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This lecture note on partial balayage is designed for graduate students. Rather than following
the historical development, we introduce partial balayage directly through modern approaches,
based on some materials in [GS12, GS24, Gus90, GS05, KLSS24, KS24], which is consistent
to the one in [Gus04, Definition 3.1]. Since the audience consists of graduate students, we will
explain the details in a clear and straightforward manner.

For those students who do not familiar with distribution theory (i.e. generalized functions), one
can refer to the monograph [FJ98], or my other existing lecture note [Kow22, Kow24] as well, we
will not explicitly mention weak/distributional derivatives. We also provided some preliminaries
(a version of Hahn-Banach theorem, Sobolev embeddings and integration by parts in weak sense)
in Appendix A. Throughout this lecture note, we will only consider real-valued functions unless
stated explicitly.

Acknowledgments. I would like to express my sincere gratitude to Prof. Yuusuke Iso for inviting
me to visit Kyoto University. This opportunity encouraged me to begin preparing this lecture note.
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CHAPTER 1

Partial balayage of compactly supported bounded measures

1.1. Motivation

The word “balayage” means sweeping in French. Given a compactly supported distribution
µ ∈ E ′(Rn), we are interested to a procedure which output a compact supported distribution Bal(µ)
satisfying

(1.1.1) Bal(µ) = χD +µ|D∁ and min{1,µ} ≤ Bal(µ)≤ 1

for some open set D ⊂ Rn, where D∁ := Rn \D and

χD =

1 in D,

0 in D∁.

The open set D in (1.1.1) can be understood as the “region which the measure µ was cleaned”, and
we see that the measure remain unchanged in D∁. Therefore, such distribution Bal(µ) is called the
balayage of µ (with respect to Lebesgue measure). It is also possible to discuss the partial balayage
on some manifold [GR18].

We don’t simply choose D = {µ > 1}, since our main goal is to choose a suitable D to obtain
some “good properties” related to the following object (see Section 1.5 below):

DEFINITION 1.1.1 (quadrature domain). A bounded open set D ⊂ Rn (not necessarily
connected) is called a quadrature domain (for harmonic functions), corresponding to a distribution
µ ∈ E ′(D) if

(1.1.2)
∫

D
w(x)dx = ⟨µ,w⟩ for all w ∈ L1(D) with ∆w = 0 in D.

The notation µ ∈ E ′(D) means that µ is a compactly supported distribution satisfying the
support condition supp(µ) ⊂ D. Since all L1(D) harmonic functions are in C∞(D), thus the
distribution pairing in the right-hand-side of (1.1.2) is well-defined. It is interesting to point
out that one can use quadrature domain is related to acoustic scattering problem, see e.g.
[KLSS24, KSS24, KS24, SS21]. In fact, the mean value theorem for harmonic function can be
restated as follows:

EXAMPLE 1.1.2 (mean value theorem for harmonic functions). Let n ≥ 2 be an integer and
let R > 0 be any constant. If u ∈ L1(BR(x0)) is a solution to ∆u = 0 in BR(x0), then BR(x0) is a
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1.1. MOTIVATION 2

quadrature domain with respect to
µ = |BR(x0)|δx0,

where |BR(x0)| is the Lebesgue measure of BR(x0) and δx0 is the Dirac delta at x0.

EXAMPLE 1.1.3 (A conjecture that has been resolved). We refer a quadrature domain with
respect to µ ≡ 0 as null quadrature domain. Null quadrature domains are fully characterized in
[EFW25] for all dimensions n ≥ 2 (the special case when n ≥ 6 was done in [ESW23]), it must
either one of the followings:

(1) complement of a half-space; or
(2) complement of an ellipsoid; or
(3) complement of a cylinder with an ellipsoid base; or
(4) complement of a cylinder with a paraboloid base.

In either case, we see that null quadrature domains are unbounded.

At this point, from the mathematical point of view, quadrature domain can be viewed as a class
of domains which satisfies a “generalized mean value theorem” property. The word “quadrature”
goes back to the Latin noun “quadratura”, which means “making square-shaped”, “constructing
squares” or “the division of land into squares” [GS05]. We shall call a bounded domain D ⊂ C
a classical quadrature domain if there exists finitely many points a1, · · · ,am ∈ D and coefficients
ck j ∈ C so that

(1.1.3)
∫

D
f dx =

m

∑
k=1

nk−1

∑
j=0

ck j f ( j)(ak)

for all integrable analytic functions f in D. Here dx is the area measure (i.e. Lebesgue measure on
C∼=R2). If ck,nk−1 ̸= 0, then the identity (1.1.3) is then called a quadrature identity and the integer
n = ∑

m
k=1 nk is the order of the quadrature identity.

EXERCISE 1.1.4. Let D be a simply connected open set in C∼=R2, and let u∈C2(D) be a given
real-valued harmonic function. Show that there exists a real-valued function v ∈ C2(D) such that
F = u+ iv is analytic in D. [Hint: First define f := ∂xu− i∂yu and then consider its antiderivative
F as in the fundamental theorem of antiderivative [Kow23, Theorem 3.3.10]. Show that ℜF = u.]

By using the above exercise, one sees that (1.1.3) is a related to the quadrature domain
(Definition 1.1.1) with

µ =
m

∑
k=1

nk−1

∑
j=0

ck j(−1) j
δ
( j)
ak ∈ E ′(D),

where δ
( j)
ak is the jth order distributional derivative of the Dirac delta δak supported at ak ∈ D. One

can refer to e.g. [GS05] for a brief of the history of quadrature domains.
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From now on, we always assume that n ≥ 3. Recall that the function

Φ(x) := (n(n−2)|B1|)−1|x|2−n

is in L1
loc(R

n), which is a fundamental solution of −∆, i.e. −∆Φ = δ0, see e.g. [GT01].
Without causing any confusion, we do not explicitly mention the term “almost everywhere (a.e.)”
throughout this lecture note. By using the mean value theorem for harmonic functions, one sees for
each w ∈ L1(D) with ∆w = 0 in D and µ ∈ E ′(D) that〈

µ ∗ 1
|Br|

χBr ,w
〉
=

∫
Rn

(∫
Rn

1
|Br|

χBr(x− y)µ(y)dy
)

w(x)dx

=
∫
Rn

(
1

|Br|

∫
Rn

χBr(x− y)w(x)dx
)

µ(y)dy

=
∫
Rn

(
1

|Br(y)|

∫
Br(y)

w(x)dx
)

µ(y)dy

MVT
=

∫
Rn

w(y)µ(y)dy = ⟨µ,w⟩.(1.1.4)

This shows that D is a quadrature domain corresponding to µ if and only if D is a quadrature
domain corresponding to µ ∗ 1

|Br|χBr ∈ L∞
c (Rn) for all 0 < r < dist(supp(µ),∂D). This suggests us

to first consider partial balayage of compactly supported bounded measures, as in the title of this
chapter.

1.2. From variational problem to obstacle problem

Let Ω ⊂Rn be a bounded connected smooth domain. Let H1(Ω) be the Hilbert space equipped
with the norm

(1.2.1) ∥ · ∥H1(Ω) :=
(
∥ · ∥2

L2(Ω)+∥∇ · ∥2
L2(Ω)

) 1
2
,

and let H1
0 (Ω) be the completion of C∞

c (Ω) with respect to the norm (1.2.1). In fact,

H1
0 (Ω) =

{
v ∈ H1(Ω) : v|∂Ω = 0

}
.

Given any v ∈ H1
0 (Ω), by using [Bre11, Proposition 9.18], one sees that its zero extension

χΩv ≡

v in Ω,

0 in Ω∁,

belongs to H1(Rn) and satisfying

(1.2.2) ∇(χΩv) = χΩ∇v ≡

∇v in Ω,

0 in Ω∁.
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Let λ1(Ω) be the fundamental tone of Ω defined by

λ1(Ω) := inf
0̸≡v∈H1

0 (Ω)

∥∇v∥2
L2(Ω)

∥v∥2
L2(Ω)

.

In fact, one has λ1(Ω) > 0 (well-known as Poincaré inequality), and λ1(Ω) is the first Dirichlet
eigenvalue of −∆. By using Poincaré inequality, it is easy to see that H1

0 (Ω) can be equipped with
the following equivalent norm

∥ · ∥H1
0 (Ω) := ∥∇ · ∥L2(Ω).

Let A = (ai j) ∈ (L∞(Ω))n×n
sym satisfies the following ellipticity condition:

Λ
−1|ξ |2 ≤ ξ ·A(x)ξ ≤ Λ|ξ |2 in Ω for all ξ ∈ Rn.

Let a : H1
0 (Ω)×H1

0 (Ω)→ R be a symmetric bilinear form defined by

(1.2.3) a(v1,v2) :=
∫

Ω

∇v1(x) ·A(x)∇v2(x)dx.

It is easy to see that:

(1) a : H1
0 (Ω)×H1

0 (Ω)→ R is continuous:

|a(v1,v2)| ≤ Λ

∫
Ω

∇v1(x) ·∇v2(x)dx ≤ Λ∥v1∥H1
0 (Ω)∥v2∥H1

0 (Ω)

for all v1,v2 ∈ H1
0 (Ω).

(2) a : H1
0 (Ω)×H1

0 (Ω)→ R is coercive:

|a(v,v)| ≥ Λ
−1∥v∥2

H1
0 (Ω)

for all v ∈ H1
0 (Ω).

Let ψ ∈ H1
0 (Ω) and we define

K̃ :=
{

v ∈ H1
0 (Ω) : v ≥ ψ in Ω

}
,

which is a non-empty closed convex subset of H1
0 (Ω). By using Stampacchia’s theorem [Bre11,

Theorem 5.6]1, one reach the following lemma.

LEMMA 1.2.1 (“well-posedness” of a variational problem). Let ψ ∈ H1
0 (Ω), f ∈ H−1(Ω) and

let a : H1
0 (Ω)×H1

0 (Ω)→ R be the symmetric continuous coercive bilinear form given in (1.2.3).
There exists a unique u∗ ∈ K̃ such that

u∗ = argmin
u∈K̃

{a(u,u)−2⟨ f ,u⟩}

and u∗ ∈ K̃ can also be characterized by

(1.2.4) a(u∗,u−u∗)≥ ⟨ f ,u−u∗⟩ for all u ∈ K̃.

1Lax-Milgram theorem is a corollary of Stampacchia’s theorem, see e.g. [Bre11, Corollary 5.8].
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Here ⟨·, ·⟩ is the H−1(Ω)×H1
0 (Ω) duality pair.

The following lemma shows that the element u∗ in Lemma 1.2.1 also can be characterized as
the smallest element of an obstacle problem.

PROPOSITION 1.2.2 (from variational problem to obstacle problem). Let ψ ∈ H1
0 (Ω), f ∈

H−1(Ω) and let a : H1
0 (Ω)×H1

0 (Ω)→R be the symmetric continuous coercive bilinear form given
in (1.2.3). Let u∗ ∈ K̃ be the function described in Lemma 1.2.1. If u ∈ K̃ satisfies

(1.2.5) −∇ · (A∇u)≥ f in H−1(Ω)-sense,

then u∗ ≤ u in Ω. In other words, u∗ is the smallest element in the collection

F (A, f ) :=

{
u ∈ H1

0 (Ω) :
−∇ · (A∇u)≥ f in H−1(Ω)-sense
u ≥ ψ in Ω

}
.

PROOF. Since ζ := min{u∗,u} ∈ K̃, then from (1.2.4) we have

(1.2.6) a(u∗,ζ −u∗)≥ ⟨ f ,ζ −u∗⟩.

Since ζ −u∗ = min{u∗,u}−u∗ ≤ 0 in Ω, then from (1.2.5) we have

(1.2.7) a(u,ζ −u∗)≤ ⟨ f ,ζ −u∗⟩.

We combine (1.2.6) and (1.2.7) to obtain

a(u−u∗,ζ −u∗)≤ 0.

By using the definition of ζ , we compute that

0 ≥ a(u−u∗,ζ −u∗) =
∫

Ω

∇(u−u∗) ·A∇(ζ −u∗)dx

=
∫
{ζ<u∗}

∇(u−u∗) ·A∇(ζ −u∗)dx (because ζ ≤ u∗ in Ω, (1.2.2) involved)

=
∫
{ζ<u∗}

∇(ζ −u∗) ·A∇(ζ −u∗)dx (because min{u∗,u} ≡ ζ < u∗ implies ζ = u)

=
∫

Ω

∇(ζ −u∗) ·A∇(ζ −u∗)dx ≥ Λ
−1∥ζ −u∗∥2

H1
0 (Ω)

,

which implies u∗ = ζ ≡ min{u∗,u} in Ω, which implies our proposition. □

1.3. Definition of partial balayage

The main theme of this section is to introduce partial balayage of µ ∈ L∞
c (Rn) :=

{µ ∈ L∞(Rn) : µ has compact support} ⊂ E ′(Rn). The Newtonian potential is defined as

U µ(x) := (Φ∗µ)(x) =
∫
Rn

Φ(x− y)µ(y)dy.
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We write µ+ := max{µ,0} and µ− :=−min{µ,0} and see that µ = µ+−µ− and |µ|= µ++µ−.
We recall the following mean value theorem for sub-harmonic functions.

LEMMA 1.3.1 (see e.g. [KLSS24, Appendix A]). If w ∈ L1(BR(x0)) satisfying ∆w ≥ 0 in
BR(x0), then, provided x0 is a Lebesgue point of w,

1
|BR(x0)|

∫
BR(x0)

w(x)dx ≥ w(x0).

In addition, the mapping

r ∈ R>0 7→
1

|Br(x0)|

∫
Br

w(x)dx

is monotone increasing, unless there exists an R′ > 0 such that ∆w = 0 in BR′ in which the case the
mapping is constant on (0,R′) and increasing on (R′,∞).

We first begin with the following lemma.

LEMMA 1.3.2. Let µ ∈ L∞
c (Rn). Then

F (µ) :=

{
v ∈ H1

loc(R
n) :

−∆v ≤ 1 and v ≤U µ in Rn

v =U µ outside a compact set

}
̸= /0.

PROOF OF LEMMA 1.3.2. We define

(1.3.1) ũ :=U µ ∗φr −U µ− where φr :=
1

|Br|
χBr .

Using elliptic regularity, we know that ũ ∈W 2,p
loc (R

n) for all 1 < p < ∞. Note that

(U µ+ ∗φr)(x) =
1

|Br|

∫
Br

U µ+(x− y)dy =
1

|Br|

∫
Br

U µ+(y)dy for all x ∈ Rn.

Since −∆U µ+ = µ+, using mean value theorem for subharmonic functions (Lemma 1.3.1), we see
that2

U µ+ ∗φr(x)≤U µ+(x) for all x ∈ Rn,

U µ+ ∗φr(x) =U µ+(x) for all x /∈ supp(µ)+Br,

which implies

ũ(x)≤U µ(x) for all x ∈ Rn,

ũ(x) =U µ(x) for all x /∈ supp(µ)+Br.

On the other hand, we see that

−∆ũ(x)≤ µ+ ∗φr(x) =
1

|Br|

∫
Br

µ+(x)dx ≤ 1
|Br|

∫
Rn

µ+(x)dx for all x ∈ Rn.

2For two sets A and B in Rn, we define the set A+B := {a+b : a ∈ A,b ∈ B}.
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We now choose r > 0 sufficiently large so that |Br| ≥
∫
Rn µ+(x)dx, we reach −∆ũ(x) ≤ 1 for all

x ∈ Rn. Thus we conclude that ũ ∈ F (µ). □

Before we further proceed, lets us introduce the following notion.

DEFINITION 1.3.3 (the term “near”). Let A be any set in Rn. We say that a property holds near
A if there exists an open set U ⊃ A such that the property holds in U . Sometimes we refer such U
an open neighborhood of A.

LEMMA 1.3.4. Let µ ∈ L∞
c (Rn). Then there exists a largest element V µ in F (µ), i.e. V µ ≥ v

in Rn for all v ∈ F (µ). In addition, the element V µ satisfies

(1.3.2) ⟨1+∆V µ ,V µ −U µ⟩= 0,

where ⟨·, ·⟩ is the H−1(BR)×H1
0 (BR) duality pairing for some suitable chosen R > 1.

REMARK 1.3.5. Since V µ ∈ F (µ), then one can choose R > 1 such that V µ −U µ ∈ H1
0 (BR).

Therefore ∆(V µ −U µ) ∈ H−1(BR). Possibly replacing R > 1 by a larger one, one may assume
that BR ⊃ supp(µ), and one sees that µ ∈ H−1(BR). Therefore the term ∆V µ in (1.3.2) can be
understood as

∆V µ =−µ +∆(V µ −U µ) ∈ H−1(BR).

PROOF OF LEMMA 1.3.4. Fixing any R > 0 be such that ũ = U µ outside BR, where ũ is the
function given in (1.3.1). Let ϕ ∈ H1(BR) be the unique solution to

(1.3.3)

−∆ϕ = 1 in BR,

ϕ =U µ on ∂BR.

Define
F̃ (µ) :=

{
w ∈ H1

0 (Ω) : −∆w ≥ 0 and w ≥ ϕ −U µ in BR
}
.

We claim that there exists a smallest element u∗ ∈ F̃ (µ). If this is the case, then

(1.3.4) V µ := ϕ −u∗

is the largest element of F (µ)|BR := {v|BR : v ∈ F (µ)}. Since ũ = U µ near ∂BR, then it is
necessarily V µ =U µ near ∂BR. Therefore, it we extend V µ by V µ :=U µ outside BR, we know that
V µ ∈ H1

loc(R
n) is the largest element in F (µ).

In particular, the existence of the smallest element in F̃ (µ) follows from Proposition 1.2.2 with
the bilinear form a : H1

0 (BR)×H1
0 (BR)→ R defined by

(1.3.5) a(v1,v2) :=
∫

BR

∇v1(x) ·∇v2(x)dx
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and the observation ϕ −U µ ∈ H1
0 (BR). Indeed, from Proposition 1.2.2, we know that a(u∗,u−

u∗)≥ 0 for all u ∈ H1
0 (BR) with u ≥ ϕ −U µ . Choosing u = ϕ −U µ , we have

(1.3.6) −⟨∆u∗,ϕ −U µ −u∗⟩= a(u∗,ϕ −U µ −u∗)≥ 0.

Since −∆u∗ ≥ 0 and u∗ ≥ ϕ −U µ in BR, then

(1.3.7) ⟨∆u∗,ϕ −U µ −u∗⟩= ⟨−∆u∗,u∗− (ϕ −U µ)⟩ ≥ 0.

Combining (1.3.6) and (1.3.7), we obtain

0 = ⟨∆u∗,ϕ −U µ −u∗⟩
(1.3.4)
= ⟨−∆(ϕ −V µ),V µ −U µ⟩ (1.3.3)

= ⟨1+∆V µ ,V µ −U µ⟩ ,

which completes our proof. □

We now ready to define the main object which we are interested.

DEFINITION 1.3.6 (partial balayage for bounded functions). The partial balayage Bal(µ) of
µ ∈ L∞

c (Rn) (with respect to Lebesgue measure) is defined as

Bal(µ) :=−∆V µ in D ′(Rn),

where D ′(Rn) is the space of distributions on Rn. We also called V µ the partial reduction of U µ

[GS09].

As explained in Remark 1.3.5 above, one can find R > 0 such that Bal(µ)∈ H−1(BR). For each
µ ∈ L∞

c (Rn), from definition of F (µ), it is easy to see that

(1.3.8) Bal(µ)≤ 1 and V µ ≤U µ in Rn.

We compute

UBal(µ)−U µ = Φ∗ (Bal(µ)−µ) =−Φ∗ (∆(V µ −U µ))

=−∆Φ∗ (V µ −U µ) = δ0 ∗ (V µ −U µ) =V µ −U µ in D ′(Rn)

where the convolution is understood as convolution of D ′(Rn) and E ′(Rn), which implies the
following fundamental equality for partial balayage:

LEMMA 1.3.7. Let µ ∈ L∞
c (Rn), then UBal(µ) =V µ in D ′(Rn).

Combining Lemma 1.3.4 and Lemma 1.3.7, we reach the following corollary.

COROLLARY 1.3.8. For each µ ∈ L∞
c (Rn), one has

〈
1−Bal(µ),UBal(µ)−µ

〉
= 0.

We formally define the bilinear form

(µ1,µ2)e :=
∫∫

Rn×Rn
Φ(x− y)dµ1(y)dµ2(x) = ⟨µ2,U µ1⟩ ,
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where we write dµ j(x) = µ j(x)dx for j = 1,2, and formally denote the “energy”

(1.3.9) E(µ1) := (µ1,µ1)e.

Given any bounded smooth domain Ω in Rn, we compute that

(1.3.10) (µ1,µ2)e = ⟨µ2,U µ1⟩= ⟨−∆U µ2 ,U µ1⟩=−
∫

∂Ω

U µ1∂nU µ2 dS+
∫

Ω

∇U µ1 ·∇U µ2 dx.

where ∂n is the outward normal derivative on ∂Ω. If U µ1 has compact support3, by choosing
Ω ⊃ supp(µ1) we see that

(1.3.11) E(µ1) = ∥∇U µ1∥2
L2(Rn) and in this case we denote ∥µ1∥e :=

√
E(µ1).

For example, since UBal(µ)−µ =V µ −U µ has compact support, then we see that

E (Bal(µ)−µ) = ∥∇(V µ −U µ)∥2
L2(Rn) ≡ ∥Bal(µ)−µ∥2

e .

We can rewrite Corollary 1.3.8 as

(Bal(µ)−µ,1−Bal(µ))e = 0.

Accordingly, one sees that the following holds for each σ ∈ L∞
c (Rn) with σ ≤ 1:

(Bal(µ)−µ,σ −Bal(µ))e

= (Bal(µ)−µ,σ −1)e +

=0︷ ︸︸ ︷
(Bal(µ)−µ,1−Bal(µ))e =

〈
σ −1,UBal(µ)−µ

〉
= ⟨σ −1,V µ −U µ⟩ ≥ 0 (because V µ ≤U µ , see (1.3.8)).

Since

(Bal(µ)−µ,σ −Bal(µ))e

= (Bal(µ)−µ,µ −Bal(µ))e +(Bal(µ)−µ,σ −µ)e

=−∥Bal(µ)−µ∥2
e +(Bal(µ)−µ,σ −µ)e ,

then we now reach

∥Bal(µ)−µ∥2
e ≤ (Bal(µ)−µ,σ −µ)e for all σ ∈ L∞

c (Rn) with σ ≤ 1.

3However, in general we do not expect that U µ has compact support: Let Ω ⊃ supp(µ) be a bounded smooth domain.
By following the ideas in [KW21, Theorem 2.5] (see also references therein for more details on non-radiating sources
for acoustic waves, electromagnetic waves as well as elastic waves), one can show that U µ has compact support if and
only if

∫
Ω

µ ·wdx = 0 for all w ∈ E(Ω), where E(Ω) is the completion of
{

w ∈ H1(Ω) : ∆w = 0 in Ω
}

in L2(Ω).
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For each σ ∈ L∞
c (Rn) with σ ≤ 1 such that Uσ−µ has compact support, we see that

∥Bal(µ)−µ∥2
e ≤ (Bal(µ)−µ,σ −µ)e

(1.3.10)
=

∫
Rn

∇UBal(µ)−µ ·∇Uσ−µ dx

≤
∥∥∥∇UBal(µ)−µ

∥∥∥
L2(Rn)

∥∥∇Uσ−µ
∥∥

L2(Rn)

(1.3.11)
= ∥Bal(µ)−µ∥e ∥σ −µ∥e ,

which concludes the following proposition.

PROPOSITION 1.3.9. If µ ∈ L∞
c (Rn), then its partial balayage Bal(µ) minimizes the energy in

the following sense:

∥Bal(µ)−µ∥e ≤ ∥σ −µ∥e for all σ ∈ L∞
c (Rn) with Uσ ∈ F (µ).

This shows that our definition of partial balayage is consistent to the one in [Gus04,
Definition 3.1].

1.4. PDE characterization of quadrature domains

Before we discuss the relation between partial balayage and quadrature domain (see
Section 1.5), we need to express quadrature domain in terms of PDE, as follows:

THEOREM 1.4.1. Let D be a bounded open set and let µ ∈ E ′(D). The following are equivalent:

(1) D is a quadrature domain corresponding to µ;
(2) there exists a distribution u satisfying

(1.4.1)

∆u = χD −µ in Rn,

u = |∇u|= 0 in D∁.

REMARK 1.4.2. Note that even though u is only assumed to be in D ′(Rn), since supp(µ)⊂ D,
one sees that ∆u = χD near ∂D, and thus Calderón-Zygmund inequality [GT01, Theorem 9.11] (or
simply referred as “elliptic regularity”) and Sobolev embeddings (Appendix A) implies that u ∈C1

near ∂D, hence the condition u = |∇u|= 0 in D∁ is meaningful.

PROOF OF THE IMPLICATION (1) =⇒ (2) IN THEOREM 1.4.1. If D is a quadrature domain
corresponding to µ ∈ E ′(D), then∫

D
∂

α
Φ(z− x)dx = ⟨µ,∂ α

Φ(z−·)⟩ for all z ∈ D∁ and |α| ≤ 1.

Let u = −Φ ∗ (χD − µ), which is well-defined since χD − µ ∈ E ′(Rn), and one can verify that u
satisfies (1.4.1). □

We now want to prove the implication (2) =⇒ (1). Let u satisfies (1.4.1). For each w ∈ L1(D)

that solves ∆w = 0 near D, by taking a cutoff function ψ ∈C∞
c (Rn) with ψ = 1 near D we have∫

D
wdx−⟨w,µ⟩= ⟨χD −µ,ψw⟩= ⟨∆u,ψw⟩= ⟨u,∆(ψw)⟩= 0,
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using that the derivatives of ψ vanish near supp(u). For general w ∈ L1(D) with ∆w = 0 in D, we
need another argument involving the following Runge approximation result, which can be proved
by following the argument in [KLSS24, Proposition 2.4], which is basically modified from [Sak84,
Lemma 5.1], see also [AH96, Chapter 11] for related results:

LEMMA 1.4.3. Let D be a bounded open set. The linear span of

F :=
{

∂
α

Φ(z−·)|D : z ∈ D∁, |α| ≤ 1
}

is dense in
HL1(D) :=

{
w ∈ L1(D) : ∆w = 0

}
with respect to the L1(D) topology.

PROOF. By the Hahn-Banach theorem (Theorem A.1.1), it is enough to show that any bounded
linear functional ℓ in L1(D) that satisfies ℓ|F = 0 also satisfies ℓ|HL1(D) = 0. Since the dual of L1(D)

is L∞(D), there is a function f ∈ L∞(D) with

ℓ(w) =
∫

D
f wdx, w ∈ L1(D).

We extend f by zero to Rn and consider the function u =−Φ∗ f in Rn. By the assumption ℓ|F = 0,
the function u satisfies ∆u = f in Rn,

u = |∇u|= 0 in D∁.

Note that since f ∈ L∞, using the Calderón-Zygmund inequality [GT01, Theorem 9.11] and
Sobolev embeddings (Appendix A) one has u ∈

⋂
α<1C1,α

loc (R
n). In order to show that ℓ|HL1(D) = 0,

we take some w ∈ HL1(D) and compute

ℓ(w) =
∫

D
f wdx =

∫
D
(∆u)wdx.

If one can integrate by parts and use the condition ∆w = 0 to conclude that

(1.4.2)
∫

D
(∆u)wdx = 0.

This implies ℓ|HL1(D) = 0 and prove the results. However, the proof of (1.4.2) is somehow delicate
due the Calderón-Zygmund inequality [GT01, Theorem 9.11] does not hold true when p = ∞.

By using [GT01, Theorem 3.9], one sees that

|∇u(x)−∇u(y)| ≤C|x− y| log(1/|x− y|) for all x,y ∈ D with |x− y|< e−2.

Using the condition u = |∇u|= 0 in D∁, this implies that uniformly for x ∈ D near ∂D one has

u(x) = O(δ (x)2 log(1/δ (x))),

∇u(x) = O(δ (x) log(1/δ (x))),
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where δ (x) = dist(x,∂D). We now introduce the sequence (ω j)
∞
j=1 of Ahlfors-Bers mollifiers

[Ahl64, Ber65] that satisfy ω j ∈ C∞(Rn), 0 ≤ ω j ≤ 1, ω j = 0 near ∂D, ω j = 1 outside a
neighborhood of ∂D, ω j(x)→ 1 for x /∈ ∂D, and

|∂ α
ω j(x)| ≤Cα j−1

δ (x)−|α|(log1/δ (x))−1 for x /∈ ∂D,

see [Hed73, Lemma 4]. One now has∫
D
(∆u)wdx = lim

j→∞

∫
D
(∆u)ω jwdx = lim

j→∞

∫
D

(
∆(ω ju)−2∇ω j ·∇u− (∆ω j)u

)
wdx.

Using the estimates for u and ω j, the limits corresponding to the last two terms inside the brackets
are zero. Moreover, since w is smooth near supp(ω j), we have∫

D
(∆u)ω jwdx = lim

j→∞

∫
D

ω ju∆wdx = 0,

which conclude (1.4.2). □

We now ready to prove the implication (2) =⇒ (1) in Theorem 1.4.1.

PROOF OF THE IMPLICATION (2) =⇒ (1) IN THEOREM 1.4.1. Let u satisfies (1.4.1). Since
u ∈ E ′(Rn), then

u =−Φ∗∆u = Φ∗ (χD −µ).

Using that u = |∇u|= 0 in D∁, we have∫
D

∂
α

Φ(z− x)dx = ⟨u,∂ α
Φ(z−·)⟩ for all z ∈ D∁ and |α| ≤ 1.

Now let w ∈ L1(D) solves ∆w = 0 in D and use Runge approximation (Lemma 1.4.3) to find a
sequence w j ∈ span

{
∂ αΦ(z−·)|D : z ∈ D∁, |α| ≤ 1

}
with w j → w in L1(D). In particular, for any

j ≥ 1 we have

(1.4.3)
∫

D
w j dx = ⟨µ,w j⟩.

Since µ ∈ E ′(D), by using a deep result on the distribution E ′(D) [FJ98], there is a compact set
K ⊂ D and an integer m ≥ 0 such that

|⟨µ,ϕ⟩| ≤C∥ϕ∥Cm(K) for all ϕ ∈C∞(D).

By elliptic regularity and Sobolev embeddings, any v ∈ L1(D) with ∆v ∈ Hs−2(D) satisfies v ∈
Cm(K) with s > m+ n

2 . By the closed graph theorem, this yields the estimate

∥v∥Cm(K) ≤C
(
∥v∥L1(D)+∥∆v∥Hs−2(D)

)
.

Apply this estimate to v = w j −w gives

∥w j −w∥Cm(K) ≤C∥w j −w∥L1(D).
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We may take limit j → ∞ in (1.4.3) to conclude that D is a quadrature domain corresponding to
µ . □

1.5. Relation between partial balayage and quadrature domain

We now discuss some properties of partial balayage. These properties will explain why it called
“partial balayage”. Before we further proceed, let us generalize the notion in Definition 1.1.1.

DEFINITION 1.5.1 (quadrature domain for sub-harmonic functions). A bounded open set
D ⊂ Rn (not necessarily connected) is called a quadrature domain for sub-harmonic functions,
corresponding to a Radon measure µ with supp(µ)⊂ D if

(1.5.1)
∫

D
w(x)dx ≥

∫
wdµ for all w ∈ L1(D)∩L1(dµ) with ∆w ≥ 0 in D.

REMARK 1.5.2. Note that ∆w = 0 if and only if both ±∆w ≥ 0. From this, one can easily see
that each quadrature domain for sub-harmonic function is also necessary a quadrature domain for
harmonic function (Definition 1.1.1) as well.

If µ ∈ L∞
c (Rn) with supp(D), then∫

wdµ =
∫
Rn

w(x)µ(x)dx.

EXAMPLE 1.5.3. If we write µ = |BR(x0)|δx0 , the condition w ∈ L1(dµ) means that x0 is a
Lebesgue point of w. The above mean value theorem for sub-harmonic functions (Lemma 1.3.1)
show that each ball in Rn is also a quadrature domain for sub-harmonic functions as well. This
example reminds us that don’t forget about the assumption w ∈ L1(dµ) in (1.5.1).

Suppose that D is a quadrature domain for sub-harmonic function with respect to µ ∈ L∞
c (Rn).

Since the fundamental solution Φ of −∆ belongs to L1
loc(R

n), we can choose w = −Φ(z− ·) in
(1.1.2) and (1.5.1) to see that

UD(z)≤U µ(z) for all z ∈ Rn,(1.5.2a)

UD(z) =U µ(z) for all z ∈ D∁.(1.5.2b)

The following simple observation suggests the strong relation between partial balayage and
quadrature domains:

LEMMA 1.5.4. Let µ ∈ L∞
c (Rn). If

(1.5.3) Bal(µ) = χD for some open set D,

then (1.5.2a) and (1.5.2b) hold.
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PROOF. (1.5.2a) is an immediate consequence of (1.3.8), Lemma 1.3.7 and (1.5.3). On the
other hand, we combine Corollary 1.3.8 and (1.5.3) to see that

0 =
〈
1−χD,UD −U µ

〉
=

∫
D∁
(UD −U µ)dx.

Since UD (1.5.3)
= UBal(µ) Lemma 1.3.7

= V µ
(1.3.8)
≤ U µ , then we conclude (1.5.2b). □

1.6. Structure of partial balayage

The main focus of this section is to prove the following theorem, which is probably the most
challenging part of partial balayage theory.

THEOREM 1.6.1. For each µ ∈ L∞
c (Rn), one has

(1.6.1) min{µ,1} ≤ Bal(µ)≤ 1 in Rn.

Furthermore, if we define the open sets

D(µ) := (supp (1−Bal(µ)))∁ and ω(µ) :=
{

x ∈ Rn : U µ(x)>UBal(µ)
}
,

then ω(µ)⊂ D(µ) and for each measurable set D with ω(µ)⊂ D ⊂ D(µ) we have

(1.6.2) Bal(µ) = χD +χD∁µ.

REMARK 1.6.2. The set ω(µ) is called the non-contact set of µ . The set D(µ) is called the
saturated set of µ . One sees that D(µ) is the largest set O ⊂Rn such that Bal(µ)|O = χO , therefore
ω(µ) ⊂ D(µ). In fact, if µ > 1 on supp(µ), then supp(µ) ⊂ ω(µ) ⊂ D(µ), which implies that
χ

ω(µ)∁µ = χD(µ)∁µ = 0 and thus

χω(µ) = Bal(µ) = χD(µ),

which implies that |D(µ)\ω(µ)|= 0.

We first state with the following technical lemma before proving our theorem.

LEMMA 1.6.3 (a special case of [KS00, Theorem II.6.6]). Let Ω be any open set in Rn. If
w1,w2 ∈ H1(Ω) satisfy −∆w j ≥ 0 in D ′(Ω) for all j = 1,2, then −∆(min{w1,w2})≥ 0 in D ′(Ω).

Now we are ready to prove our theorem.

PROOF OF THEOREM 1.6.1. In order to deliver the ideas clearly, we divide the proof into
steps.

Step 1: A minimization problem. Let R > 1 be the number mentioned in Lemma 1.3.4. Let
ξ ∈ H1

0 (BR) be the unique solution to

(1.6.3) −∆ξ = (1−µ)+ in BR
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and consider the constraint set

K̂ :=
{

w ∈ H1
0 (BR) : ω ≥ ξ −u∗ in BR

}
,

where u∗ ∈H1
0 (BR) the function appeared in the proof of Lemma 1.3.4. Note that ξ −u∗ ∈ K̂, which

shows that K̂ is nonempty. We recall that u∗ minimizes the functional a(·, ·) among all functions
v ∈ K̃′ :=

{
v ∈ H1

0 (BR) : v ≥ ϕ −U µ in BR
}

, where a(·, ·) is the bilinear form given in (1.3.5). By
using Stampacchia’s theorem [Bre11, Theorem 5.6], there exists a unique w∗ ∈ K̂ which minimizes
the functional a(·, ·) in K̂. Moreover, the minimizer w∗ is characterized by the property

(1.6.4) a(w∗,w−w∗) = ⟨−∆w∗,w−w∗⟩ ≥ 0 for all w ∈ K̂.

Step 2: Complementary formulation. Since w∗ ∈ K̂, we can restrict (1.6.4) to those satisfying
w ≥ w∗. The definition of the bilinear form a(·, ·) implies that

(1.6.5a) −∆w∗ ≥ 0 in BR.

Choosing w = ξ −u∗ in (1.6.4) gives

⟨−∆w∗,ξ −u∗−w∗⟩ ≥ 0,

which along (1.6.5a) and the fact that w∗ ≥ ξ −u∗ implies

(1.6.5b) ⟨−∆w∗,ξ −u∗−w∗⟩= 0.

Conversely, if w∗ ∈ K̂ satisfying (1.6.5a) and (1.6.5b), then for each w ∈ K̂ one has

⟨−∆w∗,w−w∗⟩

=
〈≥0 ∵(1.6.5a)︷ ︸︸ ︷

−∆w∗ ,

≥0 ∵w∈K̂︷ ︸︸ ︷
w− (ξ −u∗)

〉
+

=0 ∵(1.6.5b)︷ ︸︸ ︷
⟨−∆w∗,(ξ −u∗)−w∗⟩ ≥ 0.

We conclude that the following are equivalent:

(1) w∗ ∈ K̂ which minimizes the functional a(·, ·) in K̂;
(2) w∗ ∈ K̂ satisfies (1.6.4);
(3) w∗ ∈ K̂ satisfies (1.6.5a) and (1.6.5b).

The advantage of considering the complementary formulation (3) is it does not involving test
function w ∈ K̂, which allows us to obtain an energy inequality.

Step 3: An energy inequality. We rewrite (1.6.5b) as

(1.6.6) ⟨−∆w∗,ξ −w∗⟩= ⟨−∆w∗,u∗⟩ .

The inequalities −∆ξ = (1−µ)+ ≥ 0 and w∗ ≥ ξ −u∗ (iff u∗ ≥ ξ −w∗) thus imply that

⟨−∆ξ ,ξ −w∗⟩ ≤ ⟨−∆ξ ,u∗⟩ ,
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together with (1.6.6), one finds that

a(ξ −w∗,ξ −w∗) = ⟨−∆(ξ −w∗),ξ −w∗⟩

≤ ⟨−∆(ξ −w∗),u∗⟩= a(ξ −w∗,u∗)

≤ a(ξ −w∗,ξ −w∗)
1/2a(u∗,u∗)1/2,

and we reach the following energy inequality

(1.6.7) a(ξ −w∗,ξ −w∗)≤ a(u∗,u∗).

Step 4: Verifying w∗ = ξ−u∗. If we can show ξ −w∗ ∈ K̃′, since u∗ ∈ K̃′ is the minimizer of
a(·, ·) in K̃, then

a(u∗,u∗)≤ a(ξ −w∗,ξ −w∗).

Together with (1.6.7), we reach

a(ξ −w∗,ξ −w∗) = a(u∗,u∗),

this means that ξ −w∗ ∈ K̃′ is another minimizer of a(·, ·) in K̃. The uniqueness of minimizers in
K̃′ implies that u∗ = ξ −w∗, that is, w∗ = ξ −u∗.

It remains to show that ξ −w∗ ∈ K̃′. Let

φ = min{w∗,ξ − (ϕ −U µ)} in BR,

where ϕ is the function given in (1.3.3). By using Lemma 1.6.3, one sees that

(1.6.8) φ ≤ w∗, φ ∈ K̂, −∆φ ≥ 0 in BR,

now together with (1.6.5a), we have

a(φ ,φ) = ⟨−∆φ ,φ⟩
(1.6.8)
≤ ⟨−∆φ ,w∗⟩= ⟨−∆w∗,φ⟩

(1.6.5a)(1.6.8)
≤ ⟨−∆w∗,w∗⟩= a(w∗,w∗).

Since w∗ ∈ K̂ is the unique minimizer of a(·, ·) in K̂, then we conclude φ = w∗ in BR, which means
that w∗ ≤ ξ − (ϕ −U µ). Now we have ξ −w∗ ≥ ϕ −U µ , which conclude ξ −w∗ ∈ K̃′.

Step 5: Proving (1.6.1). Combining w∗ = ξ −u∗ and (1.6.5a), we see that

(1.6.9) −∆u∗ ≤−∆ξ
(1.6.3)
= (1−µ)+ in BR.

Now by (1.3.4) and Lemma 1.3.7 we have UBal(µ) =V µ = ϕ −u∗, that is,

u∗ = ϕ −UBal(µ).

Now from (1.6.9) we reach

1−Bal(µ)
(1.3.3)
= −∆(ϕ −UBal(µ))≤ (1−µ)+ = max{1−µ,0},
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that is,
Bal(µ)−1 ≥−max{1−µ,0}= min{µ −1,0}.

Now we have
Bal(µ)≥ 1+min{µ −1,0}= min{µ,1},

together with (1.3.8), we conclude (1.6.1).

Step 6: Proving (1.6.2). Now from (1.6.1) we see that Bal(µ) ∈ L∞(Rn). By the Calderón-
Zygmund inequality, we see that U µ ,UBal(µ) ∈

⋂
p<∞W 2,p

loc (R
n) ⊂

⋂
α<1C1,α

loc (R
n), which shows

that ω(µ) is a well-defined open set. From Lemma 1.3.4, it follows that

0 ≤
∫

ω(µ)
(U µ −UBal(µ))(1−Bal(µ))dx ≤

∫
BR

(U µ −UBal(µ))(1−Bal(µ))dx = 0,

which implies that ∫
ω(µ)

>0︷ ︸︸ ︷
(U µ −UBal(µ))

≥0︷ ︸︸ ︷
(1−Bal(µ)) dx = 0,

and hence Bal(µ)|
ω(µ) = χω(µ). Since ω(µ)∁ =

{
x ∈ Rn : UBal(µ) =U µ

}
, it holds that

Bal(µ)−µ =−∆(UBal(µ)−U µ) = 0 a.e. in ω(µ)∁

a.e. in ω(µ)∁, and we reach Bal(µ)|
ω(µ)∁ = χ

ω(µ)∁µ , and we reach

Bal(µ) = χω(µ)+χ
ω(µ)∁µ.

Consequently, for any measurable set D satisfying ω(µ) ⊂ D ⊂ D(µ), by the definition of D(µ)

we have Bal(µ)|D\ω(µ) = χD\ω(µ) and thus the decomposition

Bal(µ) = χD +χD∁µ

follows. This complete the proof of Theorem 1.6.1. □

The following lemma also strongly suggests that partial balayage is related to free boundary4,
which is a key lemma in constructing quadrature domains.

LEMMA 1.6.4. Let µ ∈ L∞
c (Rn). Suppose that there exist an open set D satisfying the support

condition

(1.6.10) supp(µ)⊂ D

and there exists u ∈ E ′(Rn) satisfying

(1.6.11) ∆u = χD −µ in Rn, u > 0 in D, u = 0 in D∁,

then Bal(µ) = χD and D = ω(µ). In addition, D is a quadrature domain corresponding to µ .

4If a set Ω takes the form Ω = {v > 0} for some v satisfying some PDE, we sometimes refer such set a “free boundary”.
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PROOF. Since u ∈ E ′(Rn), then

u = Φ∗ (−∆u) = Φ∗ (µ −χD) =U µ −UD.

Since u is non-negative, then then we know that UD ∈ F (µ). For each v ∈ F (µ), since u = 0 in
D∁, we see that

w :=UD − v =

=−u︷ ︸︸ ︷
UD −U µ +U µ − v ≥ 0 in D∁.

On the other hand, we have −∆w = 1+∆v ≥ 0 in D. Therefore by using maximum principle
[GT01, Theorem 8.19], we see that w ≥ 0 in Rn. This shows that UD is the largest element in
F (µ), therefore V µ =UD and then by Definition 1.3.6 we reach

Bal(µ) =−∆UD = χD.

By the above, we see that D = {u > 0}= {U µ −UD > 0}= ω(µ).
Since u ∈ C1 attains its minimum in D∁, it holds that |∇u| = 0 in D∁. Therefore, by (1.6.10),

(1.6.11) and then the PDE characterization of quadrature domain (Theorem 1.4.1) to conclude that
D is a quadrature domain corresponding to µ . □

1.7. Performing balayage in smaller steps

The main theme of this section is to prove the following theorems.

LEMMA 1.7.1. If both µ1,µ2 ∈ L∞
c (Rn) are non-negative, then Bal(µ1 + µ2) =

Bal (Bal(µ1)+µ2).

We will show that similar result also holds true for non-contact sets.

LEMMA 1.7.2. If µ1,µ2 ∈ L∞
c (Rn) such that µ2 is non-negative, then ω(µ1 + µ2) = ω(µ1)∪

ω (Bal(µ1)+µ2) .

PROOF OF LEMMA 1.7.1. It is suffice to show

(1.7.1) UBal(µ1+µ2) =UBal(Bal(µ1)+µ2) in Rn.

By using (1.3.8), Lemma 1.3.7 and Definition 1.3.6, we see that

(1.7.2) UBal(Bal(µ1)+µ2) ≤UBal(µ1)+µ2 =UBal(µ1)+U µ2 ≤U µ1 +U µ2 in Rn

and
−∆UBal(Bal(µ1)+µ2) ≤ 1 in Rn,

which shows that UBal(Bal(µ1)+µ2) ∈F (µ1+µ2). Since V µ1+µ2 Lemma 1.3.7
= UBal(µ1+µ2) is the largest

element in F (µ1 +µ2), then we arrive at

(1.7.3) UBal(Bal(µ1)+µ2) ≤UBal(µ1+µ2) in Rn.
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On the other hand, by using (1.3.8), Lemma 1.3.7 and Definition 1.3.6 we observe that

UBal(µ1+µ2)−U µ2 ≤U µ1+µ2 −U µ2 =U µ1 in Rn

and
−∆

(
UBal(µ1+µ2)−U µ2

)
≤ 1−µ2 ≤ 1 in Rn,

which shows that UBal(µ1+µ2)−U µ2 ∈ F (µ1). Since V µ1 Lemma 1.3.7
= UBal(µ1) is the largest element

in F (µ1), then we arrive at

UBal(µ1+µ2)−U µ2 ≤UBal(µ1) in Rn,

that is,

(1.7.4) UBal(µ1+µ2) ≤UBal(µ1)+µ2 in Rn.

Furthermore, from (1.3.8) one has −∆UBal(µ1+µ2) ≤ 1, together with (1.7.4) we know that
UBal(µ1+µ2) ∈ F (Bal(µ1) + µ2). Since V Bal(µ1)+µ2 Lemma 1.3.7

= UBal(Bal(µ1)+µ2) is the largest
element in F (Bal(µ1)+µ2), then we arrive that

(1.7.5) UBal(µ1+µ2) ≤UBal(Bal(µ1)+µ2) in Rn.

Finally, by combining (1.7.3) and (1.7.5) we reach (1.7.1) and we conclude our lemma. □

PROOF OF LEMMA 1.7.2. We now combine (1.7.1) and (1.7.2) to see that

UBal(µ1+µ2) =UBal(Bal(µ1)+µ2) ≤UBal(µ1)+µ2 =UBal(µ1)+U µ2 ≤U µ1 +U µ2 =U µ1+µ2 in Rn.

The first inequality is an equality only in ω(Bal(µ1)+µ2)
∁ and the second inequality is an equality

only in ω(µ1)
∁, therefore

UBal(µ1+µ2) ≤U µ1+µ2 in Rn

and the equality holds only in ω(Bal(µ1)+µ2)
∁∩ω(µ1)

∁ = (ω (Bal(µ1)+µ2)∪ω(µ1))
∁. Thus,

we reach

ω (Bal(µ1)+µ2)∪ω(µ1) =
{

UBal(µ1+µ2) <U µ1+µ2
}

def
= ω(µ1 +µ2),

which conclude our lemma. □

1.8. Construction of quadrature domains using partial balayage

By using partial balayage, one can construct quadrature domains as in follows:

THEOREM 1.8.1 ([KLSS24, Theorem 7.1]). Let µ be a positive Radon measure supported in
Bε for some ε > 0. There exists a constant cn > 0 depending only on the dimension such that if

ε < cnµ(Rn)1/n,
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then there exists an open connected set D with real-analytic boundary which is a quadrature domain
corresponding to µ ∈ E ′(D). Moreover, for each w ∈ L1(D)∩L1(dµ) satisfying ∆w ≥ 0 in D we
have ∫

D
w(x)dx ≥

∫
wdµ.

REMARK 1.8.2. The proof of analyticity of ∂D involving a free boundary methods called the
“moving plane technique”. Here µ is not necessarily bounded, this can be done by using the trick
in (1.1.4).

It is too difficult to prove the above theorem within a few lectures. We will just prove the
following special case in order to discuss the main idea of the construction.

LEMMA 1.8.3. For each R > r > 0, one has

Bal
(

Rn

rn χBr

)
= χBR and ω

(
Rn

rn χBr

)
= BR.

In addition, BR is a quadrature domain corresponding to µ = Rn

rn χBr .

PROOF. For each x ∈ Rn, we see that y 7→ Φ(x− y) is in L1
loc(R

n) and satisfies −∆Φ = δx ≥ 0
in Rn. By using the mean value theorem for subharmonic functions (Lemma 1.3.1), we see that

1
|Br|

UBr(x) =
1

|Br|

∫
Br

Φ(x− y)dy ≥ 1
|BR|

∫
BR

Φ(x− y)dy =
1

|BR|
UBR(x) forall x ∈ Rn

and the equality holds if and only if x ∈ B∁
R. In other words, the function u = |BR|

|Br|U
Br −UBR ∈

C1(Rn) satisfies ∆u = χBR − Rn

rn χBr in Rn,

u > 0 in BR, u = 0 in B∁
R.

The conclusion of the lemma follows by applying Lemma 1.6.4. □



CHAPTER 2

Partial balayage of general unbounded measures

2.1. Motivation

In view of Theorem 1.4.1, we now introduce the concept of the two-phase quadrature domain
as in [KS24, (1.7)], see also [EPS11, GS12].

DEFINITION 2.1.1. Let D± be disjoint bounded open subsets of Rn and let µ± ∈ E ′(D±),
respectively. If there exists a (compactly supported) distribution u such that

∆u = (1−µ+)χD+ − (1−µ−)χD− in Rn, u = 0 in (D+∪D−)
∁,

then we designate such a pair (D+,D−) as a two-phase quadrature domain (for harmonic functions)
corresponding to (µ+,µ−) ∈ E ′(D+)×E ′(D−).

EXAMPLE 2.1.2. If D± are quadrature domains corresponding to µ± ∈ E ′(D±), respectively,
and satisfying

(2.1.1) D+∩D− = /0,

then by using Theorem 1.4.1 one easily see that (D+,D−) is a two-phase quadrature domain
corresponding to (µ+,µ−) ∈ E ′(D+)×E ′(D−).

REMARK 2.1.3. By using [GS12, Theorem 3.1], one sees that such pair (D+,D−) has the
property that

(2.1.2)
∫

D+

h(x)dx−
∫

D−
h(x)dx = ⟨µ+,h⟩−⟨µ−,h⟩

for all h ∈C(D+∪D−) with ∆h = 0 in D+∪D−. Conversely, if such pair (D+,D−) satisfies (2.1.2)
with µ± ∈ E ′(D±), then there exist “polar sets” Z+ and Z− such that (D+ ∪ Z+,D− ∪ Z−) is a
two-phase quadrature domain corresponding to (µ+,µ−). The proof is technical, which involving
swept measure, see (2.5.3) below, we will not going to walk through the details there.

One can refer [EPS11, GS12] for some other nontrivial examples (i.e. which do not satisfy
(2.1.1)). One also may construct two-phase quadrature domains by using a partial balayage
procedure. Unlike the one-phase problem above, the “convolution technique” (1.1.4) does not
work in this case, therefore one need to introduce the partial balayage of general measures, which
is the main theme of this chapter. The framework adopted here largely follows [GS12, GS24].
Rather than go through all details, we only highlight some main ideas of partial balayage.

21
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2.2. Maximum principle and δ -subharmonic functions

DEFINITION 2.2.1 ([Rud87, Definition 2.8]). Let X be a topological space and consider a
function f : X → [−∞,∞]. If

{x ∈ X : f (x)> α} is open for each α ∈ R,

then f is said to be lower semicontinuous (LSC). If

{x ∈ X : f (x)< α} is open for each α ∈ R,

then f is said to be upper semicontinuous (USC).

EXERCISE 2.2.2. If X is compact and f : X → (−∞,∞) is USC, prove that f attains its
maximum at some point of X .

A function s that is upper semicontinuous (USC) and satisfies ∆s ≥ 0 (in the sense of
distributions) will be referred to as subharmonic. Similarly, s will be termined superharmonic
if −s is subharmonic. In addition, we use the term harmonic when s is both subharmonic and
superharmonic. Here we remind the readers that the terminology “harmonic” introducing here is
slightly different with the one in Chapter 1: s is harmonic if and only if ∆s = 0 (in the sense of
distributions) and s is continuous. The partial balayage heavily relies on the following concept:

LEMMA 2.2.3 ([GS24, Proposition 2.8]). Let Ω be any domain (i.e. open and connected) in
Rn. The maximum principle holds on any domain (i.e. open and connected) Ω in Rn, that is, every
subharmonic function s which is bounded from above and satisfies

limsup
x→z

s(z)≤ 0 for all z ∈ ∂Ω

must also satisfy s ≤ 0 in Ω.

Here we remind the readers that we do not impose any assumptions on the boundary ∂Ω in
Lemma 2.2.3. As mentioned in [GS12], by a δ -subharmonic function on an open set Ω we mean
a function w = s1 − s2 for some subharmonic functions s1 and s2 on Ω. However, such function
is defined only quasi-everywhere on Ω, i.e. outside the polar set where s1 = s2 = −∞. One may
define w on such polar sets by using some suitable fine topology [GS12, section 2.2], here we skip
those technical details.

2.3. Definition and some properties of partial balayage

Given an open set D ⊂ Rn and a positive measure µ with compact support on Rn, we define

FD(µ) :=

{
v ∈ D ′(Rn) :

−∆v ≤ 1 in D, v ≤U µ in Rn

{v <U µ} is bounded

}
.
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We denote F (µ) := FRn(µ), one will later see that this is exactly same as the one in
Lemma 1.3.2 above for the case when µ is bounded. Obviously, F (µ) ⊂ FD(µ), and by [GS24,
Proposition 3.3]1 one can guarantee F (µ) ̸= /0, and so is FD(µ).

We will need the following technical lemma [BP04] (see also [GS12, Corollary 2.3] for a short
algernative proof):

LEMMA 2.3.1 (Kato’s inequality). If w is a δ -subharmonic function on an open set, then

−∆min{w,0} ≥ (−∆w)χ{w≤0}.

If u and v are subharmonic functions on an open set Ω, then v−u is δ -subharmonic on Ω. By
using the Kato’s inequality, one sees that

∆max{u,v}=−∆min{−u,−v}=−∆(min{v−u,0}− v)

≥ (−∆(v−u))χ{v−u≤0}+∆v = (∆u)χ{v≤u}− (∆v)χ{v≤u}+∆v

= (∆u)χ{u≥v}+(∆v)χ{v>u},(2.3.1)

and the following corollary (a generalization of Lemma 1.6.3 above) follows:

COROLLARY 2.3.2. If u and v are subharmonic functions on Ω, then so also is max{u,v}.

Let u,v ∈ FD(µ). Note that −∆(v −U1) ≤ 0 and −∆(w −U1) ≤ 0 in D, then by using
Corollary 2.3.2 one sees that

0 ≥−∆max{v−U1,w−U1}=−∆
(
max{v,w}−U1)=−∆max{v,w}−1 in D.

On the other hand, one also sees that max{u,v} ≤U µ in Rn and {max{u,v}<U µ} ⊂ {v <U µ} is
bounded, therefore we conclude that

max{u,v} ∈ FD(µ) for all u,v ∈ FD(µ).

Now, similar to [GS24, Section 3], by using standard potential theoretic arguments [AG01,
Section 3.7] show that FD(µ) has a largest element V µ

D , which has a USC representative. Again,
we also called V µ

D the partial reduction of U µ [GS09]. Accordingly, we can define the non-contact
set by

ωD(µ) :=
{

V µ

D <U µ
}
, ω(µ) := ωRn(µ),

and the partial balayage is defined by

(2.3.2) BalD(µ) :=−∆V µ

D in D ′(Rn) and we write Bal(µ) := BalRn(µ).

Obviously, one has V µ ≤V µ

D and ωD(µ)⊂ ω(µ)∩D for any open set D. By using Lemma 2.2.3,
one sees that the maximum principle holds on ωD(µ). By using the fact V µ

D = U µ in D∁, one can

1This proposition is due to Simon Larson.

https://www.chalmers.se/en/persons/larsons/
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easily verify that (by using the ideas in the proof of Lemma 1.3.7)

V µ =UBalD(µ).

In fact, the following structure theorem holds:

(2.3.3) BalD(µ) = χωD(µ)+µχ
ωD(µ)∁

+ν

for some measure ν ≥ 0 which is supported on ∂D∩∂ωD(µ).

2.4. Construction of two-phase quadrature domains

Given a signed measure µ = µ+− µ− with compact support and a Borel function u : Rn →
[−∞,+∞], we define the signed measure

η(u,µ) :=
(
(µ+−1)+− (µ+−1)−χ{u>0}

)
−
(
(µ−−1)+− (µ−−1)−χ{u<0}

)
.

We first prove some properties of η :

LEMMA 2.4.1 ([GS12, Lemma 4.1]). Let u,u1,u2 : Rn → [−∞,∞] be Borel measurable
functions, µ,µ1,µ2 be signed measures with compact supports, and A ⊂ Rn be Borel sets. Then

(a) η(−u,−µ) =−η(u,µ);
(b) µ −1 ≤ η(u,µ)≤ µ +1; and
(c) u1χA ≤ u2χA and µ1χA ≥ µ2χA imply that η(u1,µ1)χA ≥ η(u2,µ2)χA.

Part (a) is obvious (left as exercise).

PROOF OF LEMMA 2.4.1(B). Note that

µ −1 = (µ+−1)−µ− = ((µ+−1)+− (µ+−1)−)− ((µ−−1)+− (µ−−1)−+1)

=
(
(µ+−1)+− (µ+−1)−χ{u<0}

)
−

≥0︷ ︸︸ ︷
(µ+−1)−χ{u≥0}

−
(
(µ−−1)+− (µ−−1)−χ{u<0}

)
+

≤0︷ ︸︸ ︷
(µ−−1)−χ{u≥0}−1

≤
(
(µ+−1)+− (µ+−1)−χ{u>0}

)
−
(
(µ−−1)+− (µ−−1)−χ{u<0}

)
= η(u,µ).

Using similar computations, one can show that (left as exercise)

µ +1 = µ+− (µ−−1)≥ η(u,µ),

and (b) follows. □

PROOF OF LEMMA 2.4.1(C). From µ1χA ≥ µ2χA we know that

(µ1)+χA = max{µ1,0}χA = max{µ1χA,0} ≥ max{µ2χA,0}= (µ2)+χA
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and thus

((µ1)+−1)+ χA = max{((µ1)+−1) ,0}χA = max{((µ1)+χA −χA) ,0}

≥ max{((µ2)+χA −χA) ,0}= max{((µ2)+−1) ,0}χA = ((µ2)+−1)+ χA.(2.4.1)

Similarly (left as exercise), one can show that (µ1)−χA ≤ (µ2)−χA and hence

(2.4.2) ((µ1)−−1)+ χA ≤ ((µ1)−−1)+ χA.

From u1χA ≤ u2χA we know that

{u1 > 0}∩A ⊂ {u2 > 0}∩A

and thus from (µ1)+χA ≥ (µ2)+χA we now see that

((µ1)+−1)− χ{u1>0}∩A = max{−((µ1)+−1) ,0}χ{u1>0}∩A

= max
{
−(µ1)+χAχ{u1>0}+χ{u1>0}∩A,0

}
≤ max

{
−(µ2)+χAχ{u1>0}+χ{u1>0}∩A,0

}
= max{−((µ2)+−1) ,0}χ{u1>0}∩A = ((µ2)+−1)− χ{u1>0}∩A

≤ ((µ2)+−1)− χ{u2>0}∩A(2.4.3)

Similarly (left as exercise), one can show that {u1 < 0}∩A ⊃ {u2 < 0}∩A and thus

(2.4.4) ((µ1)−−1)− χ{u1<0}∩A ≥ ((µ2)−−1)− χ{u2<0}∩A.

We finally combine (2.4.1), (2.4.2), (2.4.3) and (2.4.4) to conclude (c). □

It is convenient to define W µ

D :=U µ −V µ

D , which has a LSC representation, and we also denote
W µ :=W µ

Rn . We now define

τµ := {w : w is subharmonic, −∆w ≥ η(w,µ) and w ≥−W µ− in Rn} .

Fix any ϕ ∈ C∞(Rn) with ∆ϕ = 1, for example, ϕ(x) = |x|2
2n for all x ∈ Rn, we now consider the

collection
τ
′
µ :=

{
w+U µ− −ϕ : w ∈ τµ

}
.

By using Lemma 2.4.1(b), one sees that

−∆(w+U µ− −ϕ) =−∆w+µ−+1 ≥ η(w,µ)+µ−+1 ≥ µ +µ− = µ+ ≥ 0.

However, we also see that w+U µ− −ϕ = w− (−U µ− +ϕ) and sees that ∆(−U µ− +ϕ) = µ−+

1 ≥ 0, which shows that the elements of τ ′µ are δ -subharmonic functions, therefore in general
such functions are defined only quasi-everywhere on Rn, i.e. outside the polar set where w =

−U µ− +ϕ = −∞, as mentioned above. In fact, one can suitably refined each element of τ ′µ on a
polar set to make them superharmonic (and we skip these technical details here). In the special
case when µ− is bounded, by using the Calderón-Zygmund inequality [GT01, Theorem 9.11] and
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Sobolev embeddings (Appendix A), one sees that −U µ− +ϕ ∈ C1. In this case, the polar set is
empty and w+U µ− −ϕ has a USC representation.

We now prove a fundamental property of τ ′µ .

LEMMA 2.4.2 ([GS12, Lemma 4.2]). If v1,v2 ∈ τ ′µ , then min{v1,v2} ∈ τ ′µ .

PROOF. Let v1,v2 ∈ τ ′µ and write vi = wi +U µ− −ϕ where wi ∈ τµ . By observing that

min{v1,v2}= min{w1,w2}+U µ− −ϕ,

by using Corollary 2.3.2 one can show that min{v1,v2} is δ -subharmonic function and
min{w1,w2} ≥ −W µ− in Rn, as well as

η(min{w1,w2},µ) = η(w1,µ)χ{w1−w2≤0}+η(w2,η)χ{w1−w2>0}.

By using (2.3.1), one further computes that

η(min{w1,w2},µ)≤−(∆w1)χ{w1−w2≤0}− (∆w2)χ{w1−w2>0} ≤−∆min{w1,w2},

which conclude our lemma. □

The following two technical lemmas, regarding some monotonicity properties, can be found in
[GS12, Theorem 4.3].

LEMMA 2.4.3. Let u1,u2 be δ -subharmonic functions with compact supports. If −∆u1 ≥
η(u1,µ) and −∆u2 ≤ η(u2,µ), then u2 ≤ u1.

PROOF. One computes that the function v = u2 −u1 satisfies

−∆v ≤ η(u2,µ)−η(u1,µ)

= (µ+−1)−χ{u1>0}− (µ+−1)−χ{u2>0}+(µ−−1)−χ{u2<0}− (µ−−1)χ{u1<0},

so −(∆v)χ{v≥0} ≤ 0. By using the Kato’s inequality (Lemma 2.3.1), one sees that

∆v+ ≥ (∆v)χ{v≥0} ≥ 0.

Thus v+. when suitably redefined on a polar set, is subharmonic. Since v has compact support, the
maximum principle (Lemma 2.2.3) shows that v+ ≡ 0, which implies our lemma. □

LEMMA 2.4.4. Let u be a δ -subharmonic function. Then the following hold:

(1) If −∆u ≤ η(u,µ), then u ≤W µ+ .
(2) If −∆u ≥ η(u,µ), then u ≥−W µ− and so u ∈ τµ .

PROOF. First of all, we remind the readers that W µ+ is non-negative, δ -subharmonic and has
compact support. Since Bal(µ+)≤ 1 in Rn, by the structure of partial balayage (2.3.3) we see that

(2.4.5) µ+χ{W µ+=0} = µ+χ
ω(µ+)∁

≤ 1.
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Consequently, together with Lemma 2.4.1(c) we compute that

−∆W µ+ = µ+−Bal(µ+) = µ+−χ{W µ+>0}−µ+χ{W µ+=0}

= (µ+−1)χ{W µ+>0}
(2.4.5)
= (µ+−1)+− (µ+−1)−χ{W µ+>0} = η(W µ+,µ+)

Lemma 2.4.1(c)
≥ η(W µ+,µ).

Now we choose u1 =W µ+ and u2 = u in Lemma 2.4.3 to conclude u ≤W µ+ , which complete the
proof of (1).

We now replacing µ by −µ to obtain

−∆(−W µ−) = ∆W (−µ)+ = η(W (−µ)+,(−µ)+)

≤−η(W µ−,−µ)
Lemma 2.4.1(a)

≥ η(−W µ−,µ).

Now we choose u1 = u and u2 = −W µ− in Lemma 2.4.3 to conclude −W µ− ≤ u, which complete
the proof of (2). □

We now follow the arguments in [GS12, Theorem 4.4, Theorem 4.5, Corollary 4.6 and
Remark 1] to establish the following lemma (the proof is technical, which involving swept measure,
see (2.5.3) below, we will not going to walk through the details there):

LEMMA 2.4.5. Let µ± be positive measures with disjoint compact supports in Rn and let µ =

µ+−µ−. Then the set τµ contains a least element W µ . If the following support conditions hold:

(2.4.6) supp(µ±)⊂ D± :=
{
±W µ

> 0
}
,

then both D± are open sets in Rn and the pair of domains (D+,D−) is a two-phase quadrature
domain in the sense of Definition 2.1.1.

We now ready to prove the following theorem.

THEOREM 2.4.6. Let µ± be positive measures with disjoint compact supports in Rn and let
µ = µ+−µ−. If

(2.4.7) supp(µ+)⊂ ω
ω(µ−)

∁(µ+), supp(µ−)⊂ ω
ω(µ+)

∁(µ−),

then there exist two disjoint open bounded sets D± such that (D+,D−) is a two-phase quadrature
domain in the sense of Definition 2.1.1.

REMARK. Since ωD(µ)⊂ ω(µ)∩D for any open set D, then

ω
ω(µ−)

∁(µ+)⊂ ω(µ−)
∁
, ω

ω(µ+)
∁(µ−)⊂ ω(µ+)

∁
,

therefore the condition (2.4.7) implies

(2.4.8) supp(µ+)∩ω(µ−) = /0, supp(µ−)∩ω(µ+) = /0.
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This means that supp(µ+) and supp(µ−) cannot “too close to each others”.

REMARK. In fact, (2.4.7) can be guaranteed when

limsup
r→0+

µ+(Br(x))
rn >

1
cn

for all x ∈ supp(µ+),

limsup
r→0+

µ−(Br(y))
rn >

1
cn

for all y ∈ supp(µ−),

for some positive constant cn depending only on dimension n, see the proof of [KS24,
Theorem 3.2].

PROOF OF THEOREM 2.4.6. We define

u =W µ+ −W µ−

ω(µ+)
∁, v :=W µ+

ω(µ−)
∁ −W µ−,

and using the disjoint condition (2.4.8), we observe that

{u < 0}= ω
ω(µ+)

∁(µ−), {u > 0}= ω(µ+),

{v > 0}= ω
ω(µ−)

∁(µ+), {v < 0}= ω(µ−).

Now from (2.4.7) we see that

supp(µ+)⊂ {v > 0}, supp(µ−)⊂ {u < 0}.

On the other hand, by using the structure of partial balayage (2.3.3), one sees that

−∆u = µ+−Bal(µ+)−µ−+Bal
ω(µ+)

∁(µ−)

= (µ+−1)χω(µ+)− (µ−−1)χ
ω(µ+)

∁ +ν

≥ (µ+−1)χ{u>0}− (µ−−1)χ{u<0}.

In view of the structure of partial balayage (2.3.3) (with D =Rn), one observes that µ+ ≤ 1 outside
ω(µ+) = {u > 0}, hence one sees that

−∆u ≥ (µ+−1)χ{u>0}− (µ−−1)χ{u<0} = η(u,µ).

Now using Lemma 2.4.4 we see that u ∈ τµ , and we reach u ≥W µ . Consequently, we confirm the
support condition

supp(µ−)⊂ {u < 0} ⊂ {W µ
< 0}.

One can similar show that
supp(µ+)⊂ {v > 0} ⊂ {W µ

> 0},

and now the condition (2.4.6) is satisfied. Finally, we use Lemma 2.4.5 to conclude our theorem
with D± = {±W µ > 0}. □
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2.5. Classical balayage as a special case of partial balayage

Some parts in Section 2.3 can be slightly generalized. Let λ be a nonnegative measure, and the
discussions in Section 2.3 corresponds to the special case λ = 1.

Given any open set D ⊂ Rn and a nonnegative measure µ with compact support on Rn, we
define

F λ
D (µ) :=

{
v ∈ D ′(Rn) :

−∆v ≤ λ in D, v ≤U µ in Rn

{v <U µ} is bounded

}
.

We denote F λ (µ) := F λ
Rn(µ).

If we assume that F λ
D (µ) ̸= /0, similarly, one can show that F λ

D (µ) has a largest element V µ,λ
D

element, which is called the partial reduction of U µ with respect to λ . Accordingly, we can define
the non-contact set by

ω
λ
D(µ) :=

{
V µ,λ

D <U µ

}
, ω

λ (µ) := ω
λ
Rn(µ),

and the partial balayage with respect to λ is defined by

BalλD(µ) :=−∆V µ,λ
D in D ′(Rn).

In fact, the following structure theorem holds:

BalλD(µ) = λ χ
ωλ

D(µ)
+µχ

ωλ
D(µ)

∁ +ν

for some measure ν ≥ 0 which is supported on ∂D∩∂ωλ
D(µ). As an immediate consequence, one

sees that

(2.5.1) BalλD(µ)≥ 0.

Let D = Rn, let Ω be any bounded open set in Rn and let

λ =

0 in Ω,

+∞ in Ω∁.

Now we see that

F λ (µ) =

{
v ∈ D ′(Rn) :

−∆v ≤ 0 in Ω, v ≤U µ in Rn

{v <U µ} is bounded

}
.

By using the Perron’s method of subharmonic functions [GT01, Section 2.8], which involving
maximum principle (Lemma 2.2.3), one sees that the largest element V µ,λ in F λ (µ) satisfies

(2.5.2) −∆V µ,λ = 0 in Ω, V µ,λ =U µ in Ω
∁,

and we see that
Balλ (µ) =−∆(V µ,λ −U µ)+µ in D ′(Rn).



2.5. CLASSICAL BALAYAGE AS A SPECIAL CASE OF PARTIAL BALAYAGE 30

In this case, we also denote
V µ,λ = R̂Ω∁

U µ

called the regularized reduction of the superharmonic function U µ relative to Ω∁, and we also
denote

(2.5.3) µ
Ω∁

= Balλ (µ) =−∆R̂Ω∁

U µ

called the swept measure, see [GS09, GS12].
It is more convenient to write u :=U µ −V µ,λ

D ∈ E ′(Rn), which satisfies

(2.5.4) ∆u = µ in Ω, u = 0 in Ω
∁,

and now the partial balayage can be represented as

(2.5.5) Balλ (µ) =−∆u+µ in D ′(Rn).

In other words, one may solve the Dirichlet problem by using the partial balayage (2.5.5). This
method is invented by Henri Poincaré [Poi90, Poi99]. Note that

supp
(

Balλ (µ)
)
∩Ω = /0,

which means that this process completely swept out the measure µ in the region Ω. Therefore, we
usually denote

(2.5.6) Bal(µ,Ω∁) := Balλ (µ)

and called it the classical balayage, which is exactly same as the one in [Gus04, Section 2]. In
other words, the classical balayage can be viewed as a special case of partial balayage.

REMARK 2.5.1. In the special case when Ω is a bounded Lipschitz domain and µ ∈ L2(Ω) ={
µ ∈ L2(Rn) : µ = 0 in Ω∁

}
, there exists a unique solution u ∈ H1

0 (Ω)∩H2(Ω) of the Dirichlet
problem (2.5.4), see also (1.2.2). In this case, its outward normal derivative ∂nu on ∂Ω can be
well-defined in the sense of H−1/2(∂Ω). The precise definition of (2.5.5) is〈

Bal(µ,Ω∁), φ̃
〉
=

∫
Rn

u∆φ̃ dx+
∫
Rn

µφ̃ dx for all φ̃ ∈C∞
c (Rn).

Since u ∈ H1
0 (Ω) and µ = 0 in Ω∁, by writing φ = φ̃ |∂Ω, one sees that〈

Bal(µ,Ω∁), φ̃
〉
=

∫
Ω

u∆φ̃ dx+
∫

Ω

µφ̃ dx =−
∫

Ω

∇u ·∇φ̃ dx+
∫

Ω

µφ̃ dx

=−
∫

∂Ω

∂nuφ dS+

=0by (2.5.4)︷ ︸︸ ︷∫
Ω

(∆u+µ)φ̃ dx,
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where ∂n is the outward normal derivative on ∂Ω. If we denote γ : H1
loc(R) → H1/2(∂Ω) and its

distributional adjoint γ∗ : H−1/2(∂Ω)→ D ′(Rn) [McL00], then one sees that〈
Bal(µ,Ω∁), φ̃

〉
=−

∫
∂Ω

(∂nu)(γφ̃)dS =
〈
−γ

∗(∂nu), φ̃
〉

for all φ̃ ∈C∞
c (Rn),

in other words,
Bal(µ,Ω∁) =−γ

∗(∂nu) in D ′(Rn).

According to my personal experience, here I suggest not to abuse the notation by omitting the trace
operator γ .

REMARK 2.5.2. In the case when µ = δx for some x ∈ Ω, one sees that u = GΩ(·,x) is the
Green function of Ω with pole at x, and the corresponding classical balayage Bal(µ,Ω∁) is exactly
the harmonic measure ωΩ

x . Suggested by previous remark, we sometimes abuse the notation by
writing

dω
Ω
x =−∂nGΩ(·,x)dS,

even for non-Lipschitz domain Ω.

2.6. Hele-Shaw flow

We now introduce the standard version of the Hele-Shaw problem following [Gus04,
Section 6], which can be formulated in terms of classical/partial balayage. Despite we only
introduce the classical/partial balayage for n ≥ 3, here we still want to point out that the original
version of Hele-Shaw flow describes the flow of a viscous incompressible fluid (e.g. oil) in the
narrow gap between two parallel plates.

Let D0 be the “initial domain”, which consists of some fluid. If we continuously inject fluid into
D0 with nonnegative density µt , then the region of fluid Dt expands over time t ≥ 0. If we denote
pt ≥ 0 be the pressure of the fluid, then Dt = {pt > 0}, and ∂Dt has to move with velocity −∂n pt ,
where we slightly abuse the notation by denoting ∂n the outward normal derivative on ∂Dt . As a
general fact, the normal velocity of a propagating boundary ∂Dt equals the density (with respect to
arc length measure on ∂Dt) of the distributional derivative d

dt χDt . In view of Remark 2.5.1, we now
arrive at the Hele-Shaw law for the motion of ∂Dt in a distribution form in terms of the classical
balayage (2.5.6):

(2.6.1)
d
dt

χDt = Bal(µt ,D∁
t ).

The forward Hele-Shaw problem is that of finding the evolution {Dt}t≥0 governed by (2.6.1) when
initial domain D0 is given (not necessarily bounded).
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DEFINITION 2.6.1. If all the ∂Dt are smooth, then we say that {Dt} depend smoothly on t if
for each φ ∈C∞

c (Rn) the mapping

t 7→ ⟨χDt ,φ⟩ ≡
∫

Dt

φ(x)dx

is smooth. In this case, we define the distributional derivative d
dt χDt ∈ D ′(Rn) by〈

d
dt

χDt ,φ

〉
:=

d
dt

(∫
Dt

φ(x)dx
)

for all φ ∈C∞
c (Rn).

If all the ∂Dt are smooth, {Dt} depend smoothly on t and satisfies (2.6.1), then we say that {Dt} is
a strong solution of the Hele-Shaw problem (2.6.1).

By (2.5.1) and e(2.6.1), one sees that〈
d
dt

χDt ,φ

〉
:=

d
dt

(∫
Dt

φ(x)dx
)
≥ 0 for all φ ∈C∞

c (Rn) with φ ≥ 0.

This implies that

(2.6.2) Ds ⊂ Dt for all s < t.

For simplicity, we now consider the case when µt = µ ∈ L∞
c (Rn) is independent of t ≥ 0. From

Remark 2.5.1, to see that

d
dt

(∫
Dt

φ(x)dx
)
=
〈

Bal(µ,D∁
t ),φ

〉
Rn

=
〈
−∂nut ,φ |∂Dt

〉
∂Dt

=−
∫

Dt

∆utφ dx−
∫

Dt

∇ut ·∇φ dx =−
∫

Dt

µφ dx+
∫

Dt

ut∆φ dx

=−⟨µ,φ⟩+
∫

Dt

ut∆φ dx for all φ ∈C∞
c (Rn),

where
∆ut = µ in Dt , ut = 0 in D∁

t .

Now we choose φ ∈C∞
c (Rn) such that −∆φ

(resp. ≥)
= 0 in Dt to see that (since ut ≤ 0 by maximum

principle (Lemma 2.2.3))
d
dt

(∫
Dt

φ(x)dx
)

(resp. ≥)
= −⟨µ,φ⟩,

then

(2.6.3) ⟨χDt −χD0,φ⟩=
∫

Dt

φ(x)dx−
∫

D0

φ(x)dx =
∫ t

0

d
dτ

(∫
Dτ

φ(x)dx
)

dτ
(resp. ≥)

= t⟨µ,φ⟩.

One sees that (2.6.3) is a special case of

(2.6.4) ⟨χDt −χD0,φ⟩
(resp. ≥)

= t⟨µ,φ⟩ for all t ≥ 0 and φ ∈ L1(Dt).
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For each y ∈ Rn, we now choose φ(x) = Φ(x− y) in (2.6.4) to reach

UDt (y)≥UD0+tµ(y) for all y ∈ Rn and equality holds for all y ∈ D∁
t .

Since the C1 mapping y 7→UDt (y)−UD0+tµ(y) attains its minimum at each y ∈ D∁
t , then

∇
(
UDt (y)−UD0+tµ(y)

)
= 0 for all y ∈ D∁

t .

Together with UDt (y) =UD0+tµ(y), from Runge approximation (Lemma 1.4.3) we conclude that

(2.6.5) Bal(tµ +χD0) = χDt ,

where the partial balayage is given in (2.3.2). We now reach the following result.

LEMMA 2.6.2. Given any bounded smooth domain D0, there are at most one strong solution
{Dt} of the Hele-Shaw problem (2.6.1).

The above discussions strongly also suggest the following definition (which even make sense
for general measure µ).

DEFINITION 2.6.3. Let µ ∈ E ′(Rn) (supp(µ) not necessary to be contained in D0) and let {Dt}
be a collection of open sets (not necessarily bounded). If {Dt} satisfies (2.6.5), then we say that
{Dt} is a weak solution of the Hele-Shaw problem (2.6.1).

Unlike strong solution, one sees that weak solution always exist for all t ≥ 0 (since partial
balayage is well-defined). In addition, it is not realistic to assume ∂Dt , for example, if we choose
µ = δx1 +δx2 for some x1 ̸= x2 ∈Rn, then at some t0 > 0 one sees that Dt0 = B1∪B2 for some balls
B1 and B2 with ∂B1 ∩ ∂B2 has exactly one point. We see that the boundary of such domain Dt0 is
no longer smooth, and {Dt}t≥t0 is no longer a strong solution.

It is worth to mention the following result, which gives a sufficient condition to verify that {Dt}
is a weak solution of Hele-Shaw problem (2.6.1).

THEOREM 2.6.4 ([Gus04, Corollary 6.3]). Let {Dt}t≥0 be simply connected domains with C1

boundaries in C∼= R2 such that∫
Dt

zk dxdy =
∫

D0

zk dxdy for all k ∈ N,

where z = x+ iy. If either one of the following holds:

(1) Dt is continuous in t in the sense that t 7→ |Dt ∩B| is continuous for every ball B; or
(2) {Dt} is monotone in the sense of (2.6.2);

then {Dt}t≥0 is a weak solution of the Hele-Shaw problem (2.6.1).
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2.7. k-quadrature domains and Pompeiu conjecture

In fact, the method of partial balayage can be extended for Helmholtz operator ∆+ k2, but
the extension is highly nontrivial, see [GS24, KLSS24, KS24]. One may consider a definition
generalizing Definition 1.1.1:

DEFINITION 2.7.1 ([KLSS24, Definition 1.1]). Let k > 0. A bounded open set D ⊂ Rn (not
necessarily connected) is called a quadrature domain for (∆ + k2), or a k-quadrature domain,
corresponding to a distribution µ ∈ E ′(D), if∫

D
w(x)dx = ⟨µ,w⟩

for all w ∈ L1(D) satisfying (∆+ k2)w = 0 in D.

The first question is whether k-quadrature domains even exist for k > 0. This is indeed the case.
In fact, balls are always k-quadrature domains. This is a consequence of a mean value theorem for
the Helmholtz equation which goes back to H. Weber [Web68, Web69], see the version of
[KLSS24] for a detailed proof, see also [CH89, page 289]. The mean value theorem takes the form∫

Br(a)
w(x)dx = cMVT

n,k,r w(a)

whenever w ∈ L1(Br(a)) and (∆+ k2)w = 0 in Br(a). However, unlike for harmonic functions,
the constant cMVT

n,k,r has varying sign depending on k,r. In particular, the constant vanishes when
Jn/2(kr) = 0 where Jα denotes the Bessel function of the first kind. More details are given in
[KLSS24, Appendix A], and detailed proofs also provided in version of the paper. It is also
important to mention that D is a k-quadrature domain corresponding to µ ∈ E ′(D) if and only if
there is a distribution u ∈ D ′(Rn) satisfying(∆+ k2)u = χD −µ in Rn,

u = |∇u|= 0 in D∁,

see [KLSS24, Proposition 2.1]. In the case when n = 2, one also can use Cauchy-Kowalevski
theorem to construct quadrature domains [KLSS24, Section 3].

EXAMPLE 2.7.2 (Figure 2.7.1). Let ϕ(z) = z+ 1
2z2 and D = ϕ(D). Then D is a cardioid whose

boundary is smooth except at the point ϕ(−1) = −1/2 where it has an inward cusp. It is clear
that ϕ satsifies the conditions of [KLSS24, Theorem 1.5]. Similarly, if ϕ(z) = z+ 1

mzm for integer
m ≥ 2 then D has m−1 inward cusps.

EXAMPLE 2.7.3 (Figure 2.7.2). Let ϕ(z) = z− 2
√

2
3 z2 + 1

3z3 and D = ϕ(D) (see e.g. [LM16,
equation (1.9)]). Then the corresponding domain D is not a Jordan domain and furthermore its
boundary has inward cusps. By [KLSS24, Theorem 1.5], the domain D is a k-quadrature domain.
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FIGURE 2.7.1. Plot of Example 2.7.2
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FIGURE 2.7.2. Plot of Example 2.7.3

EXAMPLE 2.7.4 (Figure 2.7.3). Let ϕ(z) = (z− 1)2 − (1− i
2)(z− 1)3 and D = ϕ(D). The

domain D looks similar to a cardioid, but with an inward cusp which is curved in such a manner
that the ∂D cannot locally be represented as the graph of a function. It is also a k-quadrature domain
by [KLSS24, Theorem 1.5].

In order to highlight the difference between 0-quadrature domains and k-quadrature domains
for k > 0, we now restricted ourselves for the case when µ ≡ 0:

DEFINITION 2.7.5 ([KLSS24, Definition 1.1]). Let k > 0. A bounded open set D ⊂ Rn (not
necessarily connected) is called a null quadrature domain for (∆ + k2), or a null k-quadrature
domain if ∫

D
w(x)dx = 0

for all w ∈ L1(D) satisfying (∆+ k2)w = 0 in D.
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FIGURE 2.7.3. Plot of Example 2.7.4

One sees that D is a null k-quadrature domain if and only if there is a distribution u ∈ D ′(Rn)

satisfying

(2.7.1)

(∆+ k2)u = χD in Rn,

u = |∇u|= 0 in D∁.

EXAMPLE 2.7.6. Write jα,m be the mth positive zero of Jα . By using mean value theorem, one
sees that each ball with radius R satisfying Jn/2(kR) = 0, i.e. R = k−1 j n

2 ,m
for some m ∈N, is a null-

quadrature domain. In [KS24, Example A.2], we also show that each ball with radius R = k−1 j n
2 ,m

is a null-quadrature domain by showing that

ũm(x) :=


(k−1 j n

2 ,m
)

2−n
2 Jn−2

2
( j n

2 ,m
)−|x|

2−n
2 (k|x|)

k2(k−1 j n
2 ,m

)
2−n

2 Jn−2
2

( j n
2 ,m

)
for all |x|< k−1 j n

2 ,m
,

0 otherwise

is in C1,1(Rn) and satisfies (2.7.1) with D = BR provided R = k−1 j n
2 ,m

.

We now assume that

(2.7.2)

D is a null k-quadrature domain which is bounded

such that ∂D is homeomorphic to a sphere

By using maximum principle and the fact that the first Dirichlet eigenfunction is positive, one sees
that k is strictly larger than the first Dirichlet eigenvalue of D, and thus maximuim principle does
not hold on D in the case. Therefore it is not possible to construct null k-quadrature domain by
using partial balayage at the moment.

In particular, by using [Wil81, Theorem 1] and [Wil76] the assumptions in (2.7.2) is equivalent
to the assumptions in the Pompeiu conjecture [Pom29, Zal92, Zal01], which is still open until

https://www.scilag.net/problem/G-180522.1
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today. It is worth to mention that if D satisfies assumption (2.7.2) of Pompeiu conjecture holds,
then its boundary ∂D must analytic [Wil81]. See also [Avi86, BST73, BK82, GS93] for some
related results. The following conjecture is still remain unanswered:

CONJECTURE 2.7.7 (Pompeiu conjecture [Yau82, Problem 80]). If D satisfies (2.7.2), then D
has to be a ball.

It is easy to see that k > 0 is also a Neumann eigenvalue of D with eigenfunction v := u− k−2,
where u is given in (2.7.1), which satisfies

v|∂D =−k−2.

The main difficulty is the knowledge of v|∂D does not explicitly contained in the Courant minimax
characterization of Neumann eigenvalues. Therefore we also believe that the Courant minimax
principle is not helpful in the study of Pompeiu conjecture.

We now also give some remarks on unbounded null k-quadrature domain. The following
theorem can be proved by following the ideas in [BBDFHT16].

THEOREM 2.7.8 ([KSS24, Theorem E.1]). Let n ≥ 2 be an integer, k > 0 and θ ∈ (0, π

2 ). We
consider the conical domain (see [BBDFHT16, Figure 1])

Σθ :=
{
(x,y) ∈ Rn−1 ×R : y >−|x| tanθ

}
.

If w ∈ L1(Σθ ) satisfies (∆+ k2)w = 0 in Σθ , then w ≡ 0 in Σθ .

This shows that, unlike the null 0-quadrature domains are always unbounded (Example 1.1.3),
the notion of “null k-quadrature domains” for k> 0 therefore makes no sense for general unbounded
sets.
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APPENDIX A

Preliminaries

A.1. A version of Hahn-Banach theorem

There are several versions of Hahn-Banach theorems. Here we exhibit a version which is very
useful in the context of PDE:

THEOREM A.1.1 (Hahn-Banach [Bre11, Corollary 1.8]). Let F ⊂ E be a linear subspace. If

⟨ f ,x⟩= 0 for all x ∈ F =⇒ f ≡ 0,

then F = E.

A.2. Sobolev embeddings

Before introducing the Sobolev embeddings, we first introducing the following concept:

DEFINITION A.2.1. Let X and Y be two Banach spaces. We say that the space X is continuous
embedded in Y if

(A.2.1) ∥v∥Y ≤ c∥v∥X for all v ∈ X .

We say that the space X is compactly embedded in Y if (A.2.1) holds and each bounded sequence
in X has a convergent subsequence in Y .

Many authors (including myself) simply denote X ⊂ Y if the Banach space X is continuous
embedded in another Banach space Y , despite that X is not necessarily a subset of Y . We will also
denote X ⋐ Y if X is compactly embedded in Y . Here and after (including the next theorem), we
will use these notations without mentioning explicitly. Let ⌊x⌋ denotes the integer part of x, and we
have the following theorem:

THEOREM A.2.2 (Sobolev embedding theorems [AH09, Theorem 7.3.7 and Theorem 7.3.8]).
Let Ω be a bounded Lipschitz domain in Rn. Then the following statements are valid:

(a) If k < n
p , then W k,p(Ω)⋐ Lq(Ω) for any q < p∗ and W k,p(Ω)⊂ Lq(Ω) when q ≤ p∗, where

1
p∗ =

1
p −

k
n .

(b) If k = n
p , then W k,p(Ω)⋐ Lq(Ω) for any q < ∞.

(c) If k > n
p , then

W k,p(Ω)⋐Ck−⌊ n
p⌋−1,β (Ω) for all β ∈

[
0,
⌊

n
p

⌋
+1− n

p

)
W k,p(Ω)⊂Ck−⌊ n

p ⌋−1,β (Ω) with β =

{
⌊ n

p⌋+1− n
p if n

p /∈ Z,
any positive number < 1 if n

p ∈ Z.

REMARK A.2.3. Theorem A.2.2 is also valid for W k,p-spaces with k ∈ R, see e.g. [AH09,
McL00] for precise definitions. Here we will cover these topics in this lecture note. Part (c)
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of Theorem A.2.2 in particular gives some sufficient condition in terms of weak derivatives to
guarantee the well-definedness of the strong/classical derivatives.

It is important to mention that the proof of Theorem A.2.2 is based on the existence of the
bounded linear extension operator

E : W k,p(Ω)→W k,p(Rn)

for any nonnegative integer k and for any 1 ≤ p ≤ ∞. In fact, the operator norm of the extension
operator can be eplicitly given:

THEOREM A.2.4 ([Bur99, Theorem 3.4]). Let Ω be a bounded Lipschitz domain in Rn. There
exists a constant C =C(Ω)> 1 such that

(C−1k)k ≤ inf
E
∥E∥W k,p(Ω)→W k,p(Rn) ≤ (Ck)k

for all k ∈ N and for all 1 ≤ p ≤ ∞, where the infimum is taken over all extension operator E :
W k,p(Ω)→W k,p(Rn).

REMARK A.2.5. Here we emphasize that the constant C in Theorem A.2.4 is independent of
both k and p.

A.3. Integration by parts

The following version of integration by parts is widely-used in the context of PDE:

THEOREM A.3.1 (Integration by parts [EG15, Theorem 1 in Section 4.3]). Let Ω be a bounded
Lipschitz domain in Rn and given 1 ≤ p < ∞. The mapping

(A.3.1) Tr : C∞(Ω)→C∞(∂Ω), Tr( f ) = f |
∂Ω

can be uniquely extended to a bounded surjective linear operator W 1,p(Ω) → Tr(W 1,p(Ω)) ⊂
Lp(∂Ω). Furthermore, for all φ ∈ (C1(Rn))n and f ∈W 1,p(Ω), we have

(A.3.2)
∫

Ω

f div(φ)dx=−
∫

Ω

∇ f ·φdx+
∫

∂Ω

(ν ·φ)Tr( f )dH n−1,

where ν is the unit outer normal to ∂Ω.

REMARK A.3.2. Here we refer the advance monograph [EG15] for the precise meaning of ν,
which is well-defined for H n−1-a.e. on ∂Ω. The function Tr( f ) given in (A.3.1) is called the trace
of f on ∂Ω. We usually still denote dH n−1 by dSx. If there is no ambituity, we sometime omit the
notation the trace operator (A.3.1) and simply write (A.3.2) as∫

Ω

f div(φ)dx=−
∫

Ω

∇ f ·φdx+
∫

∂Ω

(ν ·φ) f dSx.
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