DIFFERENTIAL EQUATIONS (751873001, 113-1) - HOMEWORK 4

Return by November 7, 2024 (Thursday) 23:59
Total marks: 50 (with 10 bonus points)

Special requirement. All homework must be prepared by using KTEX.

Exercise 1 (10 points). For each A € C™*" show that det(exp(A)) = €. In addition,
show that tr (A) = Ay +--- + \,,, where \; € C are eigenvalues (may identical) of A.

Exercise 2 (5+5+5 points). Let
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Compute exp(A4;), exp(Ay) and exp(As).
Exercise 3 (5 points). Show that for any a,b,d € C that
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Exercise 4 (10 points). Let 0 < s < 1, by using the integration by parts on I'(1 — s), where
I' is the gamma function, show that

we simply interpret
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Exercise 5 (5+5 points). Show that:

(a) If A is unipotent, then exp(log(A)) = A.

(b) If B is nilpotent, then log(exp(B)) = B.
(Hint. Let A(t) := I + t(A — I) and show that exp(log(A(t))) depends polynomially on ¢
and that exp(log(A(t))) = A(t) for all sufficiently small ¢)
Exercise 6 (10 points). Show that there exists a constant ¢ > 0 such that

[log(I + A) — Al < cl| A

holds true for all A € C™*™ with ||A| < 1/2.



