DIFFERENTIAL EQUATIONS (751873001, 114-1) - HOMEWORK 3

Return by October 10, 2025 (Friday) 23:59

Total marks: 50

Special requirement. All homeworks must be prepared by using LATEX.

Exercise 1 (5+5+5 points). Let $A, B \in \mathbb{C}^{n \times n}$, show that

- (a) $||A|| = (\operatorname{tr}(A^*A))^{1/2}$, where A^* is the conjugate transpose (or adjoint) of $A \in \mathbb{C}^{n \times n}$.
- (b) $||A + B|| \le ||A|| + ||B||$,
- (c) $||AB|| \le ||A|| ||B||$.

Exercise 2 (5 points). Show that A_m converges to A if and only if $\lim_{m\to\infty} ||A_m - A|| = 0$.

Exercise 3 (10 points). For each $A \in \mathbb{C}^{n \times n}$, show that $\det(\exp(A)) = e^{\operatorname{tr}(A)}$. In addition, show that $\operatorname{tr}(A) = \lambda_1 + \cdots + \lambda_n$, where $\lambda_j \in \mathbb{C}$ are eigenvalues (may identical) of A.

Exercise 4 (5+5+5 points). Let

$$A_1 = \begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}.$$

Compute $\exp(A_1)$, $\exp(A_2)$ and $\exp(A_3)$.

Exercise 5 (5 points). Show that for any $a, b, d \in \mathbb{C}$ that

$$\exp\left(\begin{array}{cc}a&b\\0&d\end{array}\right) = \left(\begin{array}{cc}e^a&b\frac{e^a-e^d}{a-d}\\0&e^d\end{array}\right).$$

Since

$$\lim_{a \to d} \frac{e^a - e^d}{a - d} = e^a,$$

we simply interpret $\frac{e^a-e^d}{a-d}$ as e^a when d=a. (**Hint.** Show that

$$\left(\begin{array}{cc} a & b \\ 0 & d \end{array}\right)^m = \left(\begin{array}{cc} a^m & b\frac{a^m - d^m}{a - d} \\ 0 & b^m \end{array}\right)$$

for all $m \in \mathbb{N}$ and $a \neq d$.)