COMPLEX ANALYSIS (701026001, 112-1) - HOMEWORK 9

Return to TA by: December 19, 2023 (Tuesday) 16:00

Announcement. I added a remark after Theorem 5.2.6, which is helpful in this homework. Total marks: 50 (10 bonus)

Exercise 1 (10 points, higher order Cauchy integral formula). Let f be an entire function, let $a \in \mathbb{C}$ and let $\mathcal{C} = \begin{bmatrix} Re^{i\theta} & 0 \le \theta \le 2\pi \end{bmatrix}$ with R > |a|. Show that

$$f^{(k)}(a) = \frac{k!}{2\pi \mathbf{i}} \int_{\mathcal{C}} \frac{f(z)}{(z-a)^{k+1}} \, \mathrm{d}z$$
 for all $k = 0, 1, 2, \cdots$

is a special case of Cauchy residue theorem (Theorem 5.3.6).

Exercise 2 (10 points, exponential integral). For each $n \in \mathbb{N}$ and $k = 0, 1, 2, \dots, n$, prove the following exponential integral

$$n^k = \frac{k!}{2\pi \mathbf{i}} \int_{\mathcal{C}} \frac{e^{nz}}{z^{k+1}} \,\mathrm{d}z$$

for all simple closed (parametrizable continuous piecewise- C^1) curve \mathcal{C} surrounding the origin.

Exercise 3 (10 points). Show that the image of the unit disc minus the origin under $f(z) = \csc(1/z) \equiv 1/(\sin(1/z))$ is dense in the complex plane. [Hint: Show that $\sin(1/z)$ has a essential singularity at z = 0]

Exercise 4 (10 points). Show that if f is analytic in $z \neq 0$ and f(-z) = -f(z) for all $z \neq 0$, then all the even terms in its Laurent expansion about 0 are 0.

Exercise 5 (10+10 points). Classify the singularities of $\frac{1}{z^4 + z^2}$ and $\frac{\exp(1/z^2)}{z-1}$.