PARTIAL DIFFERENTIAL EQUATIONS (701925001, 751944001, 112-2) -**HOMEWORK 3**

Return by: March 21, 2024 (Thursday) 16:00

Total marks: 50

Note. One should try to solve all problems in the lecture note. Here I only choose some of them in this homework.

Exercise 1 (10 points). Given any $f \in C^1(\mathbb{R})$, solve the equation $(1+t^2)\partial_t u + \partial_x u = 0$ with u(0, x) = f(x) and identify the range of x.

Exercise 2 (10 points). Given any $f \in C^1(\mathbb{R})$, solve the equation $t\partial_t u + x\partial_x u = 0$ with u(0, x) = f(x) and identify the range of x.

Exercise 3 (10 points). Solve the equation $x\partial_t u + t\partial_x u = 0$ with $u(0, x) = e^{-x^2}$.

Exercise 4 (10 points). Let n = 2. Classify each of the equations:

- (1) $\partial_1^2 u 5 \partial_1 \partial_2 u = 0;$
- (2) $4\partial_1^2 u 12\partial_1\partial_2 u + 9\partial_2^2 u + \partial_2 u = 0;$ (3) $4\partial_1^2 u + 6\partial_1\partial_2 u + 9\partial_2^2 u = 0.$

Exercise 5 (10 points). Classify each of the equations:

- (1) $-\Delta u + \boldsymbol{b} \cdot \nabla u + c\boldsymbol{u} = 0$ with $\boldsymbol{u} = \boldsymbol{u}(\boldsymbol{x})$.
- (2) Heat equation (or caloric equation, diffusion equation) $\partial_t u \Delta u + \mathbf{b} \cdot \nabla u + cu =$ 0 with $u = u(t, \boldsymbol{x})$.
- (3) Wave equation $\partial_t^2 u \Delta u + \boldsymbol{b} \cdot \nabla u + cu = 0$ with $u = u(t, \boldsymbol{x})$.