COMPLEX ANALYSIS (701026001, 112-1) - HOMEWORK 10

Return to TA by: December 26, 2023 (Tuesday) 16:00

Total marks: 50 (10 bonus)

Exercise 1 (10 points). Compute Log(1 + i).

Exercise 2 (10 points). Show that $\text{Log}(1+z) = -\sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n}$ for all $z \in B_1$.

Exercise 3 (10 points). Prove that $\prod_{k=2}^{\infty} \left(1 - \frac{1}{k^2}\right)$ converges to a nonzero limit.

Exercise 4 (10 points). Let $\{a_k\}_{k=1}^{\infty}$ be a sequence of **positive** real numbers. Show that

$$a_1 + a_2 + \dots + a_N \le \prod_{k=1}^N (1 + a_k) \le e^{a_1 + a_2 + \dots + a_N}$$
 for all $N \in \mathbb{N}$.

By using this, show that $\prod_{k=1}^{\infty} (1+a_k)$ converges to a nonzero limit if and only if $\sum_{k=1}^{\infty} a_k$ converges.

Exercise 5 (10 points). Let $a_k := \frac{(-1)^k}{\sqrt{k}}$ for all $k = 2, 3, 4, \cdots$. Show that $\sum_{k=1}^{\infty} a_k$ converges but $\prod_{k=1}^{\infty} (1+a_k)$ diverges to zero.

Exercise 6 (10 points). Let K be a compact set in \mathbb{C} , and we consider a continuous function $g: K \to \mathbb{C}$. Show that the set $g(K) := \{g(z) : z \in K\}$ is compact in \mathbb{C} .