GEOMETRY (701939001, 751764001, 113-2) - HOMEWORK 7

Return to TA by: May 27, 2025 (Tuesday) 16:00

Total marks: 50

Exercise 1 (10 points). Let S be a regular surface and let $\boldsymbol{x} : U \to V \cap S$ be a local coordinates near $\boldsymbol{p} = \boldsymbol{x}(\boldsymbol{q})$. Show that $d\boldsymbol{x}_{\boldsymbol{q}} : \mathbb{R}^2 \to \mathbb{R}^3$ is injective if and only if $\partial_u \boldsymbol{x}(u, v) \times \partial_v \boldsymbol{x}(u, v) \neq 0$.

Exercise 2 (10 points). Show that the unit sphere \mathbb{S}^2 is a regular surface which can be covered by the local charts $\{\boldsymbol{x}_i, U_i\}_{i=1}^4$ given by the *local spherical coordinate*:

$$\begin{cases} \boldsymbol{x}_{1}(\theta,\varphi) = (\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta) &, (\theta,\varphi) \in U_{1} = (0,\pi) \times (0,2\pi), \\ \boldsymbol{x}_{2}(\theta,\varphi) = (\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta) &, (\theta,\varphi) \in U_{2} = (0,\pi) \times (-\pi,\pi), \\ \boldsymbol{x}_{3}(\theta,\varphi) = (\sin\theta\cos\varphi,\cos\theta,\sin\theta\sin\varphi) &, (\theta,\varphi) \in U_{3} = (0,\pi) \times (0,2\pi), \\ \boldsymbol{x}_{4}(\theta,\varphi) = (\sin\theta\cos\varphi,\cos\theta,\sin\theta\sin\varphi) &, (\theta,\varphi) \in U_{4} = (0,\pi) \times (-\pi,\pi), \end{cases}$$

Exercise 3 (10 points). The stereographic projection $\pi : \mathbb{S}^2 \setminus \{e_3\} \to \mathbb{R}^2$, where $e_3 = (0, 0, 1)$ is the north pole, carries a point $p \in \mathbb{S}^2 \setminus \{e_3\}$ onto the intersection of the xy plane with the straight line which connects e_3 to p, that is,

$$\pi(p) := (e_3 + [p - e_3])|_{z=0}.$$

Compute the formula of $\pi^{-1} : \mathbb{R}^2 \to \mathbb{S}^2 \setminus \{e_3\}$ and use this to show that $\pi^{-1}(\mathbb{R}^2) = \mathbb{S}^2 \setminus \{e_3\}$ is a regular surface. From this, one immediately sees that the unit sphere \mathbb{S}^2 is a regular surface which can be covered by the local charts $\{x_i, U_i\}_{i=1}^4$ given by

$$egin{cases} m{x}_1 = \pi^{-1} &, U_1 = \mathbb{R}^2, \ m{x}_1 = -\pi^{-1} &, U_2 = \mathbb{R}^2. \end{cases}$$

Exercise 4 (10 points). Show that it is not possible to cover \mathbb{S}^2 by just a single chart. (Hint. Using a contradiction argument)

Exercise 5 (10 points). Show that the torus $\left\{(x, y, z) \in \mathbb{R}^3 : (\sqrt{x^2 + y^2} - 1)^2 + z^2 = \frac{1}{4}\right\}$ is a regular surface