PARTIAL DIFFERENTIAL EQUATIONS (701925001, 751944001, 112-2) -HOMEWORK 6

Return by: April 11, 2024 (Thursday) 16:00

Total marks: 50

Note. One should try to solve all problems in the lecture note. Here I only choose some of them in this homework.

Exercise 1 (10 points). Let X be a space with a sequence of norms $\{\|\cdot\|_N\}_{N\in\mathbb{N}}$. We define the mapping $\mathsf{d}: X \times X \to \mathbb{R}$ by

$$\mathsf{d}(x,y) := \sum_{N \in \mathbb{N}} 2^{-N} \frac{\|x - y\|_N}{1 + \|x - y\|_N} \quad \text{for all } x, y \in X.$$

Show that the mapping $d : X \times X \to \mathbb{R}$ above is a metric on X, and thus (X, d) forms a metric space.

Exercise 2 (10 points). Take n = 1 and $\Omega = \mathbb{R}$. Let $\phi \in \mathscr{D}(\mathbb{R}) \equiv C_c^{\infty}(\mathbb{R})$ with supp $(\phi) \subset [0,1]$ and $\phi > 0$ in (0,1). Define

$$\psi_m(x) := \phi(x-1) + \frac{1}{2}\phi(x-2) + \dots + \frac{1}{m}\phi(x-m).$$

Show that $\{\psi_m\}$ is a Cauchy sequence in $(\mathscr{D}(\mathbb{R}), \mathsf{d}_{\mathscr{D}(\mathbb{R})})$, where $\mathsf{d}_{\mathscr{D}(\mathbb{R})}$ is the metric given in the lecture note. Using this to conclude that $(\mathscr{D}(\mathbb{R}), \mathsf{d}_{\mathscr{D}(\mathbb{R})})$ is not complete.

Exercise 3 (10 points). Prove that for every $c \in \mathbb{R}$ one has

$$(e^{-c|x|})' = -ce^{-cx}H(x) + ce^{cx}H(-x)$$
 in distribution sense

Exercise 4 (10 points). Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x \ln |x| - x & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

Prove that f is a continuous function and compute its distributional derivative f'.

Exercise 5 (10 points). Let n = 1, and let δ_a be the Dirac measure at $a \in \mathbb{R}$. Show that $T = \sum_{j=1}^{\infty} \partial^j \delta_j$ is a distribution.