DIFFERENTIAL EQUATIONS (751873001, 113-1) - HOMEWORK 4

Return by November 7, 2024 (Thursday) 23:59

Total marks: 50 (with 10 bonus points)

Special requirement. All homework must be prepared by using $\mathbb{E}T_{E}X$.

Exercise 1 (10 points). For each $A \in \mathbb{C}^{n \times n}$, show that $\det(\exp(A)) = e^{\operatorname{tr}(A)}$. In addition, show that $\operatorname{tr}(A) = \lambda_1 + \cdots + \lambda_n$, where $\lambda_j \in \mathbb{C}$ are eigenvalues (may identical) of A.

Exercise 2 (5+5+5 points). Let

$$A_{1} = \begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}, \quad A_{3} = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}.$$

Compute $\exp(A_1)$, $\exp(A_2)$ and $\exp(A_3)$.

Exercise 3 (5 points). Show that for any $a, b, d \in \mathbb{C}$ that

$$\exp\left(\begin{array}{cc}a&b\\0&d\end{array}\right) = \left(\begin{array}{cc}e^a&b\frac{e^a-e^d}{a-d}\\0&e^d\end{array}\right).$$

Since

$$\lim_{a \to d} \frac{e^a - e^d}{a - d} = e^a,$$

we simply interpret $\frac{e^a - e^d}{a - d}$ as e^a when d = a. (Hint. Show that

$$\left(\begin{array}{cc}a&b\\0&d\end{array}\right)^m = \left(\begin{array}{cc}a^m&b\frac{a^m-d^m}{a-d}\\0&b^m\end{array}\right)$$

for all $m \in \mathbb{N}$ and $a \neq d$.)

Exercise 4 (10 points). Let 0 < s < 1, by using the integration by parts on $\Gamma(1-s)$, where Γ is the gamma function, show that

$$\lambda^s = \frac{1}{|\Gamma(-s)|} \int_0^\infty (1 - e^{t\lambda}) t^{-1-s} \,\mathrm{d}t \quad \text{for all } \lambda > 0.$$

Exercise 5 (5+5 points). Show that:

- (a) If A is unipotent, then $\exp(\log(A)) = A$.
- (b) If B is nilpotent, then log(exp(B)) = B.

(**Hint.** Let A(t) := I + t(A - I) and show that $\exp(\log(A(t)))$ depends polynomially on t and that $\exp(\log(A(t))) = A(t)$ for all sufficiently small t)

Exercise 6 (10 points). Show that there exists a constant c > 0 such that

$$\|\log(I+A) - A\| \le c \|A\|^2$$

holds true for all $A \in \mathbb{C}^{n \times n}$ with $||A|| \leq 1/2$.