is important to have condition (a) in Theorem 4.1.7. For example,
we now consider the function f : [0,1] — R defined by

V2 0<ax<l,
f(x) = B
0 ,x = 0.

Given any partition I' = {0 = 29 < x; < --- < x, = 1}, one sees that

y€[wo,21]

u(f,r) = ( sup f(y)> (1 — o) = 400

and

which shows that
U(f,T)— L(f,T') = +oo for any partition I" on [0, 1],

therefore f :[0,1] — R is not Riemann integrable. Despite it is not Riemann integrable, but
it may be integrate in the sense of improper integral as in Section 4.4 below.

EXAMPLE 4.1.10. The boundedness (i.e. condition (a) in Theorem 4.1.7) itself is not
enough to ensure the Riemann integrability. For example, we now consider the function

f iR — R defined by
. 1 7x€Qa
f(x)_{o z€R\Q.

We now restrict the function on [0, 1]. It is easy to see that
U(f,T)— L(f,T') =1 for any partition I on [0, 1],

therefore f : [0, 1] — R is not Riemann integrable. In fact, Q has Lebesgue measure zero, and
f:[0,1] — R is Lebesgue integrable with area 0. This example shows that Riemann integral
is actually not good enough for practical application (including statistics), but however, we
will not going to introduce this during this course.

From now on, the term “integrable” will refers the “Riemann integrable”.

LEMMA 4.1.11 (Basic properties of Riemann integral). Let a,b € R with a < b.

(a) Linearity. If fi : [a,b] — R and fy : [a,b] — R are integrable, then for any
constants c1,co € R the function ¢ f1 + cafs : [a,b] — R is also integrable and

/ab(clﬁ(x) + cofo(z))dr = ¢ /ab fi(z)da + ¢y /ab folz) dz.

(b) Monotonicity. If f1 : [a,b] — R and fo : [a,b] — R are integrable such that
fi(z) < fa(x) for all x € [a,b], then

/ab ful@)dz < /ab Folw) da.
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() If f : [a,xo] = R and [ : [x9,b] — R are integrable for some xy € [a,b], then
f i [a,b] = R is also integrable and

(/bf@ﬂdx::/mof@ﬁdx+:/bf@ﬁdx

(d) If f : [a,b] = R is mtegmble then | f]| : [a,b] — R is integrable and

/\f )| da.

(e) If f1 : [a,b] = R and fg . la,b] — R are integrable, then fg : [a,b] — R is also
integrable.

x)dx

EXAMPLE 4.1.12. The integrablity of | f| : [a,b] — R does not guarantee the integrability
of f:[a,b] — R. For example, we consider the function

1 ,x €[0,1]NQ,
-1 ,2z€]0,1]\Q,

which is not integrable (see Example 4.1.10), but one sees that |f(x)| = 1 for all x € [0, 1],
which shows that |f| : [0,1] — R is integrable. This example also explains the “defectness”
of Riemann integrable. As a comparison,

[0, =R, f(x)Z{

f i [a,b] = R is Lebesgue integrable if and only if |f] : [a,b] — R is Lebesgue integrable.

After explaining the mathematical aspect of integration, we now asking how to compute
it. It is impractical to compute the integral by directly partition the intervals. Instead, we
compute it via differentiation.

THEOREM 4.1.13 (Fundamental theorem of calculus, part I [Rud87, Theorem 6.20|). Let
a,b € R with a < b and let f : [a,b] — R be a continuous function. We define a continuous
function

Filab R, F(z /f £) dt.
Then F : (a,b) — R is differentiable and satisfies F'(x) = f(x) for all x € (a,b).

EXAMPLE 4.1.14. Theorem 4.1.13 cannot be extended for arbitrary integrable functions.
For example, we consider the Heaviside function

1 ,2>0
R =R, = e
f w-{) 2

which is integrable on [—1,1]. We see that the function

,x >0
,r <0

Fi-11]>R, F /fdt{

is continuous, but it is not differentiable at x = 0.

THEOREM 4.1.15 (Fundamental theorem of calculus, part II [Rud87, Theorem 6.21]).
Let a,b € R with a < b and let f : [a,b] — R be an (Riemann) integrable function. If there
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exists a 0 > 0 and a function F : (a —0,b+ ) — R such that it is differentiable on [a,b] with
F'=f, then

(4.1.4) / (@) de = F(b) — Fla).
REMARK. We write

(4.1.5) F(z)

From (4.1.4) we have

b
(4.1.6) / F(z)de = F(z)
This means that the total rate of change in [a, ] is equal to the flux across the boundary of
[a, b], which is exactly the two-points set {a, b}. For example, if we want to count the number
of people in a building, we only need to count the people across all doors. We see that, at
the boundary point = b of [a, b], the outward direction is right (i.e. positive), while at the
boundary point z = a of [a, b], the outward direction is left (i.e. negative), therefore there is
a negative sign in (4.1.5). In fact, (4.1.6) is exactly the divergence theorem for 1-dimensional
case. The divergence theorem is a fundamental result in partial differential equations, one
also can refer to my lecture note |Kow24| for more details.

Let I be a connected open interval (may or may not bounded, i.e. either (a,b) or (—o0,b)
or (a,+00) or R). We now consider the functor

(4.1.7) 2 :CYI)— C%I), DF :=F foral FeC\(I).

Here we recall that C°(I) is the collection of continuous functions I — R, while C*(I) is the
collection of differentiable functions with continuous derivative I — R. Similar to sets, we
can interpret functions as a “level-0” objects, while functors as “level-1” objects. We now fix
any rg € I. For each f € C°(I), we define (with the convention 4.1.3)

F(z) := /xf(t) dt forall z € I.

By using Theorem 4.1.13, we see that F' € C'(I) with F’ = f, which shows that the functor
(4.1.7) is surjective. However, since

(4.1.8) F+CeC'I)and (F+C) =F forall C€R,

one sees that the functor (4.1.7) is not injective. By using Corollary 3.4.9(c), it is easy to see
the following lemma.

LEMMA 4.1.16. Let I be a connected open set. Let F} : I — R and Fr : I — R are
differentiable functions. If F(x) = Fi(x) for all x € I, then there exists a constant C' € R
such that Fy(x) = Fy(x) + C for all z € 1.

In view of (4.1.8), for each F' € C*(I), we now consider the equivalence class

{F+Cleer :={F+C:CeR}
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We now define a mapping, which is similar to (4.1.7), by
(4.1.9) 9 {{F + C}eer : F € CY(I)} — C°(I),
9 ({F + C}eer) = F' for any F € {F + C}cer.

By using (4.1.8), one sees that (4.1.9) is a well-defined function (as mentioned in Section 1.3).
Since (4.1.7) is surjective, then so is (4.1.9). By using Lemma 4.1.16, one sees that (4.1.9)
is injective. Now we conclude that the mapping (4.1.9) is bijective, therefore the inverse
mapping

971 CI) = {{F + C}oer : F € C(I)}

is well-defined. This suggests the following definition.

DEFINITION 4.1.17. Let I be a connected open interval. The antiderivative of a contin-
uous function f: I — R is the equivalence class {F + C'}cer such that F'(z) = f(z) for all
x el

REMARK. We also slightly abuse the notation by referring an element in {F + C}cer
the antiderivative. If we abuse the notation in this way, the antiderivative does not unique,
and one should use “an” rather than “the”. For example, we know that the antiderivative of
cos : R — R is the {sin+C": R — R}ccg, where a

(sin+C)(x) =sinx + C for all x € R,

If we abuse the notation in this way, we also say that sin z is “an” antiderivative of cosz. In
view of fundamental theorem of calculus, this kind of abuse of notation is , and we
will abuse the notation for “antiderivative” in this way.

REMARK. Since

= (F(0) +C) = (F(a) + C) = F(b) = F(a) = F(z)|

r=a r=a

b r=b
/ flz)de = (F(z) + C) .

r=a

(F(z) +C)

we also can write (4.1.4) as

This suggests many authors to abuse the notation by writing

(4.1.10) /f (z) +C,

but this may cause some ambiguity (see Section 4.2), therefore personally I strongly suggests
not to abuse the notation like (4.1.10).

EXERCISE 4.1.18. Let a,b € R with a < b. Let f be a continuous function on [a, b], and
let o, 8 € C'(R) be such that

a<alx)<b a<p(x)<b foralzelR

We define g(x f’B(x) f(t)dt for all x € R. Show that
¢(x) = (BB (@) — Fa(x)a’(x) forall z € R.
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4.2. Integration by parts and substitution rule

The main difficulty to compute ff f(z)dz is to find an antiderivative F(z) of f(x). For
example, even though we know an antiderivatives F'(x) for f(x), and an antiderivatives G(x)
for g(x), but it is not easy to guess the antiderivative of f(z)g(z). By using the product rule,
one sees that

(F(2)G(x)) = F'(2)G(z) + F(2)G'(z) = f(2)G(z) + F(x)g(z) for all z € (a,b).

Under some suitable assumptions on F' and G, one may use the fundamental theorem of
calculus (Theorem 4.1.15) to see that

b b b
:/ (F(x)G(az))’dx:/ f(:L’)G(x)dx+/ F(z)g(x) dx,

that is,

/ F(z)g(z) de = F(2)G(x) x_ - / £(@)G () da.

We now summarize the above observations in the following theorem.

THEOREM 4.2.1 (Integration by parts [Rud87, Theorem 6.22]). Let a,b € R with a < b
and let I be an open interval such that [a,b] C I. We consider functions F': I — R and
G : 1 — R. If both F' and G are differentiable on [a,b], such that F' : [a,b] — R and
G’ : [a,b] — R are Riemann integrable, then

b b
/ F(2)G'(x)dz = F(z)G(z) - / F'(2)G(x) dz.

r=a

We see that integration by part is nothing but just an integral version of product rule.

EXAMPLE 4.2.2. We now compute fol ze*dx. In view of the fundamental theorem of
calculus (Theorem 4.1.15), the most difficult part here is to find a function F' such that
F'(xz) = ze®. Integration by parts (Theorem 4.2.1) suggests us that one can simplify the
problem by guessing the antiderivative of the function x of the antiderivative of the function
e”. Since (e”) = €”, then one sees that

1 1
/ ze®dr = / z(e”) dx
0 0

r=1 1
=zxe®| - / (x)e*dx (integration by parts)
=0 0
1 =1
=e— efdr=e—e" =1,
0 =0
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which means that we compute the integral fol re® dr without directly guessing an antideriv-
ative of xe®. Suggested by (%aﬂ)’ = x, one may also consider the following attempt:

1 1/
/ re®dr = = / (%) e” dz
0 2 Jo

1 =t 1
= —g2” — —/ xQ(eI)’dx (integration by parts)
2 0 2 Jo
11/t
= —e— —/ z?e® dx,
2“7 2/,

which somehow make the problem even worse. This failed attempt demonstrates that there is
no standard way to use integration by parts, and this is highly depends on personal experience.

EXAMPLE 4.2.3. One can compute fOW/Q(sin r)3 dx using trigonometric identities. We now
give another alternative way by using integration by parts (Theorem 4.2.1). We write

/2 /2 w/2
/ (sinz)®dx = / (sinz)?sinxdr = —/ (sinz)?(cos x)' dx
0 0 0

=0

A\

7 N
r=m/2

= — (sinz)%cosx
(sinz)

w./2
+/ ((sinx)?) cos z dz
0

z=0

7./2
/ (2sinx cosz) cos x dx
0

w/2 w/2
2/ sinz(cosz)? dr = 2/ sinz(1 — (sinz)?) dz
0 0

w/2 w/2
2/ sinx dx — 2/ (sinz)? du,
0 0

hence

w/2 w/2
(4.2.1) 3/ (sinz)dz = 2/ sin x dz,
0 0

which implies
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EXAMPLE 4.2.4. The idea in (4.2.1) can be extend to a more general settings. For any
real numbers o > 2, one sees that

w/2 w/2 w/2
/ (sinz)*dz = / (sinz)* sinzdr = —/ (sinz)* *(cosz) dx
0 0 0

=0

A\

<
x=7/2

= —(sinx)* 'cosw

w./2
+ / ((sinx)* Y cosx dw
0

=0

= /Oﬂﬁ((a —1)(sinx)* 2 cosz)coszdr = (a — 1) /Om/z(sin 2)* %(cos x)* dw
7./2

=(a— 1)/0 (sinz)* (1 — (sinz)?) dz

=(a—1) /OW./z(sin ) ?dr — (o — 1) /OW./z(sin x)%de,

and hence
. /2 w./2
a/ (sinz)*dx = (o — 1)/ (sinz)* 2 dz.
0 0

One can, at least, compute the precise formula of

. /2
/ (sinz)" dx
0

for all integer n > 1 by using the idea.

We now recall the chain rule:

(f(e(2)) = ' W)ly=e@¥'(x) = ['(p(2))¢ (x).
for some suitable differentiable function f and ¢. Under some assumptions, by using the
fundamental theorem of calculus (Theorem 4.1.15), one sees that

/A f'(p(x))¢'(x) do = / (f(p(x))) dz = f(@(B)) = f(p(A))

A
a=¢(B) ¢(B)
= / f'(z) de.
%)

z=p(A)

= f(x)

If we write F' = f’, then

[ rene@ar= [ P

A ©(4)
We now write a = ¢(A) and b = ¢(B). If ¢ : [A, B] — [a,b] is bijective (note: since ¢ is
differentiable, this implies that either ¢ is strictly increasing or strictly decreasing) then

e 1(b) @ 1(b)
/ Flo(t)¢/ (1) df = / Fo(@))g(x) da

~Ha) ¢~ (a)

:/BF(go(x))go'(x)dx:/::)B)F(x)dx:/abF(x)dx.

A
In fact, the following theorem holds true:
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THEOREM 4.2.5 (Integration by parts [Rud87, Theorems 6.17 and 6.19]). Let ¢ : [a,b] —
R be a strictly increasing (or strictly decreasing) function, which is differentiable on (a,b).
Suppose that ¢’ can be extend to function [a,b] — R such that it is Riemann integrable. If
a function F : [a,b] — R is Riemann integrable, then t — F(p(t))¢'(t) is integrable on

[~ (a), o7 (b)] and

b o1 (b)
/ Fz)de = / Flo(t)'(t) dt.

~a)
REMARK. It is convenient to write p(t) = (t), so that
b =1 (b) e 1(b) dax
(4.2.2) / F(z)dx = / F(z(t)x'(t) dt = / F(z(t))——dt,
a 0 ) dt

which is quite convenient to memorize.

EXAMPLE 4.2.6 (Revisit of Example 4.2.3). One can compute foﬂm(sinx)?’ dx using
trigonometric identities or using the integration by parts formula in Example 4.2.3. We
again write

/2 ) w/2 /2
/ (sinz)®dz = / (sinz)?sinx dr = / (1 — (cosx)?)sinz dux.
0 0 0

We now consider the change of variable cosx(t) = t. One sees that
r=01t=1,

T et=0
Tr = — =
2 )

and acting - on the equation cosz(t) =t to see that

—(sin:c(t))i—f = %(cosx(t)) = %t = 1.

Now from (4.2.2) we see that

/2 z=7/2
/ (sinz)®dr = / (1 — (cosz)?)sinz dz
0 T

t=0 ’_m t=0
:/ (1 2) (sina(t) L dt:—/ (1) dt
t=1 dt t=1
1.\ 7Y 2
=— t——ﬁ) ==,
(=3)], =

EXAMPLE 4.2.7. Let’s do a generalization similar to Example 4.2.4. For any real numbers
a > 1, one sees that

TI'/2 7T/2 7T/2 a—1
/ (sinz)*dz = / (sinz)* 'sinz dr = / (1 —(cosz)?) 2 sinadu,
0 0 0
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since sinz > 0 for all # € (0,7.2) and that sinz = (1 — (cos2)?)'/2. By considering the same
change of variables in Example 4.2.6, one sees that

w/2 xz=m/2 -
/ (sinz)*dzx = / (1 —(cosz)?) 2 sinxdx
0 =0
——1

=0 a—1 dl’ =0 a—1
:/ (1—t*)"2 (sinz(t))— dt = —/ (1—t*)"2 dt
t dt t

=1 =1

1
= / (1—¢2)"7 dt.
0

This method allow use to compute the formula of foﬂ/z(sin z)"dz at least for odd integer
n € N.

REMARK 4.2.8. It is important to check whether the mapping ¢ : [a,b] — R is strict
increasing/decreasing. We illustrate this precaution by the following simple integral

w/2 w/2
/ (sinz)?dr = / (sinz)(sinx) dz,
—m/2 —7/2
which is obviously > 0. If we consider the “change of variable” cosx(t) = t, and we see that

r=-m/2t=0,

T
r=—=<+1t=0,

2
and acting £ on the equation cosz(t) =t to see that
d d d

—(sinx(t))£ = —(coso(t) = -t =
Hence

/2 (x) t=0

/ (sinz)?dr = —/ (sinz(t))dt =0,

—7/2 t=0
which is obviously not true. The main reason in the above “argument” is the mapping
cos : [—m/2,m/2] — [0,1] is not bijective. We now show the correct way to do this: by
writing

w/2 0 w/2
/ (sinz)*dx = / (sinz)?dz + / (sinz)*dz,
—7/2 —7/2 0
we consider the change of variable x(t) = —y, we see that
=0 y=0 /2 /2
/ (sinz)?dr = —/ (sin(—y))*dy = / (siny)*dy = / (sinz)? du,
r=—m/2 y=m/2 0 0
and hence
w/2 w/2
/ (sinz)?dr = 2/ (sinz)? dx.
—7/2 0

Then the rest can be argued as in Example 4.2.4.
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4.3. Integration by Partial Fractions

The main theme of this section is to introduce the rational form of the form

f(z)
4.3.1 ——= forallz e R\ Z,
where 2, := {x € R: g(z) = 0}. First of all, we need to ensure that Z is not “too big” in
order to make sure that the rational form (4.3.1) is meaningful.

DEFINITION 4.3.1. Let [ be an open interval in R (may or may not bounded) and we
consider a function g : I — R. If zg € I satisfies g(xy) = 0, then we say that such z, is a
zero of g in 1.

Let g(z) = > p_,ckx® be a polynomial. If the leading coefficient c, # 0, then we say
that the degree of g is n, and we denote by deg(g) = n. By using the fundamental theorem
of algebra (see e.g. [Kow23, Theorem 4.3.6] and some further computations, one has the
following corollary.

COROLLARY 4.3.2. Let g : R — R be a nontrivial polynomial of degree n with leading
coefficient ¢, # 0, then one can factorize

(4.3.2) glx) =colz — 1) (x —z) (@ + 2+ 21) - (2% + yp + 2p)

for some ! € N, for some p € Z>, for some xy,--- ,x, € R and for some yy, 21, ,Yp, 2p €ER
with 2p + ¢ = n. Here, the coefficients x;,y; and z; are not necessarily distinct.

REMARK 4.3.3 (Some advance remarks). For those who familiar with complex analysis
[Kow23|, the fundamental theorem of algebra says that the analytic polynomial g(z) =
S h_o k2™ with ¢, # 0 always can be written as g(z) = c,(z — 21) -+ (2 — z,) for some
21, , zp € C. We now assume that the coeflicients cq, - - - , ¢, € R. In this case, if g(wg) = 0,
then one sees that

0=g(wo) =Y cuwf = cxig" = g(wp).
k=0 k=0

This shows that, for the case when ¢y, - -+ , ¢, € R, the analytic polynomial g(z) = >_,_, 2"
with ¢, # 0 always can be written as
9(z) = en(z —wi)(z —w1) -+ (2 —wp) (2 = W) (2 — 1) -+ (2 — Tnsp)
for some wy,---,w, € C\R and zy,--- , 2,9, € R. If p = %, this means that f(z) =
cn(z —wy)(z —w7) -+ (2 —wy) (2 — w,). We also see that
(2 —w;)(z —w5) = 2 — (w; + W)z + wyw; = 2* — 2Rw;z + wy].

Corollary 4.3.2 is simply a restriction on R.

EXAMPLE 4.3.4. The polynomial g(z) = 2? + x = x(z + 1) has zeros 0 and —1. The

polynomial g(z) = 2* — 2x + 1 = (z — 1)? has one repeated zero 1 € R. The polynomial
g(z) = 2% + 1 has no zero in R.

Since % is a finite set, then we now see the rational form (4.3.1) is meaningful. First of
all, we consider the case when deg(f) > deg(g) > 2, and we want to write (4.3.1) as

(4.3.3) J(2) = P(z) + J(@) for all z € R\ %,

g9() g()
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for some polynomials P and f such that 0 < deg(f) < deg(g). This can be done by the long
division described by the following algorithm:

Algorithm 1 Long division for polynomials
1. if deg(f) < deg(g) then

2:  Set f(z) = f(z) and P(z) = 0 for all z € R.

3: else

4: Set 7 =0, zo # 0 be the leading coefficient of g, and set fy(z) := f(z) for all z € R.
5: while deg(f;) > deg(g) do

6: Set A; # 0 be the leading coefﬁcient of f;.

7 Define fj11(x) := f(z) — Cé gdeelfs)=dee(9) g(z) for all x € R.

8: Set j =7+ 1.

9: end while

10 Set f(z) = fi(z) and P(z) = Y j— 2kgdeelfi)=desla) for all z € R.

11: end if

LEMMA 4.3.5. Algorithm 1 must terminate within finite steps and it solves (4.3.3).

PROOF. The case when deg(f) < deg(g) is trivial. We now consider the case when
deg(f) > deg(g). Since deg(fj+1) < deg(f;)—1, then we see that Algorithm 1 must terminate
within finite steps, says at j = jo, then we compute that

£ Aj eg(fj,)—de
F@) = Fivea(e) = fia) = 2ttt -stolg(z)
Jo A.
= fi_1(w) — Z 2 pdea(fi)—deg(9) g ()
= Co
J=jo—1

Jo

A; ) —de
Jo A
= f(z) — Z L pdeef)=desl9) (1) for all z € R,

and then divide the above equation by g(z) we reach

= ij)

3 Jo
A,
f(x) — f) Z I plealfi)=deslo)  for all z € R\ 2,

which conclude our lemma. O

We now give an example.



4.3. INTEGRATION BY PARTIAL FRACTIONS 61

EXAMPLE 4.3.6. We now divide f(x) = 42* + 1 by using g(z) = 222 + 1 (with ¢y = 2).
Set fo(x) = f(x) = 42* + 1 (with Ay = 4), then we reach
A
fi(z) = fo(x) — _Oxdeg(f())fdeg(g)g(w)
Co
=da* +1-22%(22° +1) = =22 +1 (with A; = —2).
Now we check that deg(f;) =2 > 2 = deg(g), then the algorithm still continue:

fola) = fila) — S Laetr iy

0
=20 +1+ (22 +1) =2.

Now we see that deg(fs) = 0 < 2 = deg(g), thus the while loop is terminate at j = 2.
According to Algorithm 1, we now output

f(z) = fola) =2

and
1
P)=3" Ak deg(fi)-des() _ A0 dex(fo)-dealo) | AL dex(f1)~dex(o)
Co Co Co
k=0
4 —2
:§$2+7:2$2—1
As a demonstration, we verify that
f 2 202 —1)(2224+1)+2 4zt —1+2
g(x) 2024+ 1 202+ 1 2024+ 1 g(x)
We now focus on the rational form
(4.3.4) J@) for all z € R\ £,
g(x)

with deg( f ) < deg(g). In fact, the above rational form can be further decomposed as follows:

THEOREM 4.3.7 (A special case of [Kow23, Theorem 5.2.7]). We now consider the ra-
tional form (4.3.4) with deg(f) < deg(g). If the polynomial g can be decomposed by Corol-
lary 4.3.2 as

g(x) = Cn(l‘ — gjl)m(xl) Ce (:L' — xﬁ)m(wf)(xz -+ T + Zl)m(yhzl) e (xz + ypgj + Zp)m(ypvzp)

for some l € N, for some p € Z>, for somexy,--- ,x, € R and for some yy, 21, ,Yp, 2p ER
so that {x1,--- ,x¢} are all distinct and all the pairs {(y1,21),- -, (Yp, 2p)} are all distinct.
Then the rational form (4.3.4) can be uniquely decomposed as

f 3y N Bt G llzeR\Z
A ;; @=s; —1—2 ; P+ prt o) for all x e R\ 2,
for some Ajr, Bj.,Cj € R.
REMARK. Now one can easily compute the antiderivative of @fiﬂ)r- It is difficult to
compute the antiderivative of % by using real numbers itself: In fact, this can be

easily handle by using complex analysis.
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We now close this section by the following example.

ExXAMPLE 4.3.8. By using Theorem 4.3.7, one has a unique decomposition

1 A B Cx+ D
4.3.5 = for all R\ {—1}.
(4:3.5) iR D) rrl e g erallzeRA{1)
It is recommend to begin with terms for those easy to handle. We first multiply (4.3.5) by
(r + 1) to see that

1 Cz+ D
=Alz+1)+ B+ (z+1) v

for all z € R\ {—1},

2 +1 x?2+1
and consequently by taking the limit + — —1 (note. we cannot directly take x = —1 since
the above equation is not well-defined at it) we see that
B=1
2
Now from (4.3.5) we have
A Cx+D 1 1
11 2+l @A R4 2@ r1)p
2— (22 +1) —a?+1
T2zt 12@2+ 1) 2@+ 122+ 1)
@+ D(x-1) l—uz

(4.3.6) forall z € R\ {—1}.

C2r+ 1222+ 1) 2@+ 1) (224 1)
Now we multiply the above equation by (z 4 1) to see that
Cr+D  1-x

2 +1 2(22 +1)
and consequently by taking the limit © — —1 we see that

A+ (z+1) for all x € R\ {—1},

a=1
2
Now from (4.3.6) we see that
Cx+D l1—2x 1
224+1  2@+1)224+1) 2@+1)
Cl-—z—(2*+1) —x —x?
2@+ D(a2+1) 2@+ 1) (22 +1)
—x(z +1) —x

— @ (D) = 2@ 1) for all z e R\ {—1}.

Multiplying the above equation by (22 + 1), we now see that
1

By taking x = 0 and z = 1 (or a less rigorous statement “comparing the coefficients”) we
conclude that
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Now we put everything into (4.3.5) to conclude that

1 1 1 .
(z+1)2(22 + 1) - 2(x +1) + 2zt 1) — 2 1) for all z € R\ {—1}.

4.4. Improper Integrals
As motivated by Example 4.1.9 above, we see that the function f :[0,1] — R defined by

V2 0<ax<l,
flx) = _
0 ,x =0,

is not Riemann integrable on [0,1]. We see that f is continuous on (0, 1]. This suggests us
to approximate the area of the unbounded area by

1 1
/f(a:)dmz/ 2 de = 221/2

for a “small” parameter € > 0. This suggests us to consider the limit ¢ — 0+ to obtain

lim /1f($) dr = 2.

r=

1
=22/

Tr=¢€

e—0+

This is called the improper integral of f : (0,1] — R. We see that the above improper integral
does nothing with the value f(0). We now summarize the above observation by the following
definition.

DEFINITION 4.4.1. Let a,b € R with a < b.

(a) Suppose that f : (a,b] — R is a continuous function. If lim.o; f;e f(z) dz exists,
then we define the improper integral by

b b
/ f(z)dz := lim f(z)dz.
a e—0+ ate
(b) Suppose that f : [a,b) — R is a continuous function. If lim. o f:_e f(x) dx exists,
then we define the improper integral by

b b—e
/ f(z)dz := lim f(z)dz.

e—0+ a

(c) Let a < ¢ < b. Suppose that f : [a,b] \ {c} — R is a continuous function. If

both lime, o1 [0 @ f(x)dz and lim,, o beJrél f(x)dz exist and the following two

situations do not happen:
e limg, o4 [0 f(z)dz = 400 and lim, o4 beJrel f(z)dz = —o0,

o limg, o1 [I 7 f(z)dz = —oo and lim, o fcb+el f(z)dzx = 400,
then we define the improper integral by

b c—ég b
(4.4.1) / f(z)dz := lim f(z)dz + lim f(z)dx.

ea—0+ a e1—0+ c+er

REMARK 4.4.2. If f : [a,b] — R is continuous (hence integrable), the its Riemann integral
is identical to the improper integrals above.
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EXAMPLE 4.4.3. A closely related notion is called the principal value integration:

(4.4.2) pv /abg(:c) dz = el—i>%l+ (/aceg(x) dz + /Clg(x) dx) :

This is different to the improper integral in Definition 4.4.1: the improper integral in (4.4.1)
means we first take limit on each term, and then summing the resulting numbers, while the
principal value integration in (4.4.2) means that we first sum the truncated integral with
same truncation level, and then take the limit. If the improper integral of g : [a,b]\ {¢} = R
exists in the sense of (4.4.1), then

/abg(x) dz = pv /abg(m) .

However, it is possible that pv fab f(z) dz exists but its improper integral does not exist. For
example, we consider the function

1
f:R\{0} =R, f(x)=—foralzeR\{0}.
x
For each 0 < € < 1, we compute that

1
1

/ —dzr=Inx
. T

and by the change of variable formula one sees that

z=1

= —Ine,

Tr=¢€

Hence one sees that
-1 |
—dxr + —dr=0 forall0<e<1,
. T

which gives

1 —€ 1
1 1
pv/_lf(x)m Ei}r&(/_lxij/exx)
However, since
1 —€
lim —dr = +o00, lim —dr = —o0,
e—0+ ¢ €T e—0 _1 €T

thus the improper integral of f on [—1,1] \ {0} does not exist. In fact, for each ¢; > 0 and
¢ > 0, one sees that

. e 11 . . cl€ cy
lim —dzr + —dz ) = lim (In(cie) — In(ce)) = lim In — = In —,
e—0+ IR cre T e—0+ e=0+  Co€ Ca

this means that the limit is even depends on the “speed of convergence”, which shows that
the area of unbounded regions may not well-defined without any restrictions. If the limit is
independent of the “speed of convergence”, then the area of unbounded region is well-defined
as described in Definition 4.4.1 above. We use the notations ¢; and €, there to emphasize the
convergence rate of two limits may arbitrary.

We now generalize Example 4.1.9 in the following example.
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EXAMPLE 4.4.4. Let p > 0 and we consider the function f : (0,00) — R by f(z) = 277P.
For each € > 0, one computes that

1 1 1 1— .
/ f(x)dx:/xpdx: 1Tp(l—e Py for all p > 0 with p # 1,
. . —Ine when p = 1.
Hence we compute the improper integral by
L for all 1,

hm/f ydz =< 177 ora‘ps

€0+ +oo forall p > 1.
We see that p = 1 is a critical value.

EXERCISE 4.4.5. Let p > 0 and we consider the continuous function

f:(0,1/e] = R, f(z)= $|1r11x|1’ = x(—lln:v)p for all z € (0,1/e].

1/e

Another similar notion of improper integrals can be defined as follows:

Compute the improper integral

for each p > 0.

DEFINITION 4.4.6. Given a real number a € R.

(a) Suppose that f : [a,+00) — R is a continuous function. If limp; o faM f(z)dx
exists, then we define the improper integral by

@) de = 1 / fa

a M—+oc0

(b) Suppose that f : (—oo,a] — R is a continuous function. If limyioo [, f(z)dz
exists, then we define the improper integral by

/_C;O f(z)dz = Mligrloo/jwf(:r) dz

(c) Suppose that f : R — R is continuous function. If there exists b € R such that
both limas, o0 J*,,. (@) dz and limpg, 4o [, f(2) dz exist and the following two
situations do not happen:

o limy . f_le f(x)dzx = 400 and llmMQ_,+oof

o limy/ o0 f_le f(z)dz = —oo0 and limpg, 400 fb f(z)dz = +o0,
then we define the improper integral by

Mz f(2) da = —o0,

+o00 b Mo

4.4.3 dr = i d li
(443) [ t@ar= gt [ @drs tm [ )
REMARK 4.4.7. The integral (4.4.3) is independent of the choice of b, therefore it is
well-defined. We also can similar define the principal value integration centered at by by
+00 bo+M

pv f(z)dz:= lim f(z)dz.

M ——+o0 bo—M
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In general, the principal value integration may depends on the choice b. It is important to
mention that: If the improper integral (4.4.3) of f: R — R is well-defined, then
+00 +o00

f@yde =pv [ fx)da

and its value is independent of the center by. Similar to above, the converse may false without
any restriction.

In view of Definition 4.4.6(c), one should expect the area under non-negative function
is always well-defined in [0, +o0c]. In fact, this is confirmed by the monotone convergence
theorem (for Lebesgue integral). Here we formulate a more precise statement in terms of
Riemann integral.

LEMMA 4.4.8 (Monotone convergence theorem for improper integrals). Let I be an un-
bounded interval. If f : I — R is a continuous function such that f(x) > 0 for all x € R.
Then the improper integral

[ 1)

is always well-defined (in the sense of (4.4.3)) with value in [0, 4o00].
EXERCISE 4.4.9. Let p > 0. Show that

+o0
/ x Pdr < +oo if and only if p > 1.
1

Determine a necessary and sufficient condition for which

+o00 1
———dz < +o0.
/1 z|InzP

EXERCISE 4.4.10 (Gamma function). Given any x > 0, show that the improper integral

+o0 1 M
/ t*“le7tdt := lim t*le7tdt + lim t*le7t dt < 400.
0 T—0+ ’ M —+oo 1

EXAMPLE 4.4.11 (Factorial and gamma function). In view of Exercise 4.4.10, one can
define the function I' : (0, 400) — (0, +00) by

+oo
[(2):= / t" et dt,
0

which is the well-known Gamma function. By using integration by parts, one sees that

[(z) =— /;OO e ) dt

=0

t——+o00

“+oo
+(x — 1)/ "2 (") dt
t—0+ 0
(4.4.4) =(x—1I'(zx—1) forall z>1.

We also have I'(1) = f;oo “tdt = 1. We now demonstrate how to use mathematical induc-
tion to show that

(4.4.5) I'(n+1)=n! foralln e NU{0},
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where the factorial n! is defined by 0! := 1 and
nl:=nn—1)(n-2)-----1 forallneN.

We remark that the earliest uses of the factorial function involve counting permutations:
there are n! different ways of arranging n distinct objects into a sequence.

Basic case. We first see that I'(1) = 1 = 0! and from (4.4.4) we also have I'(2) = 1I'(1) =
1 = 1!, which confirms (4.4.5) for n = 0 and n = 1.

Induction step. We now assume that (4.4.5) holds true when n = k for some k£ € N. From
(4.4.4) we see that

I'k+2)=(k+1DI(k+1)
= (k+ 1)k! (by induction hypothesis)
= (k+ 1)L

Combining the basic case and the induction step, we conclude the identity (4.4.5) by using
mathematical induction.

EXAMPLE 4.4.12 (Normal distribution). Given constants ¢ > 0 and o > 0, and we define
the continuous function

1 (e=p)”
e 27 for all x € R.

Pu,o - R — IR>0a pu,a(x) =
oV 2w

By using Lemma 4.4.8, the improper integral fj:: Ppo(x) dz exists. In fact, one has (unfor-
tunately, it is not possible to be computed using only the knowledge until at this point, we
will prove this in Example 7.5.8 in Chapter 7 below)

+oo
/ Puo(x)dr =1.

o0

This shows that p, . is a density of a probability distribution.

EXERCISE 4.4.13. For each m € N, show that the improper integral fj;o 2"p, o (z) de
exists. In addition, compute
(a) the mean E(p,,) := fj;o P (x)de; and
(b) the variance var(p, ) := f_Jr;o (2 = E(puo))’ o) dz,
of the normal distribution mentioned above.

EXAMPLE 4.4.14 (Exponential distribution). Given a constant A > 0, and we define the
continuous function

px i [0,400) = Reog,  pa(w) = Ae™ for all z € Rx,.

By using Lemma 4.4.8, the improper integral f0+°o pa(x) dx exists. It is easy to compute that
—+o00 M x=M
— -z — I PV -1
[ pde i [ = i | -
which shows that p, is a density of a probability distribution. In fact, p, is the density of
the exponential distribution, which can be used to model e.g. the time between production
errors or length along a roll of fabric in the weaving manufacturing process. It is interesting
to compare this with Example 5.5.12 below.
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EXERCISE 4.4.15. Compute
(a) the mean E(py) fo xp,\ dm and
(b) the variance var(p,) fo )’ pa(x) dz,
of the exponential dlstrlbutlon mentloned above.
Finally, we close this section by giving a remark that, unfortunately there is no unified
definition for Definition 4.4.1 and Definition 4.4.6 in terms of Riemann integral. In fact, a

consistent and unify framework can be given in terms of Lebesgue integral, see Chapter 7
below.

4.5. Some fundamental inequalities

We begin this section by the following fact, which can be found in [BV04, Section 3.1.4|
(note that the second derivative test in Theorem 3.5.8 is an immediate consequence of this
fact).

LEMMA 4.5.1. Let a,b € R with a < b and let f : (a,b) — R which is twice differentiable.

The following are equivalent:
(1) f is concave, that is, f(aty+ Bts)
a>0,5>0witha+ 5 =1.
(2) f"(x) <0 for all x € (a,b).
We now consider the logarithmic function In : (0,00) — R. One sees that

(Inz)" = (z7')Y = —272 <0 forall z € (0,00),

> af(ty)+ Bf(ta) for all ty,ts € (a,b) and for all

then Lemma 4.5.1 says that In : (0,00) — R is convex, that is,
In(aty + Pte) > aln(ty) + Bln(ty) for all t1,t, > 0 and for all « > 0,5 > 0 with a + 5 = 1.

Let p > 1, ¢ > 1 be such that %+% = 1, and we choose a = % and 8 = % in the above

inequality to reach

1 1 1 1
In (—t1 + —t2) > ZIn(ty) + = In(ty) = In(¢}/P42/9)  for all ty, ¢, > 0.
p q p q
We now write s; = /7 > 0 and s, = /Y > 0 to see that In (is’l’ + és};) > In(sys9) for all
s1 > 0 and sy > 0. Since exp : R — R is strictly increasing, then we see that

1 1

;s:’l’ + 532 > 5159 for all s; > 0 and sy > 0.
The above inequality obviously holds true for either s; = 0 or s, = 0 as well, and we now

conclude the following lemma.

LEMMA 4.5.2 (Young’s inequality). For each p > 1 and ¢ > 1 such that % + % =1, we
have the inequality

1 1
$189 < —sh + =sb for all a > sy and sy > 0.
p q

For simplicity, let I be any connected interval in R, and we consider any continuous
functions f: I — R and g : I — R. By Lemma 4.4.8, the improper integral

1/p 1/q
T ( i dx) and [|gl| o == ( / |g<x>|qda:) both exist.
I I
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Suppose that || f||zr) # 0 and ||g||e(ry # 0. For each & € I we choose
@] oo o)
11l zr ey 191l Lan)
in the Young’s inequality (Lemma 4.5.2) to see that
f@)g@)] 1@ 1 gt
Flom ol = 21 ol
Integrate both sides on I N [—M, M|, we see that

Jinearag 1f (@)g(@)] do < 1[]0[—M,M] |f (@) dz N lfm[—M,M] lg9()|* da
Ifllzellgllzaay — ~ p 1A () q 91170z
U@ 1 fle@lrdr 11

1
< - =—+-=1.
p ”fHLp I q Hg”qu(I) p q

S1 =

forall z € I.

Again, by Lemma 4.4.8 the improper integral [, |f(x)g(x)| dz exists, then taking limit M —
+o0o and we reach

f[ |f(2)g()| da <1
HfHLP(I HQHLq I)
that is,
ol = [17@ot@)lde < LAl ol

One sees that || f||»() = 0 if and only if f(x) = 0 for all x € I, and similarly, ||g|/zey = 0
if and only if g(z) = 0 for all = € I. Therefore the above inequality also holds true if either
| fllzecry =0 or [|gllza(ry = 0. It is easy to see that

[follry < Wfllzemliglrg  if we write || flzeor) = Suglf(y)h
ye

We now summarize the above computations in the following theorem.

THEOREM 4.5.3 (Holder’s inequality). Let I be a connected interval in R, then

1 1
I falleray < 1 fllze@llgllay  for allp > 1,q > 1 with p + i 1

for all continuous functions f: I — R and g: I — R.

REMARK 4.5.4 (Optimality). When p > 1 (if and only if ¢ > 1), we choose g = |f|§, then
we see that

142

1/q »
I 1leenllgllizeay = HfHLpa)( ny(x)\de) = el Loy = 1 llo iy = I1F1Z

and

1f gl —/Ilf(l‘)ng dx—/llf(x)!pdl‘— LAz o

Combining the above two equations, we reach || f||on)llgllery = || fgllziy when g = |f]4.
This shows that the exponents in Holder’s inequality (Theorem 4.5.3) are optimal, but how-
ever, the regularity of functions are not optimal: the continuity of functions and the connect-
ness of domain are actually not required.
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By using triangle inequality of the absolute value (1-dimensional Euclidean norm), one
can easily check that

If +gllevay < Wl + gl
and
1f + gllzeey < N fllzeey + gl ),
for all continuous functions f: I — R and g: I — R. For 1 < p < 400, we see that
(@) +g(@)I” = f(2) + g(@)I"~"|f(2) + g(2)]
(4.5.1) < |f(@) + g(@) P f (@) + | f(z) + g(2) P g(x)] forall z € 1.

By using Hélder’s inequality (Theorem 4.5.3), for each M > 0, we compute that

1/q
[ s i@laes ([ @@ i) il
IN[—M,M] IN[—M,M]

p

ZP(IQ[—M,M])HfHLP(I)

1/q
:(/‘ u@y+ﬂ@w¢0 Wl =11 +
IN[—M,M)]

and similarly,
r
/' (@) + g@) P g(@) e < 11F + 9l oasan | F o).
IN[—M,M]

Integrating (4.5.1) on I N [—M, M| and then combining the resulting inequality with these
two inequalities, we now see that

14 oo = [ 1)+ gl da
IN[—M,M)]

<|f +QHEp(m[fM,M])||f”LP(I) + 1 f +QHEp(m[fzw,]w])||9||L1’(I)

D
=|f +9||Zp(m[_M,M])(HfHLP(I) + lgllze(n)-
Since f : I — R and g : I — R are continuous, then | f + gl|re(rn-aran) < +oo. If
|.f + gllLe(rn—n,a7) 7 0, then we divide both sides by || f + g||zr(1n[—ns,m) to see that
p_E
1f + gllerani-many = I1f + 9llpodinaany < e + lglleea)-

The above inequality obviously hold trues when || f + g|/ze(n-m,m)) = 0. By using
Lemma 4.4.8, we can take the limit M — 400 to obtain

1f + glleeay < 1 f e + l9llocr)-
We now summaraize the above discussions in the following theorem.

THEOREM 4.5.5 (Minkowski’s inequality). Let I be a connected interval in R, then for
each 1 < p < 400 one has

If 4+ gllzeay < N flleey + lgllzea

for all continuous functions f: I — R and g: I — R.
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The results in Theorem 4.5.5 does not hold true for 0 < p < 1. For this case, we need
different treatments. For any numbers a > 0 and b > 0, one sees that

1_a+b<ap+bp
a+b a+b~ \a+b a+b/)’
then

(4.5.2) (a+b)P <a?+ b foralla>0andb>0.

The above inequality obviously holds true for the case when a = 0 or b = 0. Now we choose
a=|f(z)] and b=]g(x)],

and we reach
(@) + 9@ < (@) + g(@))” < [F@)P + |g(@)P for all x € 1.

By using Lemma 4.4.8, we can integrate both sides on I to conclude the following theorem.

THEOREM 4.5.6 (Minkowski’s inequality). Let I be a connected interval in R, then for
each 0 < p <1 one has

1+ 9oy < 1IN Zery + 119170
for all continuous functions f: I — R and g: I — R.

Minkowski’s inequalities are exactly the triangle inequality, which says that the notion of
“length” also can be introduced to function spaces, that is, by viewing functions as points,
we can define the “distance between them”. Here we close this section by remarking that the
results in Theorem 4.5.3, Theorem 4.5.5 and Theorem 4.5.6 are not optimal, and they are far
away from optimal. The optimal version has to be formulated in terms of Lebesgue integral
[WZ15|. Finally, we end this semester by giving a remark that the results in this section
also can be proved for series, see Section 5.6 below.



Part 2

Spring 2025 (113-2, 000713012)



CHAPTER 5

Numerical sequences and series

5.1. Convergence of sequences
We begin this semester by the following definitions.

DEFINITION 5.1.1. A sequence in R is a function a : N — R. For convenience, we usually
denote
a(i) =a; forallie N,
and we slightly abuse the notation by writing {a;}sen or {a;}2F.

DEFINITION 5.1.2. Let {a;};. be a sequence in R.

(a) We say that the sequence {a;};- converges to some a € R if: Given any ¢ > 0, there
exists N = N(e) > 0 such that

i > N implies |a; — a| < e.

In this case, we also say that lim; ., , a; exists in R, or we simply write lim; ., a; =
a for some a € R.

(b) We say that the sequence {a;} % convergence to +oo if: Given any M > 0, there
exists N = N(M) > 0 such that

1 > N implies a; > M.

In this case, we also write lim;_, . a; = 400.
(c) We say that the sequence {a;} % convergence to —oo if: Given any M > 0, there
exists N = N(M) > 0 such that

1 > N implies a; < —M.

In this case, we also write lim;_, ., a; = —o0.
(d) If either (a), (b) or (c) holds, we unify the notations by saying that lim;_, o, a; exists,
or by slightly abuse the notation by saying that lim, | a; exists in [—o0, +00].
(¢) Otherwise, if (d) does not hold, then we say the sequence {a;}; % diverges.

We see that Definition 5.1.2 is nothing by just a special case of the usual limit for functions
(see Definition 2.3.15 above). Therefore, similar properties will holds as well:

LEMMA 5.1.3. Let {a;} 1% and {b;} . be a sequences in R.

(a) If both {a;} ;%5 and {b;} ;%5 converge and the following two situations do not happen:
e lim; ., a; =400 and lim; , ., b; = —0o0;
L] hml_>+oo a; = —00 and hmz_,+oo bl = +OO,'
then lim;_, oo (a; + b;) exists and
1—>+00 1—>+00 1—>+00

73
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(b) If {a;} [ % converges, then for each ¢ € R the sequence {ca;} %5 converges and

lim (ca;) = ¢ lim ;.
1—+00 1—+00
(¢) If both {a;} % and {b;}} > converge and the following two situations do not happen:
e lim; .. a; =Fo00 and lim; ., b; = 0;
e lim; .. a; =0 and lim;_,  , b; = £o0;
then lim;_, o (a;b;) exists and

lim (a;b;) = ('lim ai> <4lim bi> )
i——+00 i——+00 1—+00
(d) If a; # 0 for alli € N and {a;}; converges in [—oo,+oc] \ {0}, then
1 1

We first remark that one can use continuous function to proof the existence of limits and
compute it, similar to Example 3.3.11 above. For reader’s convenience, here we rewrite the
ideas in the following example, in terms of sequences.

EXAMPLE 5.1.4. We consider the sequence {i'/?}°°. By using L’ Hopital’s rule in Sec-
tion 3.2 above (remember to check sufficient conditions!), one sees that
‘ 1
lim In(i"%) = lim ~1Ini=0.
1—+00 1—+400 7
One cannot use the continuity of In : (0, +00) — R to write In(lim;_, 1, i/?), since we do not
know whether lim;_,, . i"/? exists or not at the moment. The proper way to argue this is to
use the continuity of exp : R — (0, +00) and see that

1=¢e"=exp ( lim ln(il/i)) = lim exp (ln(il/i)) = lim ¥* = lim /"

i—+00 i—+o00 i—+o00 i—+o00
which completes the proof.

We first introduce a simple criteria to check whether the limit exists or not.

LEMMA 5.1.5 (Monotone convergence theorem). Let {a;};-% be a sequence in R.

(a) If {a;} 5 is non-decreasing and there exists a number b € R such that a; < b for all
1 € N, then lim; .. a; = a for some a € R with a < b.

(b) If {a;} . is non-increasing and there exists a number b € R such that a; > b for all
1 € N, then lim;_, o a; = a for some a € R with a > b.

(¢) If {a;} % is monotone (that is, either non-decreasing or non-increasing), then
lim; oo a; converges in [—oo, +00].

While taking limit, we always need to check whether it exists or not, which is very
inconvenient. For future convenience, we similarly introduce the notion of lémit superior and
limit inferior for sequences. Here we follow [Rud76, Definition 3.16].

The above lemma only guarantees the existence, but the exact value of the limit is un-
known. We demonstrate this in the following example.

EXAMPLE 5.1.6. Let {a;} 5 be a sequence in R, which defined by the recurrence relation

(5.1.1) a1 = V2, a1 =1/2+a foralli=234,--.
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We first check 0 < a; < 2 for alli =1,2,--- by using mathematical induction. The base case
is immediately verified by 0 < a1 = /2 < 2. It remains to show the following:

induction hypothesis
N

6<ai<2f0rsomei€N:> 0<a; <2

Since /- : [0,+00) — [0,400) is strictly increasing, it is not difficult to see this, and the
details are left to the readers as exercises. Now the mathematical induction implies that

(5.1.2) 0<a; <2 forallieN.

We now want to show that {a;};£% is strictly increasing. First of all, from a; > 0 we check

that
a2:\/2+\/a_1> 2+\/6:\/§:(11,

which confirmed the base case. It remains to show the following:

induction hypothesis
7\

7 N
ajrq1 > a; for some i € N = a;,9 > a;41.

Since /- : [0, +00) — [0, 4+00) is strictly increasing, From a; 1 > a;, we see that \/a; 11 > \/a;,
and consequently one sees that 2+ ,/a; 1 > 2+ ,/a;. Now, again using the strictly increasing
function /- : [0, 4+00) — [0, 4+00), we now see that

ai+2=\/2+ ai+1>\/2+\/a_z‘=ai+1-

Now the mathematical induction implies that

(5.1.3) a; > a; forallie N,

In view of (5.1.2) and (5.1.3), now the monotone convergence theorem (Lemma 5.1.5) guar-
antees that there exists a number 0 < a < 2 such that

(5.1.4) lim a; = a.

i——+00

At this moment, we do not know the precise value of a. By taking the limit i — +oo in the
recurrence relation a; 11 = /2 + \/a;, from the continuity of /- : [0,+00) — [0,+00) one

sees that a = /2 + y/a, and thus
(Va)' =2+ +a.

This means that y/a solves the polynomial y* —y —2 = 0. In this case, by taking account to
the condition 0 < a < 2, by using advance algebra, one can compute that

2
1 / 2 /1

a= = 1—23—+</—47+3\/249 ~ 1.831177--- .
9< 47 + 3249 2( )

We finally remark that the limit a is called the fixed point of the recurrence relation (5.1.1),
and it may not unique! Even though the limit (5.1.4) follows by taking the limit i — +o00
in the recurrence relation a1 = /2 + /a;, it actually also depends on the initial condition
a1, that is why we always need to check base case in mathematical induction (even though it
may looks trivial).
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DEFINITION 5.1.7. Given any sequence {a;} % in R, we define

limsupa; := lim supa; = infsupa;,
i—4o00 =400 j>; €N j>;
liminf a; := lim infa; = supinfa;.
n—+o00 i——400 j>1 ieN J2=t

This is nothing by just a special case of Definition 2.3.16. Unlike limit, the monotone
convergence theorem (Lemma 5.1.5) implies that both limit superior and limit inferior always
exist (because sup;; a; and inf;>; a; are monotone as the index i increasing) in [—o0, +-00].
It is clear that

liminf a; < limsup a;
i—+00 i—+400

and if a; < b; for all i > N for some N > 0 one has

limsupa; <limsupb;, liminfa; < liminfb,.
i—+00 i—+00 i—r+-00 i—+00

In addition, one has

lim a; =a € R <= limsupa; = liminfa; =a € R <= limsup|a; — a|] =0,

i—+400 =400 1—+400 i—+400
lim a; = 400 <= liminfa; = +o0,

1——+00 1—+00

lim a; = —00 <= limsupa; = —o0.

t—+00 i——+00

EXAMPLE 5.1.8 (Oscillating sequences). We consider the sequence {(—1)"}°°. One sees
that
limsup(—1)" =1 # —1 = liminf(—1)",
i—+o00 1=—00
which shows that the sequence {(—1)"}.£% is divergent.
We also consider the sequence {i(—1)"}.2°7. One sees that
limsupi(—1)" = 400 # —oco = liminfi(—1)",
i—+00 =00
which shows that the sequence {i(—1)}; % is divergent. This example shows that the se-
quence may oscillating with magnitude +oo.

EXAMPLE 5.1.9. We consider the sequence {a;}:-% defined by

w_{rlﬁmﬂowieN

i~2 for all even i € N.

Since lim; it = 0 and lim;_, o i~2 = 0, then

limsup |a; — 0] = limsup a; = 0,
i—4-00 i—4-00

which concludes that lim; . a; = 0.

However, one has to be careful that, we only have subadditivity (resp. superaddivity)
property for limit supremum (resp. limit infimum):

1—00 1—00 1—00
liminf(a; + b;) > liminf a; + lim inf b;
1—00 1—00 1—00

limsup(a; 4+ b;) < limsup a; + lim sup b;
(5.1.5) ‘
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holds whenever the right hand side is not co— oo or —oco+o00. For the case when lim; . b;
exists and finite, by writing a; = (a; + b;) + (=b;), using (5.1.5) we obtain

limsup a; < lim Sup(a, +b;) — lim b;
i—00 1—00
liminf a; > hm 1nf(aZ +b;) — lim b;
—00 71— 00

1—00

which implies

1—00 1—00

liminf a; + hm b; > hm 1nf(a1 +b;).

1—00

{ lim sup a; + llm b; < limsup(a; + b;),

Combining this with (5.1.5), we reach

limsup(a; + b;) = hm sup a; + hm b;
(5.1.6) liminf(a; + b;) = hm mf a; + hm b; when bi exists and finite
1—00 —00

If {a;} is bounded and lim; . b; exists which converges to some b > 0, by writing
a;b; = a;b + a;(b; — b) and using (5.1.6), one sees that

. . (.5>0) . .
limsup(a;b;) = limsup(a;b) = (hm sup ai) <hm bi) ,
71— 00

liminf(a;b;) = liminf(a;b) = (lim inf ai) <hm bz-).
1—00 1—>00 1—>00 1—00
If we choose trivial sequence b; = b > 0 for all 7« € N, then we reach
(5.1.8) limsup(ba;) = blimsupa; for b > 0.
1—+00 1—00

However, one should be aware that when b > 0, we have

limsup(ba;) = — lim inf(|b|a;) = —|b| hmlnfal = bliminfa; for b <O0.

1—>00 0 1—00

EXERCISE 5.1.10. Compute limsup,_, . (a;b;) and liminf; ,(a;b;) when {a;} is bounded
and lim; . b; exists which converges to some b < 0.

If both {a;} and {b;} are non-negative, one also has

lim sup(a;b;) < (hm sup ai> <lim sup bi>
(5.1.9) i—00 i—00 i—00 for non-negative {a;};-%, {b;}.1%

lim inf(a;b;) > <lim inf ai) <lim inf bi)

1—00 1— 00 1— 00

holds whenever the right hand side is not 0 - 0o or oo - 0.

5.2. Absolute and conditional convergence of series

Let {a;};-% be a sequence in R. We now asking whether we can summing up all the
elements in {aZ 0. If we define the function f: R — R by

e zeli—11),
Jw) = {0 otherwise,
then for each N € N we see that

N N
Zai::al—i-”-—i-a]v:/ f(z)dx
0

=1
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We now introduce the following definition, which is a analogue to the improper integral
(Definition 4.4.6).

DEFINITION 5.2.1. Let {a;};/% be a sequence in R, for each N € N we define the partial
sum by

N
SN ‘= E a;.
i=1

Note that {sy}4>, is also a sequence in R. We say that the series Zf | a; converges in
[—00, +o0] if {sn} 4>, converges in [—oo, +00] and we write

+o00 N
E a; ;= lim sy = lim E a;.
— N—+4o00 N—+o0 4 T
1= 1=

Let us introduce the following technical lemma before begin our discussions.

+o0

LEMMA 5.2.2 (Alternating series test). If the sequence {a;}; 57 in R is nonincreasing and
satisfies lim;_, o a; = 0, then the alternating series Zi:l( 1) a; converges to some a € R
in the sense of Definition 5.2.1.

EXAMPLE 5.2.3. We now consider the sequence {a;};£> in R given by

1 for all 7 € N.
7

a; = (-1)2 "

The alternating series test (Lemma 5.2.2) guarantees that Z;ff a; converges to some a € R,
more precisely,

1
2.1 li —1)= =
(5:2:1) Jim 31 =0
In fact a = —In2, but the computation requires further advance tools, see Example 5.5.14

below. We begin with the series written in usual order:

2 — 1 1 n 1 1 n 1 1 L 1 1 N 1 n
2 3 4 5 6 7 8 9
We now collect the positive terms {by, by, b3, -} {1,3, £, t and negative terms
{c1,¢9,¢3,-+-} = {—%, —}1, —%, .-+ }. We now rearrange the terms as described by the fol-
lowing algorithm:

Algorithm 2 One way of rearranging alternating harmonic series
1: fori=1,2,3,--- do
2: Define Elgi_g = bi7 d3i—1 = C9;—1 and CNLgZ‘ = C9;
3: end for
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The resulting sequence {a;} ;- is a rearrangement of {a; }:-°7, and the corresponding series
is

111+111‘++1 L1y,
2 4 3 6 8 2i—1 202i—1) 4

N
li ! ! ! (precise meaning)
= 1m — - — recise
2i -1 22i—1) 4) P &

= % ( lim (—1)Zl> = %a (using (5.2.1)).

This example shows that the order of series cannot be change in general. If we go back to
the definition of series (Definition 5.1.1), the precise meaning of the sequences {a,;};- and
{a;};-%5 are functions a : N — R and @ : N — R. These two functions are different, but there
exists a bijection between their ranges, in other words {a;}; - and {a;};/> are identical as

sets.

Even though the above example demonstrates some ambiguity may appear if we abuse
the notation like Definition 5.1.1, but however this does not cause major problem in practical
due to the following theorem.

THEOREM 5.2.4 (A sufficient condition). Let {a;}; > be a sequence in R. If the series
% la;| converges in R, then >, % a; converges in R and

Z a; = Zag(i) for all bijection o : N — N.

REMARK 5.2.5. If 3" |a;| converges in R, then we also has

<Z|aZ

+o0

>

which is valid as 3" a; converges in R.

(5.2.2)

REMARK 5.2.6. For non-negative sequence {b; }.£%, one sees that its partial sum {Sy} 4>,
given by

N
SN - Zbl
i=1
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is a nondecreasing sequence. By using the monotone convergence theorem (Lemma 5.1.5), one
sees that limy_, 1, Sy converges in [0, +0o0], which means that there only two possibilities:

+00 +oo
sz-:bfor some be R or Zbi:—koo.

=1 i=1
Since {Sy}4>, is nondecreasing, then

+00 +oo
(5.2.3) Zbi = b for some b € R <— Z b; < +o0.

i=1 i=1

The notation (5.2.3) is only valid for nonnegative sequence {b;};-. Therefore, the assumption
in Theorem 5.2.4 can be written as

+o00
> ai] < +o0.
i=1

Together with (5.2.2), we also see that

—+00

>

=1

+oo
< ag] < 4o
=1

(5.2.4)

EXAMPLE 5.2.7. We now give an example to demonstrate the notation (5.2.3) may not
valid for arbitrary series. For example, we consider

a; = (—1)" forall i € N.
The partial sum Sy = Zf\;l a; is given by

gy —1 for all odd i € N,
o for all even 7 € N.

Since limsupy_,, .. Sy =1 # 0 = liminfy_, o S, thus limy_, o Sx does not exist, in other
words, the series Z;Of a; diverges. However, one sees that

N

>

i=1

<1 forall N €N,

it is illegal to denote ‘Z;ff ai‘ < 1 for divergence series ZLOIO a;. It is interesting to compare
this example with (5.2.4).

In view of Theorem 5.2.4, we finally end this section by introducing some definitions.

DEFINITION 5.2.8. Let {a;};: be a sequence in R.

(a) We say that the series Y " a; is absolutely convergent if 3 . |a;| < +o0.
(b) We say that the series Y ./ a; is conditionally convergent if "% |a;| = +o0 but
Z:;Of a; converges in R in the sense of Definition 5.2.1.
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EXAMPLE 5.2.9. The sequence in Example 5.2.3 is conditionally convergent. In fact, one
can see this by the estimate

UL L S S
2734756

=1+

We will later give a more systematic way in Example 5.3.2.

5.3. Convergence of nonnegative sequence

In many practical situation, we are interested in absolutely convergent series rather than
the conditionally convergent one. As we discussed above, the convergence of series also can
be understood as the well-defineness of improper integral. This suggests us to consider non-
negative sequences {b;};"°7, which is the main theme of this section. Throughout this section,
we will use the notation in (5.2.3). We already introduce a criteria, called the monotone
convergence theorem (Lemma 5.1.5), to check the convergence of the series .77 b;. We

exhibit some other way to check the convergence of non-negative series.

5.3.1. Integral test. By using the monotone convergence theorems in Lemma 4.4.8
and Lemma 5.1.5, we see that the series Zj:f b; for non-negative sequences {b;} ;- is exactly
identical to the improper integral

oo b, x€li—1,i) forallieN,

0 0 otherwise.

(x)dx where f(x):{

In view of the upper sum and lower sum with the special partition 'y ={0 <1 <2< --- <
N} on [0, N], we immediately reach the following useful test:

LEMMA 5.3.1 (Integral test for nonnegative series). Suppose that {a;};1° is a nonnegative
nonincreasing sequence. For each nonnegative continuous function f : [1,4+00) — R with
f(@) = a; for alli € N, one has

+oo +00
Z a; < +oo if and only if () dx < 4o0.
i=1 1

EXAMPLE 5.3.2 (p-series). For each p > 0, we want to study the convergence of the
positive series Z;ff 1P, which is the so-called p-series. The case when p = 1 corresponding
to the harmonic series mentioned in Example 5.2.9 above. From Exercise 4.4.9 we know that

+oo
/ r Pdr < +oo if and only if p > 1.
1
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Since {i P} is a nonnegative nonincreasing sequence, then the integral test is valid with
continuous function f : [1,+00) = R f(x) = 2P, so that we conclude that

+00
Zi_p < 4oo if and only if p>1.
i=1
EXAMPLE 5.3.3. We now give a examples to demonstrate that, even with the “positivity”
condition, the integral test may fails for both directions without “nonincreasing” assumption
on f:[1,+00) = R.
(1) We first consider the function

1 1
f(z) = (sin(mz))* + = with a; == f(i) = = for all i € N.

One sees that
+oo “+00

Zai < 400 but f(z)dx > /+Oo(sin(7rx))2 dz = +o0.
1

i=1 1
(2) We now define the continuous function ¢ : R — R given by
1tz ,—1<z<0,
olz)=<1—az ,0<z<1,
0 , otherwise.

It is easy to see that [ ¢(v)dr = fjl ¢(x)dxr = 1 with ¢(0) = 1. We now define
the function f : (—oo,+00) = +00 by

ZJ (2 (x — 7)),

which is non-negative and continuous. We now write a; := f(i) =i~ ! for all i € N.
We see that (this can be determined by solving the equations 23( j) ==+1)
+oo j+277 ' +oo ‘
dx—Zj_l/ (2J(x—j))dx:Zj_12_3 < 400
- =
but however > a; = +o0.
5.3.2. Limit comparison test. Let {a;};/> and {b;} > are non-negative sequences. If
there exists positive constants C' and N such that
(5.3.1) a; < Cb; forall i > N,

then we immediately see that (which sometimes referred as comparison test):
+oo

+oo
Zbi < +o0 implies Zai < 4o00.

i=1 i=1
However, it is difficult to check (5.3.1) in many practical case. Instead, the following theorem
is helpful:

THEOREM 5.3.4 (Limit comparison test). Assume that {a;};> and {b;}; > are positive
sequences.
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(a) If there exists c € R\ {0} such that lim,;_, o 3 = ¢, then

+oo +oo
Zai < 400 if and only if Zbi < +00.
i=1 i=1

(b) If lim; 4 o0 & =0, then

+o0o +oo

Zbi < +oo implies Zai < 400.

i=1 =1

Roughly speaking, the condition in Theorem 5.3.4(a) means that a; looks very similar to b;

up to a multiplicative constant, and the theorem confirms our intuition that the convergence
behavior of the series 3% a; < 400 and S5 b; < 400 are the same. The condition in
Theorem 5.3.4(b) means that the the convergence a; to 0 is significantly faster than b;, and
the theorem confirms our intuition as well.

EXAMPLE 5.3.5. We now consider the sequence {a;} > given by

- 10
a; = 64,2 for all + € N.
e + 1
We see that a; > 0 for all e = 3,4, 5, ---, and we consider the sequence {otZ 5. By observing
that ,
1—10e™"
;= ———— foralli €N,
¢ +e?

this suggests us to consider the positive sequence {b;}; % given by

bl-:,l for all 1 € N,

2
Now since
a; 1 —10e" o=
lim 4= lim ———— =1 and b; < ,
z—g—r&-noo b z—}—l-oo 1+ 172t H zz_; oo

the limit comparison test guarantees that Zl 3 @; < +oo, and thus we conclude that
+o0
Z a; converges.
i=1

Intuitively, we can interpret the sequence {b;};% be the principal part of {a;}%.

5.4. Root test

In many cases, especially for sequences that change sign for infinitely many times, the
monotone convergence theorem (Lemma 5.1.5), the integral test (Section 5.3.1) and limit
comparison test (Section 5.3.2) are not applicable. At this point, we only introduced al-
ternating series test for changing-sign sequence, which is still quite restrictive in practical
applications. There are some other tests for general sequences as well, for example, the
Dirichlet test [Apo74, Theorem 8.28| and the Abel test [Apo74, Theorem 8.29]. We are
not going to introduce them during this course. Instead, we will introduce a criteria which
is quite fundamental, especially for those interested in complex analysis, see e.g. my lecture
note [Kow23|. In order to motivate the criteria, lets begin with the following example.
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EXAMPLE 5.4.1 (Geometric sequence). Let r € R, we now consider the sequence {a;};5

given by a; = ar’, which is the well-known geometric sequence with ratio r. If r = 1, then

, =aforallie N in which obviously that > a; = +00. If r = —1, then > a; dlverges

as demonstrated as in Example 5.2.7. We now consider the case When —1 < r < 1. In this
case, for each N € N, one sees that

(1= 1r]) Z\all—\alz [l = 1) = lal (1 = [r|¥).

Since |r| < 1, then one has
- — |

_ Jal(
Z - 1—|r] 7

=0

which gives

< 400,

lim Z|al =
N—+o00 — ‘

in other words, jo a; absolutely When —1 < r < 1. Similar arguments show that
(1—r) Zal—az — )y = q(1 — PN,
and thus
N N41
-
5.4.1 ; —,
541) S o=t

=0

thus we know that the absolutely convergent series Z:;Og a; takes the value

+oo

a
Zai —1_
=0

We now consider the case when r < —1 or r > 1. In this case, from (5.4.1) it is not difficult
to see that

N
lim Supz = 400 # —0c0 = lim mfz a;,
=0

N—+o00
N—+o0 i—0

which demonstrates that Zl o a; diverges.

In the geometric sequence (Example 5.4.1), one sees that the convergence only depends
on the absolute value of the ratio. We observe that

lim_[a|"" = lim_af"|r| = |r],
i——+00 i——+00

which suggests the absolute value of the “ratio” of a general sequence {a;};-> should be given
by lim,_, oo |ai|"/?. In fact, this idea works even the when the limit hmH+OO |a;)'/? does not
exist:

THEOREM 5.4.2 (Root test, a special case of [Apo74, Theorem 8.26]). Given a sequence
{a;}; %5 in R, and let

(5.4.2) p = limsup |a;|/*.

i——+00
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(a) If p < 1, then > |a;| < +oo.
(b) If p > 1, then either S5 a; = +00 or 3. a; diverges.

REMARK 5.4.3. The case when p = 1 is inconclusive, which we will give examples in
Section 5.5 later.

If we consider the geometric sequence in Example 5.4.1, one also see that
i1

ain] ™| alie,

jail  Jair]
which suggests another characterization of the “ratio” of a general sequence {a;}; % should

be given by lim; |a|;+‘1| In fact, one has the following fact:

LEMMA 5.4.4 (|[ApoT74, Exercise 8.4]). Given a sequence {a;};.%5 in R such that a; # 0
for all i € N, one has

’ai+1|

i inf 2 < i inf a4 < tim sup o, ¢ < timsup 12251,
iotoo  [ay i—+o0 =00 istoo |l

We now exhibit the following corollary, which gives a widely-used way to check the suffi-
cient condition in the root test (Theorem 5.4.2).

COROLLARY 5.4.5. Given a sequence {a;}; % in R such that a; # 0 for all i € N. If

(5.4.3) lim 2.1 ezists in [0, +00],

then lim,_, o |as|'/* exists and the generalized radius p in (5.4.2) satisfies

p = lim |ai|l/i= lim [2i11]
i——+00 i——+00 |az|

We sometimes refer the “ratio test” if we check the criteria (5.4.3). Here we give an
example to demonstrate that the root test is stronger than ratio test.

EXAMPLE 5.4.6. Define a sequence {a;};.> by

2=+ if § is odd,
a; = . cp o
27 if 7 is even.
One sees that »
i 2T ifdis odd,
jaal " = 21 if 7 is even
and thus )
lim ]ai|1/i = 5 <1,

i——400
and thus by root test (Theorem 5.4.2) one conclude that Y7 |a;| < +o0c. Since for each

odd i we have a; = a;11 = 2-0+Y for all odd i, and for each even i we have a; = 27 and
aip1 = 27042 thus we have

L ag 1 . a;

lim inf 211 =-<1= hmsupm,

1—+00 |az| 4 i——+00 |CLZ’

which shows that (5.4.3) does not hold, in other words, the ratio test fails.
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5.5. Power series: approximating functions by polynomials

We recall that a polynomial is a function f : R — R for which takes the form f(x) =
vaoczx‘ for some N € N. If ¢y ;é 0 then we say that the polynomial has degree N. For
each fixed r € R, one sees that {c;z'}5 is actually a sequence in R, therefore it is possible
to discuss the “polynomial with degree +00” more precisely, the power series. This idea can
be done by using root test (Theorem 5.4.2).

THEOREM 5.5.1 (A special case of [Kow23, Theorem 2.2.2|, see also [Rud87]). Given a
sequence {c;}% in R. We define the number

p = limsup |¢;|'/".
i——+00

(a) If p =0, then > \csz\ < 400 for each x € R.
(b) If p = 400, then Z o czx = t00 or Y% ¢zt diverges for each v € R\ {0}

(c) If 0 < p < +oo, then ), 5 lellz” < +oo for each x € R with |z] < p~t and

= ert =400 or 1Y clx diverges for each x € R with |z| > p~!

DEFINITION 5.5.2. If 0 < p < 400, we define R := p~; If p = 0, we define R := +o0; If
p = 400, we define R := 0. In many cases, we simply abuse the notation by simply writing

R:=p ' for pel0,+oc],
and the number R is called the radius of convergence. If R = +o00, we interpret Br = R.
We also have the following properties similar to polynomials.

THEOREM 5.5.3 (A special case of [Kow23, Theorem 2.2.9]). Suppose that the power
series ZZ o Gix' has the radius of convergence R € (0,+00], then it defines a diﬁer@ntiable

function on Bgr — R. In addition, the radius of convergence of the power series Z it
1s > R and the following identity holds:

d +00 ' +o0o -
— cr' | = 1t or all x € Bp.
COROLLARY 5.5.4. Any power series is infinitely differentiable within its radius of con-

vergence.

If we look into Theorem 5.5.1(c), we see that the statement do not mention any result on
|z| = p~!. We now explain the situation here by using the following example.

EXAMPLE 5.5.5. We now give examples to demonstrate in the case Theorem 5.5.1(c) that
it is inconclusive at |z| = R. This also serves as examples mentioned in Remark 5.4.3

(1) By using Example 5.1.4, we see that the power series Z:rzof iz’ has the radius of

convergence
—1
R= (,hm il/i) =1.
1—+400

We see that S 7%iz' = +oo when = 1 and Y % iz’ diverges when x = —1
(similar to Example 5.2.7).
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(2) We also see that the power series 3.7 i22" has the radius of convergence

2
R= ('lim z'l/i) =1.
1—+400

We see that > % i~22" converges absolutely at z = +1.
(3) Similarly, we also see that the power series Z;"f i~'2" has the radius of convergence

R = lim ¥ = 1.

1——+00

From Example 5.2.9 we see that Z;:f i~laz’ = 400 at © = 1, but from Example 5.2.3

we see that Y% i 712 converges at © = —1.

We see that all above three three cases are not distinguishable by the criteria of root test
(Theorem 5.4.2) as well as Theorem 5.5.1, but they have different convergence behavior at
|z| = 1. In other words, the results in the root test (Theorem 5.4.2) as well as Theorem 5.5.1
are already somehow optimal.

However, if one can prove the convergence at + = R or x+ = —R, then we have the
following remarkable result.

THEOREM 5.5.6 (Abel’s limit theorem, [Apo74, Theorem 9.31]). Suppose that the power
series f(z) = >/ c;a' has the radius of convergence R € (0,400]. If Y., °5 ¢;R* converges,
then

“+o0o
lim f(x) =) R
i=0

r—R—

Similarly, if > c;(—R)* converges, then

400

xllfr}z+f(x) = ;ci(—R) .
Let f : (zo — €,x9 + €) — R be an infinitely differentiable function, with derivatives
f™ (29 — €, 29 +€) — R of order n. We now want to approximate f using the power series
T ¢i(x — x). If we consider the function g : (—¢,€) — R defined by g(z) := f(x + ),
then one sees that g™ (z) = f™(x + x0). If we can approximate g using a power series

% cixt, then Y% ¢;(x — )" is an approximation of f.
Before we make things rigorous, let’s do some formal computation first. If we formally

write

+0o0

(5.5.1) fl@) = el —x)"

=0

In view of Corollary 5.5.4, one immediately know that one necessary condition to do so is
the function f must infinitely differentiable. We now take x = xy in (5.5.1) to see that
co = f(xg). In view of Theorem 5.5.3, we formally write

“+oo

f(x) = chz(x —x0) L.

=1
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Now taking x = zy we see that ¢; = f'(x). In view of Theorem 5.5.3, we formally write

f'(@) =3 il = Veilw = o)™

Now taking x = o we see that co = f”(z(). Repeating the above process, one can obtain

0
cizf,—(‘xo) for all i = 0,1,2,-- - .
2!

In other words, if we formally approximate f like (5.5.1), it is necesarily to have the formula

20 (1, }
(5.5.2) fla)=>" Al )(:1: — xo)".

!
i=0

However, the above ideas fail in general, which can be demonstrated by the following example.
EXAMPLE 5.5.7. We define the continuous function f : R — R by
el x>0,
Jx) = {0 2 <0,

In fact, by using the mathematical induction, one can verify that f : R — R is infinitely
differentiable with i*"-order derivatives

FO(z) = {?(ﬂ?)e‘x'_ Lz >0,

7‘/1;S07

for some polynomial P;(z). This implies that f(™(0) = 0 for all n = 0,1,2,---, so that the

power series Y % wggl has radius of convergent R = 400 with
Zf—f)x =0 forallz€R.
!

=0
This shows that the above ideas fail in general even within the radius of convergence.

The above idea is still holds true for some function. Before we state some condition, we
need the following definition.

DEFINITION 5.5.8. Let f: R — R be an infinitely differentiable function. We say that f
is real analytic near zy € R if there exists € > 0 such that "% W(m‘ — x0)" converges for
all x € B(zo) and the representation (5.5.2) holds for all x € B.(x¢). If f is real analytic at

all points in R, then we say that f : R — R is real analytic or entire.
We now described the following criteria for which the above ideas work properly:

THEOREM 5.5.9. Let f : R — R be an infinitely differentiable function. The the following
are equivalent:
(a) f:R — R is real analytic;
(b) For each M > 0, there exists a constant Cyy > 0, which depends on M, such that

5.5.3 sup |f9(z)| < foralli=0,1,2,--- .
( M

zE€[—M,M)]

Here the constant Cyy s independent of 1.
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In this case, for each o € R, let R = R(xg) > 0 be the radius of convergence of the

too £ () (o

power series Y ;. — x0)", then the power series representation (5.5.2) holds for all

S BR(mo).

Roughly speaking, this means that the above ideas only works when the derivatives f
does not grow too fast. Combining Theorem 5.5.9 with Theorem 5.5.3, we immediately reach
the following corollary:

COROLLARY 5.5.10. If f: R — R is an analytic function, then its derivative f': R — R
18 also analytic.

There are quite a lot examples of analytic function, for example, Bessel functions, and
their spherical versions. Here we will only exhibit some basic examples.

ExXAMPLE 5.5.11. Let exp : R — R be the exponential function. For each M > 0, it is
easy to see that
sup Jexp?(z)| < sup [ef| <€,
z€[—M,M] z€[—M,M]

which verifies (5.5.3) with Cj; = eM. For each x4 € R, we see that the radius of convergence of

iy w is +00 (the details left as exercises), and therefore Theorem 5.5.2 guarantees
that
+oo xo( _ )
e e™(x — o)
e —Z# for all z € R.
i=0

If write y = x — xg, this is exactly equivalent to the well-known formula

+oo
)
Y — 7
(5.5.4) eV = Z g for all y € R.
i=0
If we take y = 1, the transcendental number e = 2.718 - - - also can be written as the
+o0
1
i=0

EXAMPLE 5.5.12 (Poisson distribution). For each fixed parameter A > 0, we define p :
ZZO — R>0 by

Nie=A
T

p(i) :

By using (5.5.4), one sees that

+o0o +0oo
ZP(@) = e_AZ i
i=0 i=0

which shows that p : Z>y — R.( is a density of a probability distribution. In fact, it is the
density of the Poisson distribution is a discrete probability distribution that expresses the
probability of a given number of events occurring in a fixed interval of time if these events
occur with a known constant mean rate and independently of the time since the last event.
We can compute its mean:

+oo 400 P +00 ;1 —
)\16 A )\'L 16 A

]Ep::Zip(i):Zm:A2m:)\.

=0 1=1
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We can compute its variance as well:

400
var (p) == Y (i — Ep)*p(i)
=0
+oo +00 +oo
= i’p(i) — 2Bp Y ip(i) + (Ep)* > _ p(i)
=0 =0 =0
<= 2 2 2 iy . /\l -
=) ip(i) — A" =—-\ —|—Zz(i_1)'
i=0 i=
=Ep=\ =1
:'OO i—1 —; :—oo 2\l 16—;
— 2 4AS o1 C
HAL-DE o AL oy

It is interesting to compare this with Example 4.4.14.

EXERCISE 5.5.13. Prove that sin : R — R and cos : R — R are real analytic functions,
and prove that

T

SiH%IZm fOY aHLUGR.

k=0
By using Corollary 5.5.10, we immediately see that cos : R — R is real analytic. Use
Theorem 5.5.3 to compute the power series of cosz centered at xq = 0.

EXAMPLE 5.5.14. We define f: (—=1,1) = R by f(x) := In(1 — x). One sees that
fOx) = (=1)* 6 — Dz —1)"" foralli=1,2,---,
and for each 0 < M < 1 one has

sup  |fD(x)] =1 —-M)"(i—1) foralli=1,2,- -
—M<x<M

+00 (_1)k 1+2k

and a generalized version of Theorem 5.5.9 shows that f : (—1,1) — R is real analytic, and
one has the power series representation

+oo (4) ‘ +oo ._1' ‘ +oo 4
ln(l—x):zf—(o):z:‘:—z(l,—)'xl:—zm—, for all z € (—1,1),
i

7! 7!

i=0 i=1 i=1
since f(0) =0 and f(0) = (—1)"(i—1)!(=1)"" = —(i—1)! forall i = 1,2,3,---. Since the
power series > % £ converges at * = —1 (Example 5.2.3), then the Abel’s limit theorem

(Theorem 5.5.6) guarantees that

In2= lim ln(l—x):—z —,

z——14 - 7
=1

in (_il)i = —1In2.

i=1

which concludes that

We finally end this section by the following example.
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EXAMPLE 5.5.15 (Gamma function). In fact, the gamma function I" : (0, +00) — (0, +-00)
given in Example 4.4.11is a real analytic function. It even can be extended on complex plane,
see e.g. my other lecture note [Kow23, Chapter 6| for more details.

5.6. Some fundamental inequalities

We now introduce some fundamental inequalities for series which are analogue to Sec-
tion 4.5.

DEFINITION 5.6.1. For each sequence {a;}L%5, we write

1/p
1{a:} 5 e == (Z ]a#’) for each 0 < p < 400,

@i} e := sup |ail.

ieN

We say that {a;} =5 € 7 if |[{a;} |l < +o0.

We now show the following result, which is analogue to the Holder’s inequality for integral
(Theorem 4.5.3).

THEOREM 5.6.2 (Holder’s inequality for series). For each p > 1 and ¢ > 1 with %—l—% =1,
one has

||{az bt e < [{aid S e 1{0: 327 Nl es
for all {a;} 5 € 7 and {b;}/ € (4.

PROOF. The case when (p, q) = (1,+00) or (p,q) = (+00,1) are easy, we left the details
for readers as an exercise. We now consider the case when p > 1 (if and only if ¢ > 1). The
result is trivial when either |[{a;}; 5]l = 0 or ||[{b;};:|lee = 0, we again left the details for
readers as an exercise.

If [{a:} 5 ler # 0 and [[{b;}; 2 ||ea # 0, then for each i we can choose
bl

|az‘|

$1 = = and sy =
{5 ler [{B} = Nl
in the Young’s inequality (Lemma 4.5.2) to reach
|aibi| 1 fal” L [blf
<= 4=

Hai i e {8t e — 2 IHaihX M5 @ I{B T lles”
For each N € N, we sum the above inequality from i =1 to « = N to reach
el LZLieh 1T L1
a2 e ({035 Iqu pI{at NG al{bE Iqu q

because
Zlazlp < [{ai}iXlp  and Zlb |7 < {0} Ml

Thus, we have

Z|ab|< @i 220w [|{0: Y20 e for all N € N.
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. N . . . .
Since {d>°;1, |aibi| } 5=, is a nondecreasing sequence in R, by using the monotone convergence

theorem (Lemma 5.1.5) one sees that the limit limy_, 4. S0, |a;ibi| exists, and hence we
conclude our result by taking the limit N — 400 in the above inequality. 0

REMARK 5.6.3. Similar to Remark 4.5.4, when p > 1 (if and only if ¢ > 1), we can check
the equality holds if one chooses b, = |ay|7.

We also can obtain the following result, which is analogue to the Minkowski’s inequaltiy
for integral (Theorem 4.5.5).

THEOREM 5.6.4 (Minkowski’s inequality for series). If 1 < p < +oo, then one has
Hai + 0} e < [{aitiZY llee + {012 oo
for all {a;} 5 € P and {b;}} € (7.

PROOF. Then case p = 1 and the case p = 400 are easy, we left the details for readers
for an exercise. We now consider the case when 1 < p < +00. We write

\ai + bZ’p = |CLi + bi\p’1|ai + bz| < ’CLi + bi\p’1|ai| + ‘CLZ' + b1|p71’bz‘

Let ¢ > 1 with zlz + é = 1. By using the Holder’s inequality (Theorem 5.6.2), for each N € N
we see that

N N 1/q
S Jas + b ad < (Z\ai +birq<“>) {0325 o
=1 1=1
N 1/q
=<Z\ai+bi!p) @i} 2% (|,

i=1

and similarly,

Zlaﬂrblp Hail < (Z\aﬂrb!”) 1{0: 123 e

Combining all the equatlons above, we now see that

Z\awbiips(Zrmbw) (a5 o + 14635 )

which gives

N > N =7
(Z |ai + bz"p) = (Z |ai + bz‘\p> < a5 e + 14012 Nl ev.
=1 =1

1y too
. N p . . . .
Since { <Z¢=1 la; + b#’) } is a nondecreasing sequence in R, by using the monotone con-
N=1

1
vergence theorem (Lemma 5.1.5) one sees that the limit limy_, (Zfil la; + bi]p> " exists,
and hence we conclude our result by taking the limit N — +oco in the above inequality. [J

The case when 0 < p < 1 also can be discussed similar as in Theorem 4.5.6.
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THEOREM 5.6.5 (Minkowski’s inequality for series). If 0 < p < 1, then

{ai + b33 1% < [{aii 1% + {023 115
for all {a;} 5 € P and {b;}/ € (7.

PROOF. By choosing a = |a;| and b = |b;] in (4.5.2), we reach

]ai + bl|p S (‘(ZZ’ + ’bl‘)p S ‘CLi|p + ’bl‘p fOY all ¢ € N.

+o0
. N . . . .
Since { > iy |ai + bi|p} is a nondecreasing sequence in R, by using the monotone conver-

gence theorem (Lemma 5.1.5) one sees that the limit limy_, ;o val la; + b;|P exists. Thus
acting the operator Z _, on the above inequality gives our desired theorem. 0

5.7. A quick introduction of Fourier series

A Fourier series is an expansion of a periodic function into a sum of trigonometric func-
tions. The Fourier series is an example of a trigonometric series, but not all trigonometric
series are Fourier series. The Fourier series has many such applications in electrical engi-
neering, vibration analysis, acoustics, optics, signal processing, image processing etc. Here
we will only give a very rough introduction, one can see e.g. my lecture note [Kow22| for
more details, via a modern approach, which requires Lebesgue integral (Chapter 7). We first
exhibit some results in terms of Riemann integral.

We now define the normalized L-inner product on (—m,7) by

(5.71) F9)mm =+ [ F@gla)ds

and one we define the normalized L?*-norm on (—,7) by

572 Il = G Dny = (3 [ 1@

—T

In view of the Minkowski’s inequality for integral (Theorem 4.5.5), one can interpret
| fllL2(~#,= be the “length” of the function f. Similar to the Euclidean space, we also can
interpret

_1( f g )
COS )
[fllz2—rmy " Ngllzo—rm) J L2 pmy

be the “angle” between functions f and g. We say that f is perpendicular to ¢ if
(f,9)r2(—xm) = 0, or we simply denoted by f L g.
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By using the product-to-sum formula (Example 1.3.19), for each n € N and m € N, one
sees that

(sin(n-),sin(m-)) p2(—nx) = %/ﬂ sin(nx) sin(mz) dz

—T

1 [" 1 /7
%) (cos((n —m)x) — cos((n+m)z)) de = o cos((n —m)z)dx
> 7 1dx . when n =m

= 11
2T n—m

sin((n — m)x) when n # m

T=—T

)1 when n=m,
0 when n # m.

Similarly, for each n € NU {0} and m € NU {0}, one sees that

(cos(n-),cos(m:)) 2(—rx) = %/W cos(nx) cos(mx) dz

1 B |
=5 - (cos((n —m)x) + cos((n +m)zx)) doe = Py cos((n —m)x)dx
- {1 when n =m

-7

0 when n # m.

For each n € NU {0} and m € N, we also see that

(cos(n-),sin(m-)) 2(—rx) = %/_ﬂ cos(nzx) sin(mzx) dx
_ % _W (sin((n + m)z) — sin((n — m)z)) dz = 0.

We now can summarize the above in the following lemma.

LEMMA 5.7.1. The set {cos(n-)}2oU{sin(m-)} >, forms an orthonormal set with respect
to the normalized inner product (5.7.1). In other words, the elements in {cos(n-)}:%5 U
{sin(m-)}', are perpendicular to each other, and each of them has length 1 with respect to

the norm (5.7.2).

Let’s do some formula computations in order to motivate the Fourier series. Suppose that
a function f : (—m, ) — R takes the form

1 +00 +oo '
(5.7.3a) flz) = §b0 + ; b, cos(nz) + Z amsin(nz) for all z € (—m,m).

m=1
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In view of Lemma 5.7.1, one has

%/_: f(l’) dr = (fv 1)LQ(—7r,7r) = (%bo, 1) = bo,

L2(—m,m)

%/_w f(z) cos(nx) dz = (f, cos(n-)) p2(—nx) = (bn cos(n-), cos(n-)) r2(—xx) = b,

%/_ﬂ f(@)sin(ma) de = (f,sin(m-)) 2(_pm) = (an sin(m-), sin(m-)) L2(_x.m) = .

The above three equations can be summarized as
1 ™

(5.7.3b) b, = - f(z)cos(nz)dz for all m € NU {0},
1 T
(5.7.3¢) an =~ f(z)sin(mz)dx for all m € N.

DEFINITION 5.7.2. The series (5.7.3a) with coefficients given in (5.7.3b) and (5.7.3¢) is
called the Fourier series of f on (—m, ).

In order to study its convergence, we again consider the partial sum
1 N N
Sy(z) = 5()0 + z:l by, cos(nx) + Z:l A sin(nx)  for all x € (—m, 7).

By using Lemma 5.7.1, one sees that
(fa SN)LQ(—WJT) = (SNv SN)LQ(—W,TF) = HSNH%2(—W,W)'
Now the Hélder’s inequality for integral (Theorem 4.5.3) implies that
1 1
158122 (nm) < M ll2mm 1SN 2mm) < SIS IZ2mm) + SISV 2 (-

and hence
that

|Snll2(crm) < NI fll2(—nx for all N € N. By using Lemma 5.7.1, one also sees

2 b% a 2 d 2
||SN||L2(77T,TI') = 5+Z|bn| +Z|an| ’
n=1 n=1

and we now reach

R N N

S b+ Y el < [l ey forall NN,
n=1 n=1

Since both {3 16,234, and {3°N | Ja,*}5>, are nondecreasing sequences, then by

monotone convergence theorem (Theorem 5.1.5), the limits limpy_ oo Zg:1|bn|2 and

By 00 Son, |an|? both exists. Now taking the limit N — oo, we reach the following
lemma.

LEMMA 5.7.3 (Bessel’s inequality). Suppose that f : [—m, 7] — R is continuous except for
finitely many points, then

bQ [e.9] [0.9]
5 H 2% + fandiZllE < 11172

where a,, and b, are Fourier coefficients given in (5.7.3b) and (5.7.3c).
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We now state a sufficient condition to guarantee the pointwise convergence of Fourier
series, see e.g. [Kow22, Theorem 1.4.1] or [Str08, Theorem 5.4.400].

THEOREM 5.7.4. If f : [-m, 7] — R is continuously differentiable except for finitely many
points, then one has

2 \y—z— y—r+

+oo +oo
1 < lim f(y) + lim f(y)) = %bo + Z by, cos(nz) + Z Ay sin(nz)  for all x € (—m, )
n=1

m=1

with Fourier coefficients given in (5.7.3b) and (5.7.3¢).

REMARK 5.7.5. If f is continuous at x, then

1/ .. )
)= (i ro)+ fim 7).

Despite the mathematical theorems looks beautiful, but actually the convergence is not
good. This is quite make sense, since we are attempting to use functions which are oscillating
to fit arbitrary (nonoscillating) functions. In mathematical terms, despite the partial sum Sy
converges to f pointwisely to the piecewise C! function f, the partial sum Sy produces large
peaks around the jump of f, which overshoot and undershoot the function’s actual values.
This approximation error approaches a limit of about 9%. This phenomenon is called the
Gibbs-Wilbraham phenomenon, see e.g. [Kow22, Theorem 1.4.2] or [HH79, Theorem F|
for a precise statement. This explains why the signal is noisy if we do not do any further
treatment.

EXERCISE 5.7.6. Compute the Fourier series of f(z) =1 on (—m, 7).

EXERCISE 5.7.7. Compute the Fourier series of f(z) =z on (—m, ).



CHAPTER 6

Multivariable calculus

6.1. Euclidean space R"
DEFINITION 6.1.1. Let n > 1 be an integer. We define the n-dimensional Euclidean space
by
R™ :={(z1, - ,x,) :x; ERforalli=1,--- n}.
The elements in R™ usually denoted by a single bold-face letter, for example * =
(X1, ,2,) ER"aswell as y = (y1,- -+ ,yn) € R™

We usually identify the 1-dimensional Euclidean space R! with R. The 2-dimensional Eu-
clidean space R? can be understood as a “plane”. We now introduce basic algebraic operators
on n-dimensional points:

DEFINITION 6.1.2. Let © = (21, ,z,) € R" as well as y = (y1,- -+ ,yn) € R™

(a) We denote © = y when x; = y; foralli=1,--- n.

(b) For each a,b € R, the linear combination ax + by is defined as the vector (ax; +
byi,- - ,ax, + by,). We simply denote (—1)xz = —x.

(c) We denote 0 = (0,---,0) be the origin or zero vector.

(d) We denote the Euclidean norm

o] - (Z!I) -

=1

REMARK 6.1.3. When n = 1, we see that the Euclidean norm is exactly same as the
absolute value function. If we consider the sequence {a;}.£> with

a;=x; forallt=1,---,n, a; =uz; foralli>n,
then one sees that the Euclidean norm can be expressed as
|| = [{a:}; =Y [l
Therefore the space ¢? defined in Definition 5.6.1 can be regarded as “infinite-dimensional
Euclidean space”.
DEFINITION 6.1.4. Let € = (21, ,x,) € R" as well as y = (y1,- - ,yn) € R™

(a) The inner product or dot product x -y is defined as a scalar Y., x;y;,. The angle 0
between « and y is defined by

(6.1.1) 0 = cos™! (i : i) :
| |yl
where cos™ : [=1,1] — [0, 7] is the usual inverse cosine function. Note that x - & =
.

97
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*axb

b <7 /\/
L=

FIGURE 6.1.1. Right-hand rule for cross product: Acdx, CC BY-SA 3.0, via
Wikimedia Commons

(b) The outer product or juxtaposition  ® y is defined as a n x n matrix, with entries
(x®y)y; =xy; foralli=1,--- nand j=1,--- ,n.
(c) When n = 3, the cross product @ x y is defined by the formula
x Xy = ([z||y|sinf)n,

where 6 is the angle between @ and y given by (6.1.1) and nis a unit vector perpen-
dicular to the plane containing « and y, with direction as indicated in Figure 6.1.1.
In fact, if we denote ¢ = (1,0,0), 7 = (0,1,0) and k = (0,0,1), the cross product
can be expressed as

x X Y = (Tays — T3ya)t + (7391 — 11Y3)J + (T1y2 — T2y1)K,

or sometimes we abuse the notation by writing (see Definition 6.5.13 below)

t 3 k
xxy=det| x1 x5 T3
i Y2 Y3

REMARK 6.1.5. The idea behind the Fourier series (Section 5.7) comes from the Euclidean
space.

6.2. Limits and continuity

Some notions in Section 2.1 and Section 2.3 can be easily extended to higher dimensional
case. Let’s us walk through the details here. For later convenience, let’s us introduce the
following topological notion.

DEFINITION 6.2.1. A subset €2 C R"is said to be open if for each z € ) there exists € > 0
such that B.(z) C €. Here and after, the open ball Bg(x) is defined by

Br(z) ={y e R": |z —y| < €}.

DEFINITION 6.2.2. Let 2 be an open set in R" with oy € 2 and we consider a function
f:Q\{xo} — R. We say that the limit limg 4, f(x) = L € R exists if: Given any € > 0,
there exists d = d(e) > 0 such that

0 < |x — x| < d implies |f(x) — L] < e.
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We say that the limg 4, f(x) = +o00 exists if: Given any M > 0, there exists 0 = d(e) > 0
such that

0 < |& — x| < 0 implies f(z) > M.
Similarly, we say that the limg ,,, f(x) = —oo exists if: Given any M > 0, there exists
d = d(e) > 0 such that

0 < |x — x| < J implies f(x) < —M.
We also unify the above notions by saying that lim, ., f(x) exists in [—oo, +00].

One also has similar properties as in Lemma 2.1.4:

LEMMA 6.2.3. Let 2 be an open set in R" with o € ) and we consider functions gy :
Q\{xo} = R and g5 : Q\ {xo} — R. If both limits limg 5, g1(x) and limg_ 4, go(x) exist
mn R, then the following holds true:

(a) for each ¢y € R and co € Rthe limit limg_q,(c191(x) + c292(x)) exists in R and
satisfies

lim (c191(x) + caga(x)) = ¢4 im g1 () + 2 li_>m go(x)  (linearity).
r—x)

r—x) r—x)
(b) if g1(x) < go(x) for all € B(xo) for some € > 0, then

lim gi(x) < lim go(x) (monotonicity).
Tr—aQ T—TQ

(c) the limit limg o (g1(x)ge(x)) exists in R and satisfies

i (o1 (w)gn(e) = (i g1(2) )  Jim (o))

Tr—TQ Tr—TQ T—T0

(d) if we additionally assume that limg_,z, go(x) # 0, then the limit limg 4, % exrists
in R and satisfies
lim 91(x) _ l%mm%mo 91(33)‘
2=w0 go()  limga, g2(e)
There is no natural generalization for left/right limits. However, one still have natural
generalization for limit superior and limit inferior.

DEFINITION 6.2.4. Let Q2 be an open set in R” with @y € Q and let f: Q\ {xo} — R be
a function. We define the limit superior/upper limit and the limit inferior/lower limit by

limsup f(z) := lim ( sup f) ,  liminf f(z) := lim ( inf f) .

T—x0 r—0+ By (zo)\{zo} T—T0 =0+ \ Br(zo)\{zo}
One can check whether the limit exists or not by using the following theorem.

THEOREM 6.2.5. Let Q be an open set in R™ with &y € Q and let f: Q\ {zo} - R be a
function.

(a) If limg g, f(x) exists in [—o0, +00], then
(6.2.1) limsup f(z) = hmrginff(x) = lim f(x).

r—x) T—x)
In other words, if limsup,_,, f(z) # liminf, .o, f(2), then the limit limg_,4, f(x)
does not exist.
(b) If limsup, ., f(z) # liminfy ., f(z), then the limit limgy_ ., f(x) evists in
[—00, 4+00] and (6.2.1).
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Using the same arguments as in Proposition 2.3.9, one can show the following proposition.

PROPOSITION 6.2.6. Let €2 be an open set in R™ with xq € Q and we consider functions
g1 Q\{xo} = R and g2 : Q\ {xo} — R.

(a) The limit superior satisfies the subadditivity property:

(6.2.2) lim sup (g1(x) + g2(x)) < limsup g (x) + limsup go(x),

T—T0 T—TQ T—TQ
(b) The limit inferior satisfies the superadditivity property:
(6.2.3) liminf (¢1(x) 4+ g2(x)) > liminf gy (x) + lim inf go(),
r—xQ T—T0 T—T0

(c) Both limit superior and limit inferior satisfy the monotonicity property: If there
exists € > 0 such that g,(x) < go(x) for all x € B(xg) \ {x0o}, then

limsup ¢ (x) < limsup go(x), liminf g (x) < liminf go(x).
T—x0 r—x) T—IQ T—T0

REMARK 6.2.7. Similar to (2.3.4), the inequality

(62, s (5 (@)52(@)) < (T () ) (1msup s(a) ).

r—xQ T—T0 T—T0

only holds true for non-negative functions ¢g; and gs.

The discussions in Remark 2.3.11 is also valid in higher dimensional setting. Rather than
repeating all the details here, we only exhibit the results and the details are left to readers
for an exercise.

REMARK 6.2.8. As we mentioned above, we only have subadditivity /superadditivity prop-
erty rather than the additivity. We now show that the linearity holds under extra assump-
tions. Suppose that all assumptions in Proposition 6.2.6 hold.

a 1My o, §o(2) exists in R, then
If i ) sts in R, th
lim sup (g1(x) + g2(x)) = limsup g;(x) + lim go(x),
(6.2.5) T—x0 T—x0 T—To
liminf (¢ (x) + g2(x)) = liminf g1 (x) + lim go(x).
Tr—TQ Tr—TQ Tr—TQ

(b) If there exists € > 0 such that |g1(x)] < M for all © € B.(xy) and limg 4z, go(x)
exists in R-p, then

lim sup (g1 () ga () = (hm sup 91<w>) (JLH;O 92<$>) ’

(626) Tr—TQ T—T0
liminf (¢1(x)ge(x)) = <lim inf gl(a:)) ( lim 92(33)) :
TrT—aT0 Tr—x0 T—aT0

In the particular case when go(x) = ¢ > 0 for all z € B,.(x), we see that (6.2.6)
reads
lim sup (cg;(x)) = climsup g; (x),

Tr—x0 Tr—TQ

liminf (cg;(x)) = climinf g; (x).
T—x0 T—rT0
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One should be aware that, for constant b < 0, one sees that b = —|b| and see that
limsup (bgi(x)) = limsup (—|b|g1 () = —liminf (b]g:(x))
T—T0 T—x0 Tr—ra0
= —|b|liminf g;(x) = bliminf g, (x),
T—xQ T—To
and
liminf (bgy (x)) = liminf (—|b|g;(x)) = — limsup (|b|g1(x))
T—T0 Tr—x0 T—x0
= —|b|limsup g;(x) = blimsup g ().
T—TO T—T0
This means that in general, the linearity does not hold true for general coefficients, which
only holds true for positive coefficients.

EXAMPLE 6.2.9. One sees that the above definition of limit (Definition 6.2.2) is equivalent
to limg 4, |f(x) — L] = 0, similar discussions also hold for limit superior and limit inferior.
It is convenient to understood as the right limit:

lim |f(x)— L|=0.

|z—a0|—0+
For example, we consider the function f: R?\ {0} — R by
2

f(x1,22) = 5—— forall x = (z1,22) # (0,0).

T+ 75

Since |z;1| < |z| and |z5| < |x| for all £ = (2, 25) € R?, one sees that

= |z| forall & = (21,25) # (0,0).

Thus we have
limsup |f(x)| < limsup || = lim |z| =0,
|| —0 || —0 || —0

which concludes that lim, ¢ f(x) = 0.

EXAMPLE 6.2.10. We now consider the function f: R?\ {0} — R by
T1T9

f(l'l,l'2> = W for all x = (%1,1’2) # (0,0)

1T
One sees that the trick in Example 6.2.9 does not work for this case. For each a € R, we see
that the limit along the straight line x; = ax- is

2
ar; o«

li x) =1 = li = .
:1:~>0,1xr1n:am2 f( ) x;glo f(OZfEQ, 552) €E21£I>10 042.1‘% + iE% CY2 + 1

Since (roughly speaking, limit superior/inferior is the superior/inferior of all possible way to
take the limit towards the point of interest)

hI;l_S)(l)J_p f(x) > f,;_>01,i£1:ax2 flx) = aQOj’_ | > ligl_}(r)lff(a:) for all a € R,
then
o) 1 o}
: S 1 _ S Tim
limsup f(z) 2 575 2 0= L lim inf f(x),

which shows that the limit lim, o f(2) does not exist.
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EXAMPLE 6.2.11. We now consider the function f : R?\ {0} — R by

1173
f(z1,20) = 5—= forall x = (21, 22) # (0,0).

T+ 75

One sees that the trick in Example 6.2.9 does not work for this case as well. For each o € R,
we see that the limit along the straight line x1 = axs is

3
. . . axr . ATy
lim  f(z) = lim f(axs,xp) = lim ——2— = lim ——— =0
r—0,21 =012 20—0 z2—0 0521}2 + T, z2—0 2 + x5

and the limit along the straight line zo =0 is
lim _ f(z) = lim f(21,0) =0.

x—0,x2=0
This shows that for each straight lint £ in R? pass through the origin, one has
(6.2.7) lim f(x)=0.

x—0,xeL

However, we see that the limit along the parabola z; = 3 is

lim f(x) = lim f(x3,22) = lim = -
1’2—)0

s
z—0,21=x3 z2—0 ZL’% + .CE% 2

which shows that (roughly speaking, limit superior/inferior is the superior/inferior of all
possible way to take the limit towards the point of interest)
1
limsup f(z) > lim f(x)==-#0= lim f(x)> liminf f(x),
x—0 w%O,:m:x% 2 r—0,xel x—0
which again sees that the limit does not exist. This example demonstrates that, even the

limit exists from all direction (6.2.7), this is still not enough to guarantee the existence of
limit in the sense of Definition 6.2.2.

Finally, we end this section by introducing the following notion.

LEMMA 6.2.12 (Continuous function). Let Q be an open set in R"™ and let f: Q2 — R be
a function. If the point xq € ) satisfies

then we say that f is continuous at xq. If the function f : Q) — R is continuous at all points
in Q, then we say that f : Q — R is continuous.

6.3. First order derivatives

After extending the notion of limit/limit superior/limit inferior, we now extend the notion
of “differentiation” for functions f : R® — R. Since one cannot divide by a vector, one
cannot directly extend the definition of differentiation directly from the standard definition
of 1-dimensional in Definition 3.1.1. In view of its equivalent definition in Definition 3.1.3,
now the generalization for higher-dimensional case is much more natural.

DEFINITION 6.3.1. Let 2 be an open set in R” and let f : {2 — R be a function. We say
that f is differentiable at xy € () if there exists L € R" such that

lim |f(xo+h) — f(zo) — L - hj _

h—0 |h| 0-

(6.3.1)
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In this case, the total derivative D f(x() of f at @ is defined by the vector D f(xy) := L.

REMARK 6.3.2. It is not so obvious that whether the number L in Definition 6.3.1 is
unique or not. Suppose that (3.1.3) holds true for L = Ly and L = L,. We see that
[(f(zo +h) — f(xo) — L1 -h) — (f(xo+h) — f(xo) — Ly - h)|

Al
< (F(®o +h) = flxo) = Ly - )| | |f(zo+h) — f(xg) = Lz h)|
< + )
|h| |h|
and take limit superior to see that
h) — —Li-h h) — —Ls-h
Ly — L| glimsup<|(f(mo+ ) — f(@o) — L1 - h)]| n |f(xo+h) — f(xo) — Lo )|)
h—0 |h| |h|
h) — —L-h h) — — L, -h
< oy (@0 +B) = F(@0) = Li-h)| |y +h)  fag) — Lo+ h)
h—0 |h| h—0 |h|
=0,

which concludes that L; = Ly. We again remind the readers that the limit superior only
subaddivity property rather than the additivity.

|Ly — Ly| =

The following lemma is an easy consequence of the definitions of continuity and differen-
tiability of functions.

LEMMA 6.3.3. Let Q be an open set in R™ and let f : Q — R be a function. If f is
differentiable at xq, then f is continuous at xg.

Let e; be the i*® column of the identity matrix, i.e. e; = (0,---,0,1,0,---0) with 1 at
the ' entry. If f is differentiable at x, € 2, we restrict the limit (6.3.1) on the straight lint
{he; : h € R} to see that

. |f(®o+h)— f(xg) = L-h|

0 = lim = lim |f(xo +h) — f(zo) — L - hl

h—0 |h| h—0,h=he; |h|
— lim |f (@0 + he;) — f(@o) — Lih| — lim f(xo + hei) — fmo) L.
h—0 ‘h‘ h—0 h

We see that L; is just the 1-dimensional derivative of the mapping fiz, ...z 1 @ii1, 20 () =
f(zy, - i1, t, 241, -+ ,x,) in the sense of Definition 3.1.1 and Definition 3.1.3, i.e. it is
just the differentiation on the i*" variable of f and simply fix the others. This suggests us to
consider the following notion.

DEFINITION 6.3.4. Let (2 be an open set in R™ and let f : 2 — R be a function. For each
i=1,---,n, the " partial derivative of f at x, is defined by

0 f(xo + he;) — f(xo)

8a:if(x1"” i1, L, Tig1, Ty = 0;f(xg) := 111111(1) -

provided the limit exists. The gradient of f at xy is defined as Vf(xy) :=
(O1f(0), "+, Onf(T0))-

We now put the above discussions in the following lemma.

THEOREM 6.3.5. Let €2 be an open set in R™ and let f : 2 — R be a function. If [ is
differentiable at o € Q, then Df(xo) = V f(x0).
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EXAMPLE 6.3.6. We consider the function f:R? — R by

2122 for all @ = (x1,22) # (0,0),

— ) xi+a3
Ty, Tg) 1= TP
S, z) {O when x = (0,0).

We see that f(zq1,0) =0 for all z; € R and f(0,z5) = 0 for all z; € R, which implies that

0 0

01(0) = 75— f(1,0) O

o1y =0, an(O) =

x1=0

f(07x2> - 07

x1=0

that is, Vf(0) = (0,0). However, we have showed that f : R? — R in Example 6.2.10 is not
continuous at & = 0, and hence not differentiable at « = 0 (Lemma 6.3.3), in other words,
the total derivative D f(0) does not exist.

We now rephrase Theorem 6.3.5 into the following corollary, which is helpful to check
whether the function is differentiable or not.

COROLLARY 6.3.7. Let Q be an open set in R™ and let f: Q) — R be a function. Then f
1s differentiable at g € Q) if and only if

o (@0 1) = [(@0) =V f(@o) - b

h—0 |h| =0

In other words, one only need to compute

(6.3.2) Jim sup |f(@o + h) — f(zo) — Vf(20) - b
- h—0 |h|

to determine whether the function f is differentiable at @ or not. Finally, we end this section
by giving a useful sufficient condition to check the differentiability of functions.

THEOREM 6.3.8 ([Apo74, Theorem 12.11]). Let 2 be an open set in R™ and let f : Q@ — R
be a function. If the point xy € Q satisfies the following two conditions:

e there erists € > 0 such that all partial derivatives O1f,--- ,0,f exist on B.(xo), and
e all partial derivatives O1f,--- ,0,f are continuous at x,

then f is differentiable at x.
The above theorem suggested the following definition.

DEFINITION 6.3.9. Let Q be an open set in R". We denote C''(Q) be the collection of
differentiable functions f : 2 — R such that all partial derivatives o1 f,---,0,f : @ — R are
continuous.

In practical, we often use the following consequence of Theorem 6.3.8 since it is much
easy to check (compare with (6.3.2)):

COROLLARY 6.3.10. Let Q be an open set in R™. If f € CYQ), then f : Q — R is
differentiable and hence D f(x) = V f(x) for all x € Q.

The above corollary allows us to solve multidimensional case by using technique in 1-
dimensional case.
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6.4. Differentiation rules

The main theme of this section is to extend the results in Section 3.3 for higher dimensional
case. Here we only give some special cases which are often used in practical applications. One
can refer the monographs [Apo74, Rud87] for the results which are much more optimal.

The following lemma is an easy consequence of Corollary 6.3.10 and Lemma 3.3.1:

LEMMA 6.4.1. Let Q be an open set in R™ and let fi, fo: @ — R.

(a) Linearity. If both f1, f» € C1(Q), then for each ¢y, cy € R, the function

afitef: Q=R (afi+af)(®@) =cafi(®)+cafz) for dlx e
is also in C1(Q), and satisfying

Vierfi + cafo)(@) = a1 Vfi(x) + oV fo(x)  for all x € Q.

(b) Product rule. If both f1, f» € C*(Q), then the function (not to be confused with the
composition of functions in Definition 1.5.6)

fifo: Q=R (fifo)(@) := fi(x) fo(x) for all x €
is also in CY(Q), and satisfying

V(fif2)(@) = V(@) f2(2) + f1(2)V faz).

LEMMA 6.4.2 (Chain rule [Apo74, Theorem 12.7]). Let 2 be an open set in R™ and let
fi,o s fm 8 = R be functions which is differentiable at a point xy € ). We denote the
vector-valued function

FIOQoRY f(@) = (h@), fol@), -, ful@)) for all @ € Q.

and its range is defined by f(Q) == {f(x) e R™ :x € Q}. Let U be an open set in R™ such
that U D f(Q) and let g : U — R be a function which is differentiable at f(xq). Then the
composition of functions

gof:Q—=R, gof(x):=g(f(x)) foralxel
is also differentiable at Ty € Q) and its partial derivatives is given by

(g0 f)(a) =V yg<y>|y=f(m)-aif<m>

T
- a )
(6.4.1) Z — —f;(x) forallxz €.
= 0y yzf(m) Oz;

In practical, we often use the following corollary.

COROLLARY 6.4.3. Let Q be an open set in R™ and let f € (CY(Q))". Let U be an
open set in R™ such that U O f(2) and let g € C(U). Then the composition of functions
go f € CHQ) and satisfies 6.4.1.

The corollary means that the composition of C! functions is also in C!, therefore we
often consider this space in practical application, and in this case personally I prefer to use
the notation V rather than D. In addition, these differentiation rules basically say that the
computations for C''-functions are actually the same as in the 1-dimensional case.

ISee the example in [Apo74, page 354].
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6.5. Some definitions and facts on matrix computations

Before we introduce the second order derivatives, we need some preliminaries about matrix
computations, which is related to linear algebra [Ax124, Trel7|. Rather than introduce
linear algebra systematically, we will only some materials just enough for this course. We
usually write the vector v € R™ as an x 1 array

U1
Um

This is simply a special case of the following definition.

DEFINITION 6.5.1. An m X n (real) matriz A is a rectangle array with elements in R with
m rows and n columns, which can be denoted by

All A12 Tt Aln
A= A.Ql A.22 : A2n
Aml Am2 e Amn

We denote R™*" be the set of m x n matrix mentioned above. In the case when m = n, then
R™*™ is called the set of square matrices.

We also can define some operators similar as in Definition 6.1.2 and Definition 6.1.4 (so
that R™*™ forms a linear space equipped with inner product):

DEFINITION 6.5.2. Let A, B € R™*™.
(a) We denote A = B when A;; = B;; foralli=1,--- mand j=1,--- ,n.
(b) For each a,b € R, the linear combination aA+ bB € R™*" is defined by
(aA+bB);j =aA;; +bB;; foralli=1--- mandj=1,---,n.
We simply denote —A := (—1)A.
0 --- 0
(c) Wedenote 0= | : .. : | be the zero matriz.

0 --- 0
(d) We denote the Euclidean norm

4] := (iimﬁ) N

i=1 j=1

() The inner product or dot product A- B is defined as a scalar > ", > % | A;;B;. The
“angle” 6 between A and B is defined by

A B
0 := cos™! (— . —> ,
Al |B|

1. [=1,1] — [0, 7] is the usual inverse cosine function. Note that A- A =

where cos™

A%
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DEFINITION 6.5.3. A set of matrices (or vectors) {A;,---,A,} C R™*™ is called linearly
independent if the only solution (44, --- , p,) € RP of the equation

pr Ay A+ A, =0
must be the zero vector (uq, -+« ,pup) = (0,---,0).

If we only consider Definition 6.5.2, then we do not see any difference between R™*" and
R™". We usually distinguish them by the following operators.

DEFINITION 6.5.4 (Matrix multiplication). Let A € R™*™ and B € R™*. We define the
matrix multiplication AB € R™*P by

(AB)U:ZAW‘B]C] foralljzl,---,mandjzl,---,p.

k=1
The following notion is also fundamental in linear algebra:
DEFINITION 6.5.5. The transpose of A € R™*" is denoted by AT € R™*™ which is defined
by
(AT);; =A;; foralli=1,--- ,nandj=1,---,m.
(a) A square matrix B € R™™ is said to be symmetric if BT = B. We denote R "™
be the set of symmetric square matrix.
(b) A square matrix B € R™*™ is said to be normal if BBT = BTB.

(c) A square matrix B € R™*™ is said to be orthogonal if BBT = BTB = Id, where Id
is the identity matrix.

REMARK 6.5.6. It is not so often to denote A ® B € R™*™ be the juxtaposition of
A e R™"™ and B € R™*", which is defined by

A® B := ADBT".
However, it is convenient to write Definition 6.1.4(b) as
u®v=uv" forall uveR"

THEOREM 6.5.7 (|[Trel7, Theorem 2.2]). For each A € RTX™, there exist an orthogonal
matriz U and a diagonal matriz

M O - 0
D:diag()\l,---,/\n): 0 )\2 . . ERnxn
N (|
0 -+ 0 \,
such that A =UDUT. Such numbers \i,--- ,\, are called the eigenvalues (or characteristic

values) of A.

Now it is natural to introduce the following notion.

DEFINITION 6.5.8. A symmetric matrix A € R{I™ is said to be nonnegative definite
(resp. positive definite), denoted as A = 0 (resp. A > 0) if all its eigenvalues A\j, -+, A,
are nonnegative (resp. positive). A symmetric matrix A € RX™ is said to be nonpositive

definite (resp. negative definite), denoted as A <0 (resp. A < 0) if —A > 0 (resp. —A = 0).
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REMARK 6.5.9. If we identify the elements in R with those elements in R'*!, we see that

Definition 6.5.8 is consistent with the notions “nonnegative”, “positive”, “nonpositive” and

“negative” of real numbers.

In fact, we also have the following equivalent definition for nonnegative definite/positive
definite of symmetric matrix.

COROLLARY 6.5.10. A symmetric A € RIX™ 4s nonnegative definite (resp. positive

sym

definite) if and only if vTAv is nonnegative (resp. positive) for all v € R™ \ {0}.
LEMMA 6.5.11. Let A € R™*" and B € R"*P. Then (AB)T = BTAT € RP*™.

PROOF. One sees that

n

(AB))iy = (AB)ji = > ApBri = Y Bridj = Y (BN)i(AT)g; = (BTAT),

k=1

foralli=1,--- ,pand j=1,--- ,m. O
EXAMPLE 6.5.12. Given any matrix A € R™*", one sees that
(ATA)T = AT(AT)T = ATA,

which shows that ATA € R"*" is symmetric, and it is also easy to check that it is nonnegative
definite as well.

It is possible to define the determinant det(A) for any A € R"™*" see [Ax124, For-
mula 9.46| for its precise formula. Here we only exhibit the definition when n = 2 and
n = 3.

DEFINITION 6.5.13. The determinant of A € R?*? is defined by
det(A) = A11A22 — A21A12.
The determinant of A € R3*3 defined by

det A = A1 AgpAgg — A9 Ao Ass — As1 Ago Ay
— A1 Az Ags + Az1 A1oAss + Axi Asp Ass.

LEMMA 6.5.14. For each A € R™*", one has det(A) = det(AT).

DEFINITION 6.5.15. A square matrix A € R™"™ is said to be invertible if there exists a
unique matrix A~! € R™" such that

AA™ = A7TA =1d.
It is important to mention the following result.

THEOREM 6.5.16. [Ax124, Result 9.50] A square matriz A € R™™ is invertible if and
only if det(A) # 0. In this case,

1

det(A™) = det(A)’
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6.6. Second order derivatives and matrix computations

Let €2 be an open set in R™. The first order derivative of f : 2 — R at each x € Q is
given by the vector
(6.6.1) Vi) = 0uf(x), -, 0uf(z)) €R™
We now further assume that 0;f : 2 — R is differentiable for all ¢ = 1,---  n, then the first
order derivative of each 0;f at each point & € () is given by the vector
(6.6.2) Voif(x) = (010:f(x), -+, 0n0;f(x)) € R".

This suggests that the second order derivative of f : Q2 — R at each & € Q) should be the
Hessian matriz as follows:

analf(w) 8n82f(w) T ananf(w)

In view of the juxtaposition notation in Remark 6.5.6, it is convenient to denote the Hessian
matrix as

V®@Vf(x) foreach x €,

or we further abuse the notation by writing V2 f(x). However, it is possible that the Hessian
matrix is not symmetric, which we will demonstrated in the following example.

EXAMPLE 6.6.1 (J[Apo74, Section 12.13]). We define f : R* — R by
f(o) = | @G A0,
0 if x #£ 0.

Since f(x1,0) =0 for all z; € R, then it is easy to see that d; f(0,0) = lim;_o w = 0.

By using differentiation rules for 1-dimensional derivatives, one can easily compute that
o, f(a) — et At — o
(27 + 23)°
Combining this with 0, f(0,0) = 0, we now see that
O f(0,29) = —xo for all z5 € R,
thus 020 f(0,29) = Oa(—x2) = —1 for all z5 € R, which gives

for all  # 0.

(6.6.4) 0,0, £(0,0) = —1.
On the other hand, since f(0,z5) = 0 for all o € R, then it is easy to see that 0 f(0,0) =
limy, w = 0. By using differentiation rules for 1-dimensional derivatives, one can

easily compute that
o et = 42t — o)
(27 + 23)°
Combining this with 0, f(0,0) = 0, we now see that
Oof (21,0) =21 for all z; € R,
then 0102 f(x1,0) = 01(x1) = 1 for all x; € R, which gives
(6.6.5) 0102f(0,0) = 1.

for all « # 0.
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Combining (6.6.4) and (6.6.5), we now conclude that
0105 f(0,0) = 1 £ —1 = 8,9, £(0,0).

In practical, it is not convenient to work with nonsymmetric Hessian matrix. Luckily this
is not the usual case:

THEOREM 6.6.2 (|[Apo74, Theorem 12.13|). Let 2 be an open set in R™ and let f : O — R
be a differentiable function. If there exists &y € Q and i,j5 € {1,--- ,n} such that both
0;0;f : 2 = R and 0;0,f : 1 = R ewist and continuous at o, then

9;0; f(x0) = 0;0; f (o).
This theorem suggested us to consider the following space:

DEFINITION 6.6.3. Let 2 be an open set in R". We denote C?(Q2) be the collection of
functions f : 2 — R such that all partial derivatives

Oif :Q—=R, 0,0,f: Q=R foralli,j=1,---,n
exist and continuous.
In practical, we often use the following corollary of Theorem 6.6.2.

COROLLARY 6.6.4. Let Q be an open set in R". If f € C*(Q), then V @ V f(z) € RL:"
for all € ().

Finally, we end this section by giving a remark that the higher order derivatives are exactly
the higher order tensors (Note: vectors are 1-tensors, while the matrices are 2-tensors).

6.7. Extreme values

We now extend the results in Section 3.5 for higher dimensional case. We first introduce
similar terminologies.

DEFINITION 6.7.1. Let €2 be an open set in R™ and let f : 2 — R be a differentiable
function. If V f(x) is a zero vector for some xy € €2, then we refer such point x, as a critical
point or stationary point.

Similar to Lemma 3.4.5, we also have the following lemma.

LEMMA 6.7.2. Let € be an open set in R™ and let f : Q0 — R be a differentiable function.
If f has a local maximum or local minimum at xy € €1, then x is a critical point.

PROOF. Suppose that xy € 2 is a local maximum of f. Then for each ¢ =1, ,n, there
exists €; > 0 such that

f(xo) > f(xo + he;) for all h with || < ¢;.

In other words, if we write @y = (z1,---,2,), the function fi, ..z 1 2iis,2n(®) =
flxy, -+ @iy, 2,249, -+ ,2,) has a local maximum at x = z;. From Lemma 3.4.5 we
see that
d .
0 f(xo) = afml,...,mi_l,mwh‘..@n(x) =0 foralli=1,---,n,
=,

which concludes our lemma. The case when xy € () is a local minimum of f can be done
similarly. ([l
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As we mentioned before, even in 1-dimensional case, there may exists critical point which
is neither local maximum nor local minimum. However, the situation in higher dimensional
case can be even more complicated, as demonstrated in the following example.

EXAMPLE 6.7.3. Let f : R?> — R be the function defined by
f(x) ;=22 — 23 forall x = (21,25) € R
We see that
f(z1,0) =27 forallz; € R and  f(0,29) = —a3 for all 7, € R,

and we see that the function x; — f(z1,0) has a global minimum at z; = 0, while zo —
f(0,z5) has a global maximum at z5 = 0. In other words, the restriction of f on the straight
line {(x1,0) : 1 € R} has a global minimum at the origin, but the restriction of f on the
straight line {(0,z2) : z2 € R} has a global maximum at the origin.

It is remarkable that the second derivative test (Theorem 3.5.8) can be extend for higher
dimensional case as well:

THEOREM 6.7.4. Let Q2 be an open set in R" and let f € C*(Q).

(a) If Vf(xo) = 0 and the strict inequality V@V f(xq) > 0 hold for some xq € 2, then
xg is a local minimum of f : Q — R.

(b) If Vf(xo) = 0 and the strict inequality V@V f(xo) < 0 hold for some xq € Q, then
xg is a local maximum of f : Q0 — R.

Therefore, we can do the same things as in Algorithm 3.5.11:

ALGORITHM 6.7.5. Let E be a set in R™ and let f: E — R be a function. Suppose that
f: Ey — R is differentiable for some Ey C E. All candidates must be either one of the
followings:

(a) critical points in Eo. If f is C* near a critical point, says g, then we can use
Theorem 6.7.4 to check whether it is a local mazimum/minimum or not.

(b) those points in E \ Ey, that is, those points which are not differentiable. (Note: the
boundary points which are in E are element in E '\ Ey)

6.8. Extreme values with side conditions: Lagrange multiplier
The main theme of this section is to discuss the following problem.

PROBLEM 6.8.1. Find the local extremum of a function f(a) when the variable x € Q C
R™ are restricted by a certain number of side conditions:

gi(x) =0, gm(z)=0
for some m € N.

We are not interested in the case when n = 1. For example, if the side condition g, is
a polynomial, then the fundamental theorem of algebra (Corollary 4.3.2) implies that there
exists at most finitely many points x4, --- , z, such that g;(z;) = 0. In this case, the above
problem immediately solves by a direct comparison of the values f(x;),---, f(z,). In fact,
the following theorem gives a partial result on Problem 6.8.1.
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THEOREM 6.8.2. [Apo74, Section 13.12] Let 2 be an open set in R", let m € N with
m <n and let f, g1, , gm € CH (). We define the constraint set

S={xeQ:g(x)=0,---,gn(x) =0}.

If ¢y € S is a local mazimum or local minimum of the restricted function fls : S — R and
such that

(6.8.1) {Vagi(xo), - ,Vagm(xo)} is a linearly independent set (Definition 6.5.3),

then there exist \1,--+ , A\, € R such that

(6.8.2) Vf(xo) + MiVagi(xo) + -+ + A Vgm () = 0.

Such numbers Ay, -+, Am € R are called the Lagrange multipliers, and the condition (6.8.1)

is called the constraint qualification.
We now give an example to demonstrate that the condition (6.8.1) is necessary.

EXAMPLE 6.8.3. Let f(x) =z +- -+, and g(x) = |x|* for all z € R". Note that both
f,g € CH(R"™). We now see that the constraint set S is simply a 1-point set

S = {0}7

therefore we see that xy = 0 is a global maximum and global minimum of the restriction
function f|g, with value f(0) = 0. However, one sees that

Vf(xzo) =(1,---,1) and Vg(xy) =0,

which is not possible to find Lagrange multiplier A € R satisfying (6.8.2). Therefore, one
always need to check the constraint qualification (6.8.1).

However, similar to Algorithm 6.7.5, one should aware that Theorem 6.8.2 only provide
a necessary condition (6.8.2). In other words, the condition (6.8.2) only produces some
candidate. We now give some intuition of Theorem 6.8.2: If V f(xo) = 0, then the theorem

immediately follows with A; = --- = X\, = 0. We consider the case when V f(xy) # 0.
Suppose that we can choose a sufficiently small ¢ > 0 such that
(6.8.3) SN B(xg) ={x=0¢(t): teQ}

for some open set (2. C R"™™ and we write ¢, such that ¢(t;) = x;. Then the restricted
function f|snp, (x,) can be parameterized as

fod:Q =R
If ¢y € S is a local maximum or local minimum of the restricted function f|g: S — R, then
we see that ¢, is a critical point of f o ¢, and then the chain rule (Lemma 6.4.2) implies

P 0
0= S (Fodlt)| = Vi) 5ol

0

= Vf(zo) - 6_ti¢(t)

t=to t=tg

foralle=1,---,m —n,

t=to
which shows that

(6.8.4) V f(xo) is perpendicular to the tangent space of S at x.
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On the other hand, since g;(¢(t)) =0 forallt € Q. and j =1,--- ,m, then

0= a%@j o (1))

— V,((ta) - %qs(t)

t=tg t=to

9 bt)

= Vgj(@o) - 51

forallizl,--- ,m—nand]’:L... ,m,

t=to

which shows that
(6.8.5)  Vgj(xo) is perpendicular to the tangent space of S at o, for all j =1,--- ,m.

Therefore, from (6.8.4) and (6.8.5) we know that there are m + 1 nonzero vectors
Vf(xo), Vgi(xo), -+, Vgm(xo) are all contained in the normal space (more precisely, the
cotangent space). We expect that it only has dimension m. If this is the case, we conclude
(6.8.2). However, the above discussions is not rigorous since in general it is not easy to
guarantee the parameterization (6.8.3), which requires an advance tool called the implicit
function theorem [Apo74, Section 13.4].

We finally end this section by the following example.

EXAMPLE 6.8.4. We now consider the ellipse described by the equation
T

a’> b

for some 0 < a < b. Tt is easy to see that the length of its major (resp. minor) semi-axis is
b (resp. a). Let’s verify this using Lagrange multiplier method so that we can demonstrate

the standard procedure of using Lagrange multiplier.
Note that its semi-axes is exactly the extreme values of

=1

(6.8.6) f(z) = |x| subject to g(x)=0
with the choice
3
g(@) =+ 55 —

We see that Vg(x) = (2a7%z1,2b 2xy) for all x € R and 0 ¢ S := {x € R" : g(x) = 0},
thus we see that the constraint qualification

Vg(x)#0 forallze S

holds. Moreover, we see that f € C*(R™\{0}), therefore we can apply the Lagrange multiplier
method in Theorem 6.8.2.
Alternatively, we consider the extreme values of

(6.8.7) f(x) = |z|* subject to g(x) =0,

which produces the same result as in (6.8.6) since the mapping ¢ : [0,400) — [0,+00)
given by ¢(t) = t? is strictly increasing. Now by using the Lagrange multiplier theorem
(Theorem 6.8.2), if y = (y1,y2) € S is an extreme point of the restricted function f|g, then
there exists A € R such that

1 1
y =5 VIY) = 5AVay) = Ma "5, b7%p).
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This equation has exactly four sets of solutions:

(y1,vy2) = (Fa,0) corresponds to A = a?,
(y1,92) = (0,£b) corresponds to A = b?.

We now verify that
f(£a,0) = |(£a,0)| = a is the length of minor semi-axis,

f(0,£b) =|(0,£b)| = b is the length of major semi-axis.
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CHAPTER 7

Lebesgue integral

Unlike the standard calculus course, we will briefly introduce the Lebesgue integral rather
than Riemann integral, which is widely used in modern applications including probabilities
and statistics. In fact, the computations for Lebesgue integral is much easier than Riemann
integral. We will follow the approach in [WZ15].

7.1. Some preparations

We now quickly go through some technical assumptions required to define the Lebesgue
measure (i.e. the generalized volume) as well as the Lebesgue integral. We first introduce an
elementary object in R".

DEFINITION 7.1.1. We say that I C R" is a rectangle if there exists aq, - ,a,,b1--- ,b, €
R such that I = [ay,b1] X -+ X [an, by]. Its volume is defined by

n

vol (I) i= [ [ (b — @) = (by — ar) -+ (b — an).

i=1
When n = 1, the rectangle is simply the bounded closed interval in R.
Given any set £ C R", we first approximate its “volume”. If there exists rectangles

Iy, , I, (may intersect to each other) such that E C |J*, I;, then we expect the “volume”
of E should be bounded from above by

> vol (I).

In view of the monotone convergence theorem for sequence (Lemma 5.1.5), if there exists
countably many I, Is,--- (may intersect to each other) such that F C U:;Of I;, then we
expect the “volume” of E should be bounded from above by

REMARK 7.1.2. However, this idea does not work for uncountable collection. For example,
we can write

R" = | {=}.

TERM

Each one point set {z} has zero volume, but obviously the volume of R™ is +oc0.

This suggests the following definition.
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DEFINITION 7.1.3. For any set £ C R", its outer measure is defined by
+00 +o0
m*(E) := inf {ZVOl (L;) - {L;}7 is a sequence of rectangles with £ C U ]Z} :
=1 i=1
In order to make the above idea works, we need the following technical assumption.

DEFINITION 7.1.4. A subset £ C R" is said to be Lebesgue measurable (or simply mea-
surable) if given any € > 0 there is an open set . C R” such that m*(Q. \ E) < e. The
Lebesgue measure (or simply measure) of measurable set E is defined by

|E| =m(E) :=m*(E).
The (Lebesgue) measure can be understood as the “generalized volume”.

EXAMPLE 7.1.5. It is easy to see that all open sets in R" (including () and R") are

measurable. Each rectangle [ is measurable, with |I| = vol(I). Each open set is also
measurable.
From now on, we allow the function takes the values [—oo, +00] := RU{£o0}. We finally

end this section by stating a technical assumption on functions in order to make Lebesgue
integral well-defined.

DEFINITION 7.1.6. Let E be a measurable set in R". We say that a function f : £ —
[—o00, +00] is Lebesgue measurable (or simply measurable) if the set

{x € E: f(x) > a} is measurable for all a € R.

Throughout this course, we will only consider the sets and functions which are measurable.

7.2. Definition of Lebesgue integrals

Let E be a measurable set in R". We begin our discussions with a nonnegative function
f defined on E, that is, f : E — [0,+00]|. In fact, we can define the Lebesgue integral is
simply defined as follows:

DEFINITION 7.2.1. Let E be a measurable set in R” and let f : F — [0,+00] be a
measurable function. The Lebesgue integral [, f(x)dx is defined as

| f@)dw = R(7.B)|
E
where R(f, E) is the region under f over E, more precisely,

R(f,E) := {(w,y)eExR: 8?355@? g;ggiiz }

Here and after we slightly abuse the notation by writing 0 - oo = 0o - 0 = 0.

REMARK 7.2.2. Here |R(f, E)| is the Lebesgue measure of R(f, F) C R® x R = R*L.
The well-definedness of Definition 7.2.1 is guaranteed by [WZ15, Theorem 5.1]. We will not
go through these technical details.
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For general measurable function f : E — [0, +0o0], we define f, := max{f,0} and f_:=
—min{f,0}. By the comments following [WZ15, Theorem 4.11], both f, : E — [0, +o0]
and f_: E — [0,400] are measurable. It is easy to see that

flx)=fi(x)— f(x) forallxe E,
|[f(x)| = fr(x)+ f_(x) forallxe E.
We now able to define the Lebesgue integral.
DEFINITION 7.2.3. Let E be a measurable set in R" and let f : E — [0,+00] be a

measurable function. If either [, fi(x)dx < +oo or [, f-(x)dx < +oo, then the Lebesgue
integral [, f(x)dx is defined as

[ 1@z [ f@ae- [ 1 @a

We see that the motivation of Lebesgue integral is exactly same to the Riemann integral
(see Figure 4.1.1 for the case when n = 1), especially when we compare the definition of
Lebesgue measure and the upper sum for Riemann integral. In fact, they are consistent:

THEOREM 7.2.4 (|[WZ15, Theorem 5.52|). Let n = 1 and let a,b € R with a < b. If
f i la,b] = R is Riemann integrable and there exists M > 0 such that |f(x)| < M for all
x € [a,b], then

) [ s = [ i,

where (R) fabf(x) dx is the Riemann integral (Definition 4.1.2).

DEFINITION 7.2.5. Let n = 1 and we consider the function

_J1 2z eqQ,
f(x)_{o zeR\Q.

The Lebesgue integral of f is given by
[ s@de =101 +0-R\QI = [0l
R

Since Q is countable, i.e. it is possible to write Q = {q1, g2, - - }, then for each € > 0, we see
that

Q C U[ql - 271’67 q; + 27i€]7
1€N
thus

+oo +o00
Q| < Z i — 27", q; +27"€]| = 262 27" = 2e.
i=1 i=1

By arbitrariness of € > 0, we conclude that |Q| = 0, which means that

/Rf(x) dz =0.

However, this function f is not Riemann integrable (Example 4.1.10).

As an immediate consequence of monotone convergence theorem [WZ15, Theorem 5.6],
we have the following lemma as well, which shows that the Lebesgue integral is also consistent
with improper integral (Section 4.4).
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LEMMA 7.2.6. Suppose that E,{E:}ico,1) be measurable sets in R" such that E =
Ute(m) E; and E; C E; for all s > t. For each nonnegative measurable function f : E —

[0, +00], one has
/Ef(w) de = tl_1>r1n_ . f(x)de.
REMARK 7.2.7. One of the main point in Lemma 7.2.6 is that the integral fE f(x)dx is
independent of the choice of {E;}ic(,1), and this is a generalization of Lemma 4.4.8. This is

very convenient for us in practical computations. For example when n = 1 and F = R, we
can simply choose E; = [—7, j] so that

/Rf(x) dx:jgrfoo/;f(x) dz

for non-negative function f. This idea can be easily extend to higher dimensional case:

f(x)dx = lim f(x)dx
Rn R—+o00 BR(mO)
for any non-negative function f : R™ — [0, +o0c]. This fact is extreme useful, especially in
probability.

EXAMPLE 7.2.8. Let n =1 and we consider the function f : [0,1] — R given by

a2z e(0,1],
f(x)_{() ,r =0.

One sees that the Lebesgue integral fol f(x)dx is well-defined, and by using Lemma 7.2.6,

we see that
r=1

=2

=€

Y

1 1
/ f(x)dz = lim [ 27Y%*dz = lim 22'/?
0

e—0+ ¢ e—0+

which is basically the improper integral. However, the f[0,1] — R is not Riemann integrable

(Example 4.1.9). Since the Lebesgue integral fol f(z) dx is well-defined, we simply write the
above computations as
=1
= 2.
z—0+

/1 f(z)dz = 2212
0

7.3. Computations of integrals via repeated integration: Fubini’s theorem

Now lets move on computations of integrals. For each measurable set F in R", we consider
the set

LY(E) := {f is a measurable function on F : / |f(x)|dx < —l—oo} :
E

THEOREM 7.3.1 (Fubini). Let E = E; X Ey where Ey is a measurable set in R™ and Es
is a measurable set in R™. Let f: E — [—o0,+00] be a measurable function. If either f is
non-negative or f € LY(E), then

[ sy - [ ( ng(w,y)dy) ta— [ ( i f@y)da) dy.
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REMARK 7.3.2. If all assumptions in Theorem 7.3.1 hold, it is quite often to denote

[E f(,y) d(z,y) = [E f(x,y) dzdy = / f(,y) dy dz.

REMARK 7.3.3. Recall that f € L'(E) means [,|f(x,y)|d(x,y) < +oo. Note that
|f(x,y)| is non-negative, and thus Fubini’s theorem for nonnegative functions can be used.
Thus, we always compute [, |f(x,y)|d(xz,y) before compute [, f(x,y)d(x,y).

EXAMPLE 7.3.4 (Double integral). Let I; and I be intervals in R (not necessary
bounded). Let f: I} x [y — [—00,400] be measurable function. If either f is non-negative
or f € L'(I, x I), then choosing Fy, = I and E, = I, to see that

/£X12f(x’y)d(x’y)::‘/; ( IQf(m,y)dy) dx::‘/i ( Jlf(x’y)dx) dy.

We now give some concrete examples.

EXAMPLE 7.3.5. We want to compute
/ flx,y)d(z,y) with  fz,y) =z —3y*
[0,2]x[1,2]

We first check that (see Remark 7.3.3)

[ ewlden< [ pldey s [ pPdey)
[0,2]x[1,2] [0,2]x[1,2] [0,2]x[1,2]

<[ pdeyes) ey =14] 1de)
[0,2]x[1,2] 0,2][1,2] 0,2]%[L,2]

= 14][0,2] x [1,2]] = 28 < +o0,

hence f € L'([0,2] x [1,2]) so we can apply Fubini’s theorem. Thus, we can compute this by

either
2 2
[ w-sden = [ ( JRCETS dx) dy
[0,2]%[1,2] 1 0
2 1 =2 2
= / (—x2 — 3:Ey2> dy = / (2 — 6y2) dy
y=2
=2y—2y°| =-12
y=1
or

[ eapaen - ([e-sira) a

2 y=2 2
:/ (zy — y°) dxz/(x—?)dx
0 y:l 0
2 r=2
=Yl =-12
2 =0
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EXERCISE 7.3.6. We want to compute
[ ysinln)d(ey) with foy) = ysiney)
[1,2]%[0,7]
We first check that (see Remark 7.3.3)

/ )| d(z,y) < / iyl d(z,y)
[1,2] x[0,m]

(1,2]x[0,7]

§/ md(z,y) =7 |[1,2] x [0,7]] = 7 < +o0,
[1,2]x[0,m]

which means that f € L'([1,2] x [0,7]), and so Fubini’s theorem applies, thus

s 2
/ ysin(zy) d(z,y) :/ (/ ysinxydx) dy
[1,2]x[0,7] 0 1

r=2 T
dy :/ (—cos2y + cosy) dy
. 0

1
y=m

= ——sin2y +siny
2 =0
yi

ExXAMPLE 7.3.7. Let E; C R™ and EF; C R™ be measurable sets. Let f; : £ — R and
f2 1 F5 — R be measurable functions. In fact, the function f : E; x Fy — R defined by

f(x,y) = fi(x)f2(y) forall (x,y) € Ey X Fy

is measurable. If both f; and f; are nonnegative, then f is also nonnegative. From Fubini’s
theorem we now see that

/EE fle.die.y) = [ 1 ( @) dy) da

independent of x
"

_ /E( @) dy) o — /E fl(w)f( o dy)\ .

wsy ([ n@ae) ([ swaw).
E1 E2
If both f; € L'(F)) and f; € L'(F,), we now check that (see Remark 7.3.3)

[ et = [ ([ 1)

Fubini’s theorem for nonnegativve functions independent of x
7\ 7\

- /E( 5 |f1<w>||f2<y>|dy) o - A |f1(w)\,< . |f2<y)'dy> i

([ 1h@iae) ([ 15wliy) < <.

which means that f € L'(E; x E;). Now we can use Fubini’s theorem for f to conclude the
identity (7.3.1).
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EXAMPLE 7.3.8 (Triple integral). Let I, and I3 be intervals in R (not necessary
bounded). Let f : [} x Iy x I3 — [—00, 400] be measurable function. If either f is non-negative
or f € LI, x I x I3), then we choose Fy = I} and E, = I, x I3 to see that

/11”2”3 flz,y,2)d(z,y,2) = /11 (/12X13 (@, v, Z)d(y,z)) e

In fact, if f € L'(I; x Iy x I3), then f(x,-) € L' (I, x I3) for a.e. & € I}, more precisely, there
exists a measure zero set Z such that f(z,-) € L'(Iy x I3) for all x € I \ Z. We now choose
E, =1, and Ey = I3 to see that

/ f(z,y,2)d(y, 2) :/ ( flz,y,2) dz) dy forae. z € 1.
Iox1I3 Is I3

Combining the above two equation and we see that

/hmxlgf(x,y, z)d(x,y,2) = /11 (/12 ( Igf(x,y,z) dz) dy) dr,

and the order of integral can be changed.

In fact, the Fubini’s theorem (Theorem 7.3.1) can be extended for non-rectangle domains
as well.

THEOREM 7.3.9 (Fubini [WZ15, Theorem 6.8]). Let E be a measurable subset in R"*™
and we define the measurable set

E, ={yeR":(x,y) € E} forae xecR"
E,={xeR":(x,y) € £} forae yecR",

If f is non-negative or f € L*(E), then

[tewie = [ ([ @)= | m( Eyf(fc,y)dw> .

REMARK 7.3.10. The principle in Remark 7.3.3 also works for this case.
ExaMPLE 7.3.11. Let a,b € R with a < b. Suppose that E is a region described by
E = {(x,y) cR*:a<2<bg(r)<y< gg(x)}
for some continuous functions g; : [a,b] — R and g5 : [a,b] — R. One sees that

E,={yeR:g(x) <y <go(x)} foreachx € [a,b,
E, =0 foreach z€R\ [a,b].

If f is non-negative or f € L'(E), then Fubini’s theorem (Theorem 7.3.9) implies

[E f(@,y) d(z,y) = / ( Ezf(w,y)dy) dr = / b ( /gfj)f(w,y)dy) dz.

EXAMPLE 7.3.12. Let a,b € R with a < b. Suppose that E is a region described by
E={(z,y) €R*: y(y) <z < ha(y),a <y < b}
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for some continuous functions hy : [a,b] — R and hy : [a,b] — R. Similarly, if f is non-
negative or f € L'(E), then Fubini’s theorem (Theorem 7.3.9) implies

fary (z,9) fxy dy = b hZ(y)f(fc,y)dx dy.
a h1(y)

EXAMPLE 7.3.13. We now demonstrate how to evaluate [, f(z,y) d(z,y) where f(z,y) =
x + 2y and E is the region bounded by the parabolas y = 222 and y = 1 + 2%, It is easy to
see that the parabolas intersect at x = 41, thus one sees that

E:{x,y GR:—1§x§1,2x2§y§1+x2}.
We first check that (see Remark 7.3.3)

/Ifwy|dwy /ledl’y+2/|y|dxy
< [ 1dGg)+2 [ 2d0) =5|E| < +ox.
E FE

thus f € L'(FE). Thus, one can use Fubini’s theorem (Theorem 7.3.9) to see that

/fxy (x,y) /(/Qisz(w+2y)dy> dx
:/_l(zy+y)y1+x

dx
1
:/ (—3x4—x3+2x2+x+1)dx
1
3. at 2, 1,
——gl‘-z—i‘gl’ +§.T +x

y=2x2

=t 32
15

r=—1

EXAMPLE 7.3.14. We now demonstrate how to evaluate the integral

(7.3.2) /0 1 ( / 1 sm<y2)dy) dz.

One sees that it is not easy to evaluate the integral following the order. One possible way to
simplify the problem is to changing the order of integral, but it is not easy to do so since

1 1
/ (/ sin(yQ)dx) dy is not well-defined.
T 0

Unfortunately, there is no easy and direct method to solve this integral. The proper way to
do this is we first consider the region

E={(z,y) eR*:0<a<1l,s <y<1},
and write f(z,y) = sin(y?) for all (z,y) € E. We first check that (see Remark 7.3.3)

[ 1@t < [ 1d) = Bl = 5 < +oo,
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which means that f € L'(E). Thus, one can use Fubini’s theorem (Theorem 7.3.9) to see
that the iterated integral (7.3.2) is identical to [, f(x,y)d(z,y), and we further compute

that
/ 1 ( / 1 sm(y?)dy) ar= [ sty
= /01 </Oy Sin(yQ)drc> dy = /Olysin(yz)dy

y=1

= %(1 —cos(1)).

EXAMPLE 7.3.15. We finally give a simple counterexample to demonstrate that Fubini’s
theorem may not holds for general function. We define f : R? — R by

1 (JI y) S UzeN( 1 Z) (Z - 17i)7
f(l',y>: _1 (.CE,y) EU’iEN(Z72+1) (i_17i)7
0 otherwise.

We sce that
[([s xydx)dy—zeZN/ ([ stemac) ay
:ZI;/ (/ f:cydx+/ f:cydx>dy
L (e ) f v
and

o) ) [ ()

ieN

L[ o) ([ o [ reom)
:/01(/0 1dy)dx+2/z+l</l dy—i—/z 1dy)dx

€N

:/ 1dx+2/ 0de = 1.
0

ieN

/R(/Rf(x7y)dx) dy:o?‘“:/ﬂg(/Rf(iv,y)dy) do

We see that
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This does not violate with the Fubini’s theorem, since f is sign-changing, and using the
Fubini’s theorem for nonnegative function one sees that

/</‘f””y’dx> dy—Z/ (/\fxyldx> y

S [ W;Zﬂ/fum,wdx)
L ) e e

which means that f ¢ L'(R?).

7.4. Divergence theorem: a generalization of fundamental theorem of calculus

The main theme of this section and Section 7.5 below is to introduce some basic integration
rules, which are parallel to Section 4.2.

Let © be a bounded domain in R™ with piecewise C'-boundary 99 (roughly speaking,
for each but finitely many & € 00 there exists € = ¢(x) > 0 such that 9Q N B.(x) can be
represented as a C'' function).

EXAMPLE 7.4.1. The rectangles in R" are bounded domain with piecewise C'-boundary
o09.

In fact, for each & € 012, there exists a unique unit outward normal vector v(z) =
(vi(x), - ,vp(x)). Here the term “unit” means |v(x)| = 1. We write Q := Q U 0Q and we
say that f € C1(Q) if there exists an open set U in R" such that f € C*(U).

THEOREM 7.4.2 (Divergence theorem, see e.g. [Str08, Appendix A.3|). Let Q be
a bounded domain in R™ with piecewise C'-boundary O with the unit outward normal
v= (v, ,v), then for each i =1,--- n one has

/aif(a:) de :/ vi(x)f(x)dS, for all f € CH(Q),
Q o9
where dS, s the surface element on OS2, which is in fact the Hausdorff measure.

Given any interval [a,b] C R with a,b € R such that a < b, we see that the boundary of
[a, b] only consists of two points {a,b}. We see that the unit outward normal vector at = b
is v(b) = 1, while the unit outward normal vector at x = a is v(a) = —1. In view of the
divergence theorem, one should have

n r=b
[ r@ar= [ v as. = v @+ v50) = 10) - 50 = 5]
a Jla,b r=a
which is confirmed by the fundamental Theorem of calculus (Theorem 4.1.15). Therefore,
one can refer the divergence theorem (Theorem 7.4.2) as the higher dimension version of the
fundamental theorem of calculus.

By using the product rule, we have

Oi(f(x)g(x)) = 0:f(x)g(x) + f(x)0ig(x),
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then by using divergence theorem, we see that

L/&ﬂ@ﬂ@dm+/f@Ww@ﬁh
Q Q

:%ﬁU@M@ij/w@#@M@M@%

o0
and we reach the following:
THEOREM 7.4.3 (Integration by parts). Let 2 be a bounded domain in R™ with piecewise

Cl-boundary OQ with the unit outward normal v = (vy, - - - , then for each i =1, -
one has

Jos@a@iz = | n@)f@iad /f oug () d

o9
for all f,g € CY(Q), where dS, is the surface element on 0Q, which is in fact the Hausdorff
measure.

This is nothing but just the integration by parts formula, which is a generalization of
Theorem 4.2.1. This is an essential component in practical applications, such as partial
differential equations, see e.g. my lecture note [Kow24| for more details.

7.5. Substitution rule

We begin with some notions.

DEFINITION 7.5.1. Let D and 2 are both bounded domains in R" with piecewise C'-
boundaries. We say that ¢ = (o1, ,0,) : D — Q is a C'-diffeomorphism if ¢ : D — Q
is bijective, ¢ € (C'(D))™ and ¢! € (C'(2))". The function |det(V @ ¢)| is called the
Jacobian, where V ® ¢ : D — R™" is the matrix-value function given by

(V@ () = 0ipj(x) forallx e D and foralli,j=1,---.n

REMARK 7.5.2. By using Lemma 6.5.14, one has det(V ® ¢) = det((V ® ¢)7).

We now ready to state the main tool in this section.

THEOREM 7.5.3 (|Cha06, (I111.3.1)]). Let D and Q2 are both bounded domains in R™ with
piecewise Cl-boundaries, and let ¢ : D — Q is a C'-diffeomorphism. Then one has

(7.5.1) /f ) dy — /f DI det(V @ @)(@)|dz for all f € L'(Q).

One may ask why there is an absolute value in the Jacobian. We now consider n = 1 and
consider the C'-diffeomorphism ¢ : D = (¢, d) — Q = (a,b). In this case, either ¢ is strictly
increasing or ¢ is strictly decreasing.

e If © is strictly increasing, then p~'(a) = ¢, ¢! (b) = d and the Jacobian is |¢/(x)| =
¢'(z), and Theorem 6.4.2 suggests that

[ = [ s = [ fipiar

v~ 1(a)
e If ¢ is strictly decreasing, then ¢~ '(a) = d, ¢~ '(b) = c and the Jacobian is |¢'(z)| =
—¢'(x), and Theorem 6.4.2 suggests that

b d ©1(b)
[ twan== [ sewndmar= [ e
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Combining the above two cases, we reach

b )
[ rwa= [ fe@)e @

~H(a)

which is exactly the 1-dimensional change of variable formula given in Theorem 4.2.5. These
computations suggests that the sign of det(V ® ¢)(x) is already included in the “orientation”
of ¢, and here we remind the readers that remember to put absolute value in the definition
of the Jacobian.

REMARK 7.5.4. It is convenient to abuse the notation by writing ¢(x) = y(x) and

ay o a(yla 7yn)

| det(V & @) ()| = ox  O(z1, . 2y)

and to write (7.5.1) as

/f )dy = /f yda: for all f € L'(Q).

Remember to check the change of variable is C'-diffeomorphism.

EXAMPLE 7.5.5 (Polar coordinate). We now consider the C'-diffeomorphism (z,y) :
(0, R) x (0,2m) = Br(0) \ (R5o x {0}) given by

x=rcosf and y=rsinf forall0<r < Rand 0 <6 <2m.

We compute the Jacobian

or,y) 0,x Opx _ cos —rsinf B ) e
o(r,0) ‘det ( 0,y Opy = |det sinf rcos6 = |r(cos ) + r(sinf)°| =

By using the change of variable formula with D = (0, R)x (0, 27) and Q = Br(0)\(R>ox{0}),
we see that

/ flz,y)d(z,y) :/ f(rcos@,rsin@)rd(r,0)
(0)\(R>(x{0}) (0,R)x(0,27)

for all f € L'(Bg(0)\ (Rx x {0})). Since Rs¢ x {0} has measure zero in R?, thus
L'(Bg(0)) = L'(Br(0) \ (Rxo x {0}))

and

/ f(x,y) d(z,y) = / F(.y) d(z,y).
Br(0)\(R>ox{0}) Br(0)

Since f € L'(Bg(0)), by using the Fubini’s theorem (Theorem 7.3.1) we see that

2 R
/ f(rcosf,rsinf)rd(r,0) :/ </ f(rcos@,rsind)r dr) dé
(0,R) % (0,2) 0 0

R

2m
= ( f(rcos@,rsind) d0> rdr.
0

0
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We summarize the above as:

/BR(O) fl@,y)d(z,y) = /0% (/jf(rcos&,rsin&)rdr) de

— /R (/27r f(rcosf,rsinf) d9) rdr forall f € L'(Bg(0)).
0 0

EXERCISE 7.5.6. Let E = {(rcos@,rsinf) e R: a <0 < [,h(0) <r < hy(0)} for some
0 <a<fB<2rand C! functions hy, hy : [a, 3] — Rsg. Show that

B ha(8)
/Ef(:my)d(x,y) :/a (/hl(e) f(rcos@,rsin@)rdr) dé

for all f € L'(E).

EXAMPLE 7.5.7 (Polar coordinate in the whole Euclidean space). Unlike Riemann inte-
gral, one can directly operate unbounded domains for Lebesgue integral. By consider the
Cl-diffeomorphism (z,y) : (0, +00) x (0,27) — R?\ (R>q x {0}), the above procedure gives

2m +o00
fz,y)d(z,y) :/ ( f(rcos@,rsinﬁ)rdr) do
R? 0 0

“+oo 21
:/ ( f(rcos@,rsinf) d@) rdr forall f € L'(R?),
0 0

We further remark that if f is continuous in R?\ {0}, the integral [,"> is identical to the
improper integral in Section 4.4.

EXAMPLE 7.5.8 (Normal distribution). Given constants y > 0 and o > 0, and we define
the continuous function
1 (t—p)?

e 202 forall x € R,

Pu,o - R — Ry, pu,a(t) =
oV 2T

which is the density of the normal distribution mentioned in Example 4.4.12. By using
Fubini’s theorem for non-negative functions (Theorem 7.3.1) and consequently using the
polar coordinate, one sees that

2 1 2 2 1 2 42
(oetse) =i ([ 0] =5 ([ 2) ([ 570)
1 22 4y2 1 +oo 2T 2
= St d = “27df ) rd
2mo2 /Rz e 2 (l'ay) DY) /0 (/0 e 2 ) rdr

1ot 2 1 s 2\ |
= e 22rdr=— | —0“e 202

i -1
a2 Jo o?

Y

r=0
which concludes that

‘/mgwa:L
R

that is, the density p,, induces a probability distribution. In addition, the statement in
Exercise 4.4.13 also can be formulated in terms of Lebesgue integrals.
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