DIFFERENTIAL EQUATIONS (751873002, 113-2) - HOMEWORK 5

Return by April 10, 2025 (Thursday) 23:59

Total marks: 50

Exercise 1 (10 points). Let
$$(W_1, \|\cdot\|_{W_1})$$
 and $(W_2, \|\cdot\|_{W_2})$ be Banach spaces. Show that

 $\|\cdot\|_{W_1\cap W_2} := \|\cdot\|_{W_1} + \|\cdot\|_{W_2} \text{ and } \|\cdot\|'_{W_1\cap W_2} := \max\{\|\cdot\|_{W_1}, \|\cdot\|_{W_2}\}$

are norms, and they are equivalent. In addition, show that $(W_1 \cap W_2, \|\cdot\|_{W_1 \cap W_2})$ is a Banach space, equivalently $(W_1 \cap W_2, \|\cdot\|'_{W_1 \cap W_2})$ is a Banach spaces.

Exercise 2 (10 points). Show the following Cauchy-Schwartz inequality:

 $|(u,v)| \le (u,u)^{\frac{1}{2}}(v,v)^{\frac{1}{2}}$ for all $u,v \in H$.

In addition, show that the function $\|\cdot\|$ defined by $\|u\| := (u, u)^{\frac{1}{2}}$ for all $u \in H$ is a norm, which satisfies the parallelogram law:

(0.1)
$$\left\|\frac{u+v}{2}\right\|^2 + \left\|\frac{u-v}{2}\right\|^2 = \frac{1}{2}(\|u\|^2 + \|v\|^2) \text{ for all } u, v \in H.$$

Exercise 3 (10 points). Let $(H, \|\cdot\|)$ be a normed space. Suppose that the norm $\|\cdot\|$ satisfies the parallelogram law (0.1). Define

$$(u,v) := \frac{1}{2}(||u+v||^2 - ||u||^2 - ||v||^2)$$
 for all $u, v \in H$.

- (1) Check that $(u, u) = ||u||^2$, (u, v) = (v, u), (-u, v) = -(u, v) and (u, 2v) = 2(u, v) for all $u, v \in H$.
- (2) Prove that (u + v, w) = (u, w) + (v, w) for all $u, v, w \in H$. [Hint: use the parallelogram law successively with (i) $u = \tilde{u}, v = \tilde{v}$; (ii) $u = \tilde{u} + \tilde{w}, v = \tilde{v} + \tilde{w}$; and (iii) $u = \tilde{u} + \tilde{v} + \tilde{w}$, $v = \tilde{w}$]
- (3) Prove that $(\lambda u, v) = \lambda (u, v)$ for all $\lambda \in \mathbb{R}$ and for all $u, v \in H$. [Hint: Consider first the case $\lambda \in \mathbb{N}$, then $\lambda \in \mathbb{Q}$, and finally $\lambda \in \mathbb{R}$]
- (4) Conclude that (\cdot, \cdot) is a scalar product on H.

Exercise 4 (10 points). Show that $||f||_{L^p(\Omega)}$ satisfies the parallelogram law (0.1) if and only if p = 2. [Hint: Use functions with disjoint supports]

Exercise 5 (10 points). Let Ω be any open set in \mathbb{R}^n , then we denote $H^m(\Omega) := W^{m,2}(\Omega)$ for each $m \in \mathbb{N}$. In this case, the norm reads

$$||u||_{H^m(\Omega)} = \left(\sum_{|\alpha| \le m} ||\partial^{\alpha} u||^2_{L^2(\Omega)}\right)^{\frac{1}{2}}.$$

Use Exercise 3 to show that the corresponding scalar product is given by

$$(u,v)_{H^m(\Omega)} = \sum_{\substack{|\alpha| \le m \\ 1}} (\partial^{\alpha} u, \partial^{\alpha} v)_{L^2(\Omega)}.$$