COMPLEX ANALYSIS (701026001, 112-1) - HOMEWORK 3

Return to TA by: October 12, 2023 (Thursday) 16:00

Total marks: 50

Exercise 1. (10 points) Show that the radius of convergence of $\sum_{n=1}^{\infty} nz^n$ is R = 1, and the series also diverges for |z| = 1.

Exercise 2. (10 points) Show that the radius of convergence of $\sum_{n=1}^{\infty} n^{-2} z^n$ is R = 1, and the series also converges for |z| = 1.

Exercise 3. (10 points) Show that the radius of convergence of $\sum_{n=1}^{\infty} n^{-1} z^n$ is R = 1. In addition, show that the series converges for all $z \in \partial B_1 \setminus \{1\}$ but diverges at z = 1.

Exercise 4. (10 points) Show that $\sum_{n=0}^{\infty} (z^n/n!)$ converges for all $z \in \mathbb{C}$.

Exercise 5. (10 points) Show that if $f(z) = \sum_{n=0}^{\infty} C_n z^n$ has a nonzero radius of convergence, then

$$C_n = \frac{f^{(n)}(0)}{n!}$$
 for all $n = 0, 1, 2, \cdots$

where $f^{(n)}$ is the nth complex derivative of f. Show that for each $n = 0, 1, 2, \cdots$ that

$$f^{(n)}(z) = n!C_n + (n+1)!C_{n+1}z + \frac{(n+2)!}{2!}C_{n+2}z^2 + \cdots$$

for all z in the domain of convergence.

Announcement. I have updated the lecture note to fix the mistakes in the statement and the proof of Theorem 2.2.11 (uniqueness of power series).