General Information
References
Note. See my lecture note for some more advance monographs.
- H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR2759829, Zbl:1220.46002, doi:10.1007/978-0-387-70914-7
- L. C. Evans, Partial differential equations, volume 19 of Grad. Stud. Math. AMS, Providence, RI, second edition, 2010. MR2597943, Zbl:1194.35001, doi:10.1090/gsm/019
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order (reprint of the 1998 edition), volume 224 of Classics in Mathematics, Springer-Verlag Berlin Heidelberg, 2001. MR1814364, Zbl:1042.35002, doi:10.1007/978-3-642-61798-0
- P.-F. Hsieh and Y. Sibuya, Basic theory of ordinary differential equations Universitext, Springer-Verlag, New York, 1999 MR1697415, doi:10.1007/978-1-4612-1506-6
- F. John, Partial differential equations, volume 1 of Appl. Math. Sci., Springer-Verlag, New York-Berlin, third edition, 1978. MR0514404, Zbl:0426.35002
Prerequisite
- Real and complex analysis
Homeworks
Schedule
- The lectures are on Thursday (13:10-16:00) at 志希070116.
Time | Room | Activities |
20.02.2025 13:10-16:00 | 志希070116 | Week 1 - Lecture (Thursday) |
Completion
- The course can be taken for credit by attending the lectures, returning written solutions (60%) in LaTeX and giving (at least) 2 presentations (each 20%).