COMPLEX ANALYSIS (701026001, 113-1) - HOMEWORK 1

Return to TA by: September 27, 2024 (Friday) 12:00

Total marks: 50 (with 9 bonus marks)

Exercise 1 (10 points). Show that for any two pairs of integers $\{a, b\}$ and $\{c, d\}$, we can find integers u, v with

$$(a^{2} + b^{2})(c^{2} + d^{2}) = u^{2} + v^{2}.$$

Exercise 2 (10 points). Show that $|z| \leq |\Re \epsilon z| + |\Im \pi z|$ for all $z \in \mathbb{C}$. When is equality possible?

Exercise 3 (5+5 points). Determine whether the series $\sum_{k=1}^{\infty} \frac{\mathbf{i}^k}{k^2 + \mathbf{i}}$ and $\sum_{k=1}^{\infty} \frac{1}{k + \mathbf{i}}$ converges or not.

Definition. Let $f : \mathbb{C} \to \mathbb{C}$ be a function. If $f(z_0) = 0$, then we called such $z_0 \in \mathbb{C}$ a zero of f.

Exercise 4 (10 points). Let $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ with all $a_i \in \mathbb{R}$. Show that P(z) = 0 if and only if $P(\overline{z}) = 0$.

Exercise 5 (10 points). Let $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ with all $a_i \in \mathbb{R}$ and $0 \leq a_0 \leq a_1 \leq \cdots \leq a_n$. Show that all the zeros of P(z) are inside the closed unit disc $\overline{B_1} = \{z \in \mathbb{C} : |z| \leq 1\}$. [Hint: Consider the factor (1-z) and using a contradiction argument

Exercise 6 (Bonus, 3+3+3 points). Use MATLAB (or other software) to plot the region $\{\varphi(z) : |z| < 1\}$ when

- (a) $\varphi(z) = \frac{1}{m} z^m$ (choose any two integers $m \ge 2$ to plot)
- (b) $\varphi(z) = z \frac{2\sqrt{2}}{3}z^2 + \frac{1}{3}z^3$ (zoom in near the point 0.4 + i0) (c) $\varphi(z) = (z-1)^2 (1-\frac{i}{2})(z-1)^3$ (zoom in near the origin 0)