DIFFERENTIAL EQUATIONS (751873002, 113-2) - HOMEWORK 1

Return by March 6, 2025 (Thursday) 23:59

Total marks: 50

Special requirement. All homeworks must be prepared by using IAT_EX .

Exercise 1 (10 points). For each $1 and <math>\frac{1}{p'} + \frac{1}{p} = 1$, show that the following inequality:

$$ab \leq \frac{1}{p}a^p + \frac{1}{p'}b^{p'}$$
 for all $a \geq 0$ and $b \geq 0$.

Exercise 2 (10 points). Let Ω be an open set in \mathbb{R}^n . Assume that $f \in L^p(\Omega)$ and $g \in L^{p'}(\Omega)$ with $1 \leq p \leq \infty$ and $\frac{1}{p'} + \frac{1}{p} = 1$. Show that $fg \in L^1(\Omega)$ and the following Hölder's inequality holds:

$$\int_{\Omega} |f(\boldsymbol{x})g(\boldsymbol{x})| \, \mathrm{d}\boldsymbol{x} \leq \|f\|_{L^p(\Omega)} \|g\|_{L^{p'}(\Omega)}$$

and the equality holds if and only if there exists $c \in \mathbb{R}$ such that $|g(\boldsymbol{x})| = c|f(\boldsymbol{x})|^{p-1}$ for a.e. $\boldsymbol{x} \in \Omega$.

Exercise 3 (10 points). Let Ω be an open set in \mathbb{R}^n , show that $\|\cdot\|_{L^p(\Omega)}$ defines a norm for each $1 \leq p \leq \infty$.

Exercise 4 (10 points). Show that

$$\left(\int_{\Omega_2} \left|\int_{\Omega_1} F(\boldsymbol{x}, \boldsymbol{y}) \, \mathrm{d}\boldsymbol{x}\right|^p \, \mathrm{d}\boldsymbol{y}\right)^{\frac{1}{p}} \leq \int_{\Omega_1} \left(\int_{\Omega_2} |F(\boldsymbol{x}, \boldsymbol{y})|^p \, \mathrm{d}\boldsymbol{y}\right)^{\frac{1}{p}} \, \mathrm{d}\boldsymbol{x}.$$

Exercise 5 (10 points). Deduce that if $f \in L^p(\Omega) \cap L^q(\Omega)$ with $1 \le p \le \infty$ and $1 \le q \le \infty$, then $f \in L^r(\Omega)$ for every r between p and q. More precisely, write

$$\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q} \quad \text{with } 0 \le \alpha \le 1$$

and prove that

$$||f||_{L^{r}(\Omega)} \leq ||f||_{L^{p}(\Omega)}^{\alpha} ||f||_{L^{q}(\Omega)}^{1-\alpha}$$