GEOMETRY (701939001, 751764001, 113-2) - HOMEWORK 4

Return to TA by: April 1, 2025 (Tuesday) 16:00

Total marks: 50

Exercise 1 (10 points). Let $S = S_1 \cup S_2$ where

$$S_1 = \{(x, y) \in \mathbb{R}^2 : x = 0\}, \quad S_2 = \{(x, y) \in \mathbb{R}^2 : x > 0, y = \sin\frac{1}{x}\}.$$

Show that S is topologically connected.

Exercise 2 (10 points). Let Λ be an abst4ract index set and let $\{S_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of convex sets in \mathbb{R}^n . Show that the intersection $\bigcap_{\alpha \in \Lambda} S_{\alpha}$ is convex.

Exercise 3 (10 points). Let C be a convex set in \mathbb{R}^n , show that its closure \overline{C} and its interior int (C) are also convex.

Exercise 4 (10 points). Let C be a convex set in \mathbb{R}^n and let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Show that the set $AC + b := \{Ax + b : x \in C\}$ is also a convex set in \mathbb{R}^m .

Exercise 5 (10 points). Let S be any set in \mathbb{R}^n . Show that its convex hull conv(S) is identical to the intersection of all convex sets containing S.