GEOMETRY (701939001, 751764001, 113-2) - HOMEWORK 2

Return to TA at March 18, 2025 (Tuesday) (13:00–13:10 or 15:00–15:10, TA's office)

Total marks: 50

Exercise 1 (10+10 points). Let $-\infty < a_k < b_k < +\infty$ for $k = 1, \dots, n$.

- (a) Show that the open interval $\prod_{k=1}^{n} (a_k, b_k)$ is an open set, but not a topological closed set, in \mathbb{R}^n .
- (b) Show that the closed interval $\prod_{k=1}^{n} [a_k, b_k]$ is a topological closed set, but not an open set, in \mathbb{R}^n .

Exercise 2 (10+10+10 points). We define the set $S := \{(x, f(x)) : x > 0\}$, called the graph of f on $(0, \infty)$. Determine the set of limit points S' (also known as derived set) when

(a)
$$f(x) = x \sin \frac{1}{x}$$
, (b) $f(x) = \sin \frac{1}{x}$, (c) $\frac{1}{x} \sin \frac{1}{x}$.

You will not get any credit if you just write down S' without any explanations.